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Abstract. Several deep learning architectures are combined for brain
tumor segmentation. All the architectures are inspired on recent 2D mod-
els where 2D convolution have been replaced by 3D convolutions. The
key differences between the architectures are the size of the receptive
field and the number of feature maps on the final layers. The obtained
results are comparable to the top methods of previous Brats Challenges
when median is use to average the results. Further investigation is still
needed to analyze the outlier patients.
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1 Introduction

Brain tumor segmentation is an important problem which has received a con-
siderable attention by the research community and particularly since the advent
of deep learning.

Glial cells are the cause of gliomas that are the most common brain tumors.
Gliomas are usually classified into low-grade gliomas (LGG) and high grade
gliomas (HGG) which are malignant and more aggressive.

Brain tumors are usually imaged using several Magnetic Resonance
(MR) sequences, such as T1-weighted, contrast enhanced T1-weighted (T1c),
T2-weighted and Fluid Attenuation Inversion Recovery (FLAIR) images. From
a pure pattern recognition point of view, these modalities provide complimen-
tary information and can be used as different feature input maps. In other words,
image modalities play a role similar to color planes of RGB natural images.

The Multimodal Brain Tumor Segmentation Challenge 2018 provided a set
of MR sequences for training and evaluation of brain tumor segmentation algo-
rithms. Ground truth for all the scans have been manually provided by expert
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board-certified neuroradiologists, so that every voxel is categorized into these
classes [11]:

– Label 0: background.
– Label 1: necrotic and non-enhancing tumor.
– Label 2: edema.
– Label 4: enhancing tumor.

We did not pay much attention on the medical details of this problem. Our
main contribution was to extend some of the recent approaches used for 2D
image classification: VGG, inception, Xception, densely connected models to be
used with 3D data in a real segmentation problem.

2 Methods

Our approach uses an ensemble of deep neural networks with different architec-
tures. The idea is that the ensemble provides a more robust solution with less
variance compared to individual methods. Also, some architectures may compen-
sate for other architectures weaknesses and thus improve the global performance.
The idea of using an ensemble with multiple architectures was also used by the
winning method of the last Brats competition [9].

This section describes the different architectures used in our approach. All
the architectures have in common that every voxel is independently labeled using
a deep neural network architecture. We are aware that better results could had
been obtanied if some post processing that considered the spatial constraints
had been used, similar to the CRF proposed in [10].

The key differences between the architectures are the number of parameters,
the number of feature planes and the size of the receptive field associated to each
voxel. These hyper-parameters were chosen as a trade-off usually limited by the
memory of the GPU. More specifically, we mixed four different architectures in
our final ensemble: VGG-Like, inception-2, inception-3 and densely connected.
These models are described in detail in the following subsections.

2.1 VGG-like Model

This model is inspired on the well known VGG model proposed by [12]. The
differences between our approach and the original VGG are:

– 2-D convolutions are replaced by 3-D convolutions.
– Maxpool layers are not used.
– The network is replicated in a convolutional way so that every pixel is labeled

independently.

Table 1 describes in detail the layers used in this model. Note that all con-
volutional layers are preceded by batch normalization and followed by a ReLU
activation function, except the last layer which is followed by a softmax activa-
tion function.
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Table 1. Description of our VGG-like architecture.

Layer name Kernel size Num filters

conv 1 1 3 × 3 × 3 30

conv 1 2 3 × 3 × 3 30

conv 2 1 3 × 3 × 3 60

conv 2 2 3 × 3 × 3 60

conv 3 1 3 × 3 × 3 120

conv 3 2 3 × 3 × 3 120

conv 4 1 3 × 3 × 3 240

conv 4 2 3 × 3 × 3 240

fc 1 1 × 1 × 1 400

fc 2 1 × 1 × 1 200

logits 1 × 1 × 1 4

2.2 Dense-Like Model

This architecture is inspired by the recent work [8]. The key difference between
the original method and the one used in this paper, is that 2D convolutions
are replaced by 3D convolutions. The advantage of densely connected networks
(compared to VGG like models) is that features are reused on subsequent layers
and each layer adds a few new features only. This allows to increase the number
of layers and therefore the size of the receptive field associated to each voxel.
This architecture also allows to combine features with relatively small receptive
fields (first layers) with features with large receptive fields (last layers). This is
particularly useful in segmentation problems, where large receptive fields provide
context information and small receptive fields provide fine-grained information
that helps to increase the precision of the segmentation.

Table 2 summarizes the architecture of our densely connected network. Note
that each layer concatenates all the output features from the previous layers, for
this reason the number of input feature grows steadily until layer conv 20. Then
two fully connected layers similar to the VGG architecture are used.

2.3 Inception-Like Model

This architecture is inspired by some of the ideas proposed in [14] and [13]. The
key idea proposed by the inception model is to replace convolutional layers by
several parallel structures with different kernel shapes. This reduces the number
of parameters (regularization) and forces diversity on the output features of each
layer.

We took these ideas and adapted them to the problem of brain segmentation.
The main limitation of inception layers is that they require much GPU memory
because each layer is composed of several simpler sub-layers, for instance some
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Table 2. Description of our Dense-like architecture.

Layer name Kernel size Num inputs Num output filters

conv 1 3 × 3 × 3 4 8

conv 2 3 × 3 × 3 12 8

conv 3 3 × 3 × 3 20 8

conv 4 3 × 3 × 3 28 8

conv 5 3 × 3 × 3 36 8

conv 6 3 × 3 × 3 44 8

conv 7 3 × 3 × 3 52 8

conv 8 3 × 3 × 3 60 8

conv 9 3 × 3 × 3 68 8

conv 10 3 × 3 × 3 76 8

conv 11 3 × 3 × 3 84 8

conv 12 3 × 3 × 3 92 8

conv 13 3 × 3 × 3 100 8

conv 14 3 × 3 × 3 108 8

conv 15 3 × 3 × 3 106 8

conv 16 3 × 3 × 3 114 8

conv 17 3 × 3 × 3 122 8

conv 18 3 × 3 × 3 130 8

conv 19 3 × 3 × 3 138 8

conv 20 3 × 3 × 3 146 8

fc 1 1 × 1 × 1 154 400

fc 2 1 × 1 × 1 400 200

logits 1 × 1 × 1 200 4

inception layers use 1-D convolutions along each spatial dimension. In the case
of 2D convolutions, this option doubles the number of layers and the required
memory used to store intermediate results and gradients. In the case of 3D
segmentation, this problem is even worse because the use of 1-D convolutions
implies to use three times more memory.

For this reason, we created two simplified GoogLenet-like models with a few
inception layers before the fully connected layers as detailed in Table 3.

Figure 1 shows the internal structure of the inception layers. As it can be seen,
four different branches are used. The first layer extracts new features and reduces
the dimensionality. The second and third branches introduce spatial convolution;
the fourth brach is an average layer without pooling. This structure is similar to
the structure of Fig. 5 in [13].
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Table 3. Description of the inception architectures used in the final ensemble.

Layer name kernel size num filters
conv 1 1 3× 3× 3 30
conv 1 2 3× 3× 3 30
conv 2 1 3× 3× 3 60
conv 2 2 3× 3× 3 60
conv 3 1 3× 3× 3 120
conv 3 2 3× 3× 3 120
inception see. Fig. 1 240
inception see. Fig. 1 240

fc 1 1× 1× 1 400
fc 2 1× 1× 1 200
logits 1× 1× 1 4

Layer name kernel size num filters
conv 1 1 3× 3× 3 30
conv 1 2 3× 3× 3 30
conv 2 1 3× 3× 3 60
conv 2 2 3× 3× 3 60
conv 3 1 3× 3× 3 120
conv 3 2 3× 3× 3 120
inception see. Fig. 1 240
inception see. Fig. 1 240
inception see. Fig. 1 240

fc 1 1× 1× 1 400
fc 2 1× 1× 1 200
logits 1× 1× 1 4

3noitpecnI2noitpecnI

2.4 Other Architectures Not in the Final Ensemble

We also made experiments with other architectures not included in the final
ensemble for their lower performance on our training data using cross-validation.

The most innovative structure in this group was based in the Xception archi-
tecture presented in [6]. This architecture assumes that correlation in feature
planes can be decoupled from spatial correlation, and therefore separability is
applied. We implemented this separable 3D spatial filters from scratch in Ten-
sorflow (the library only provides this feature for 2D images).

We also made experiments with other inception architectures similar to those
presented in Figs. 6 and 7 of [13]. However, the results on our cross-validated
training set were not good enough.

The main limitation of these other inception architectures and also the Xcep-
tion layers is that they require more GPU memory compared to the simpler VGG
architecture, for this reason total number of layers needs to be reduced so that
the model fits into memory. The main advantage of these architectures in 2D
images is that they require a smaller number of parameters which help to reg-
ularize the model. However, we found that overfitting was not the problem for
any of our models (the training cost and training error was not negligible), and
therefore models with many parameters (as the VGG) could be trained without
overfitting.

Finally, we also made experiments with field bias correction of the input
data [15]. In these experiments, we corrected the bias of the T1 and T1ce input
modalities and compared the performance without the field bias correction and
the same neural network architecture. The results with the bias correction were
always worse compared to using the original raw data with the same model
architecture, and for this reason we omitted field bias correction.
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base

Filter concat

1x1x1 -> 30

1x1x1 -> 30

3x3x3 -> 60

1x1x1 -> 40

3x3x3 -> 60

3x3x3 -> 120

Avg 3x3x3

Fig. 1. Structure of the inception layers used in the models of Table 3. Each box shows
the kernel size and the number of output features.

2.5 Number of Parameters and Receptive Field Size

Table 4 shows the number of parameters and receptive field size for the models
included in our final ensemble. The model that requires more parameters is the
VGG-like. This constraint limits the number of layers of the VGG model to
avoid GPU memory problems. This is the reason why the VGG-like model has
the smallest receptive field size.

The inception models halve the number of parameters (the latter layers are
the ones with more parameters) and have a larger receptive field.

Finally, the densely connected model is the model with less parameters and
largest receptive field.

The idea of our ensemble is to be able to combine models with large recep-
tive field (more context), as the densely connected model, with very expressive
models, i.e. models with many deep features (VGG-like) so that each model
compensate for the weaknesses of the others.

Table 4. Number of parameters and receptive field size for the models used in our
ensemble

Model #parameters Receptive field size

VGG-like 3270252 17 × 17 × 17

Inception2 1375872 21 × 21 × 21

Inception3 1611882 25 × 25 × 25

Densely connected 494220 41 × 41 × 41
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3 Experiments and Results

3.1 Data

Our system was evaluated on the data from the Brain Tumor Segmentation
Challenge 2018 (BRATS) [2–4,11]. As in previous editions, the training set con-
sists of 210 cases with high grade glioma (HGG) and 75 cases with low grade
glioma (LGG), for which manual segmentations are provided. The segmentations
include the following tumor tissue labels: (1) necrotic core and non enhancing
tumor, (2) edema, (4) enhancing core. Label 3 is not used. The validation set
consists of 66 cases, both HGG and LGG but the grade is not revealed. For each
subject, four MRI sequences are available, FLAIR, T1, T1 contrast enhanced
(T1ce) and T2. The datasets are pre-processed by the organisers and provided
as skull-stripped, registered to a common space and resampled to isotropic 1mm3
resolution. Dimensions of each volume are 240 × 240 × 155.

3.2 Implementation Detais

We implemented everything in python. Input/output data for MRI scans was
handled with the nibabel library [7] and neural networks were implemented using
tensorflow [1]. The code used in this work has been dockerized and released to
the challenge organizers so it will be available to the community.

We did not try any bias field correction of the input scans. The only intensity
normalization that we used was z-score normalization of the input scans using
the mean and standard deviation of the brain volume only (so the mean and std
deviation are not dependent of the brain size).

Models were trained using crops of the original MRI scans. As in [10], the
size of each crop was larger than the size of the receptive field. More specifically,
the size of the crop is set (9 + rf ) × (9 + rf ) × (9 + rf ), where rf is the size
of the receptive field. Thus, each crop contributes to the cost function with
9 × 9 × 9 voxels. This approach increases the computational efficiency (reuses
many computations) and we think that it also acts as a regularizer, forces the
model to be smooth during labeling. For each mini batch, we increased the
number of crops to fill the GPU memory (12Gb in our machine). These crops
were randomly sampled using a uniform distribution among the four classes:
healthy, oedema, core and enhancing core. During evaluation the size of the crops
were increased and consecutive crops had some overlap to handle the reduced
size of the network output (we used convolutions with only valid support).

Training was done using gradient descent with the Adam optimizer using
a constant learning rate of 0.0001 for about 40k steps. We did not observed
any overfitting during training, and for this reason we did not investigate into
adding any L2, L1 regularization, learning rate decay.... Perhaps one of the reason
why we did not observed overfitting is because we implemented a strong data
augmentation that generated affine 3D transformations of the MRI scans on
the fly.
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3.3 Training Results

We split the training data in two random sets, so that one of the sets that
contained 20% of the patients was used to evaluate the training progress. For
each model architecture we generated two different training partitions using
different random seeds, so that all training data was used by the models in the
ensemble.

We ranked the model architectures using the Dice scores on our validation
subset. Table 5 shows the Dice scores for our best models on our validation split.
As it can be seen the differences among models are very small, however since
the receptive field size and number of parameters is very different we think that
the models might have captured complimentary information.

The last row in Table 6 shows the results on the Brats test set that we
obtained on the challenge. The results on this set are clearly worse than those
obtained for the validation set, this fact could be a clear symptom of some
overfitting on the training and validation sets. However, we suspect that there
could be also some differences due to other factors, such as different acquisition
conditions because we did not made any model selection on the validation set
and in that case we did not observed any difference with the results on our cross
validation partition.

Table 5. Results of the selected model architectures on our validation split

Model name Dice WT Dice TC Dice ET

VGG-like 0.880 0.771 0.689

Inception2 0.882 0.792 0.685

Inception3 0.880 0.789 0.695

Densely connected 0.883 0.787 0.683

3.4 Results on the Validation and Test Sets

We submitted the predicted labels for each of the described models and also for
the ensemble model for the validation set. There ensemble model averages the
probabilities of 8 trained models (one for each architecture, and two random
partitions of the training set).

Table 6 shows the results provided by the Brats evaluation platform on the
blind validation dataset. The results are quite consistent with the results shown
on Table 5, and hence we can conclude that we did not overfit the training dataset
and the models generalize quite well on new data. However, the evaluation on the
Brats platform shows an interesting point, median values of the Dice scores are
much larger than the mean values. This confirms the existence of image outliers.
The last row in Table 6 shows the results on the contest test set, the results for
all other contest participants can be found in [5].
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Table 6. Results of the selected model architectures on the validation set

Model
name

Set Mean
Dice WT

Mean
Dice TC

Mean
Dice ET

Median
Dice WT

Median
Dice TC

Median
Dice ET

VGG-like Validation 0.872 0.760 0.751 0.900 0.837 0.844

Inception2 Validation 0.877 0.773 0.7533 0.909 0.866 0.858

Inception3 Validation 0.873 0.776 0.781 0.907 0.852 0.858

Densely
connected

Validation 0.874 0.755 0.729 0.903 0.837 0.846

Ensemble Validation 0.881 0.777 0.773 0.912 0.873 0.860

Ensemble Test 0.850 0.740 0.723 0.894 0.856 0.828

4 Discussion and Conclusion

In this paper, we have extended some well known architectures for 2D image
classification to the problem of 3D image segmentation. This can be easily done
by replacing 2D convolutions by their 3D counterparts and adjusting the number
of layers and number of feature maps to more appropriate ranges so that models
can be fitted in memory.

We selected four model architectures so that we had models with large/small
receptive fields, many/less parameters. The idea is that different configurations
can capture complimentary information and an ensemble model can outperform
each separate model.

The results on the validation set, show that there no exist many perfor-
mance differences between the different model architectures, however the ensem-
ble model outperforms each model. These results confirms our hypothesis and
are also consistent with the results that we had previously obtained on the train-
ing data. The results on the Brats test set are clearly worse, we think that the
cause of this behaviour is that there are some differences in the image acquisition
and our method is not robust enough to deal with these variations.

We also tried other models, not included in the final ensemble, such as the
3D Xception that assumes independence between spatial and feature dimensions.
We also tried to use bias field correction however our results showed that this
was not useful for our models.

Finally, it is worth to highlight that the obtained results shows the existence
of image outliers that are not well segmented. This issue severely drops our
global performance as shown by the huge difference of using the mean or median
metrics. We need to make further research on the causes of these outliers.
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