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Abstract. Brain tumor segmentation is a challenging task necessary for
quantitative tumor analysis and diagnosis. We apply a multi-scale con-
volutional neural network based on the DeepMedic to segment glioma
subvolumes provided in the 2018 MICCAI Brain Tumor Segmentation
Challenge. We go on to extract intensity and shape features from the
images and cross-validate machine learning models to predict overall
survival. Using only the mean FLAIR intensity, nonenhancing tumor
volume, and patient age we are able to predict patient overall survival
with reasonable accuracy.
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1 Introduction

Gliomas are highly malignant primary brain tumors that carry a dismal median
overall survival of 15 months for high grade tumors [1]. One characteristic that
contributes to this poor survival is the substantial heterogeneity. Spatial hetero-
geneity within a tumor implicitly increases the chances that a therapy resistant
tumor subpopulation exists and thus frequently indicates poor clinical progno-
sis [2]. Successful and automated detection of distinct subvolumes (enhancing,
nonenhancing, and necrotic regions, etc.) is a key step in quantitative analysis
towards patient risk stratification and computer aided diagnosis. In recent years,
convolutional neural networks (CNNs) are the undisputed champions of biomed-
ical segmentation tasks [3]. Quantitative measurements of these subvolumes are
likely to provide insight into patient’s prognosis.

In this work we use a multi-scale convolutional neural network to segment
glioma sub-volumes in multi-contrast MRI images. We go on to extract shape
and intensity features from the sub-volumes to predict patient overall survival.
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Results on the 2018 MICCAI Brain Tumor Segmentation (BraTS) Challenge
[4–7] are provided. Final challenge rankings relative to other contest entries are
available online [8].

2 Segmentation

2.1 Network Structure

Data Preprocessing. The BraTS 2018 Training set contains 285 multi-
contrast MRI (T1, T1ce, T2, FLAIR) scans of high and low-grade gliomas. 75
of the 285 patients are labeled low-grade (LGG) and the remaining are high-
grade (HGG). The imaging data is brain extracted, registered, and resampled to
1 mm isotropic voxel size. Each subject has a ground truth segmentation with
four labels, non-tumor (label 0), necrotic and nonenhancing tumor core (label
1), peritumoral edema (label 2), and Gadolinium-enhancing tumor (label 4).
The BraTS 2018 Validation set contains a mix of 66 HGG and LGG patients
equivalently pre-processed and does not have ground truth segmentations.

All MRI scans were normalized by subtracting the mean intensity and divid-
ing by the standard deviation. A binary brain mask for each patient was also
created using the T1 scan, and this mask is used by the CNN to focus sam-
pling on only the brain. The same preproccesing steps were also applied to the
validation data set before segmenting.

Convolutional Neural Network. We used a 3-dimensional CNN built using
the DeepMedic architecture created by Kamnitsas et al. [9]. DeepMedic has
consistently produced high performing image segmentations in previous BraTS
challenges. Sampling was used to produce image sub-volumes of size 373, and
an equal number of sub-volumes centered on the foreground and background
was taken to reduce class imbalance. Our CNN implementation contains three
pathways consisting of eleven convolutional layers each. The pathways include
one normal resolution and two downsampled where one was downsampled by a
factor of 33 and the other by 53. The first seven layers use a 33 kernel with 30 to
50 features per layer. After the first seven layers, the downsampled pathways are
upsampled to match the normal resolution pathway and all three pathways are
concatenated. The concatenated features are then fed into two fully connected
layers with 250 features and a kernel size of 33 and 13 respectively. The final layer
is a fully connected layer with kernel of size 13 and four features. Dropout rates
of 50% were used on the final two layers to prevent overfitting. The four features
in the last fully connected layer are the output of the network and represent
binary masks for each of the four segmentation labels.

Initially the CNN was trained on 80% of the BraTS 2018 Training Data and
the remaining 20% was reserved for model validation. We tuned the batch size,
learning rate, and optimizer until we found a set of parameters that gave the most
accurate validation results and efficient use of our hardware. The final network
was trained for 50 epochs with a batch size of 10, and the RMSprop optimizer
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was used with an initial learning rate of 0.001 and lowered throughout training.
Before performing inference on the validation set we retrained the network with
95% of the BraTS 2018 Training Data and 5% reserved for validation. This
training on a Nvidia Kepler Titan 6 GB took 96 h and, using the trained CNN,
we performed a full inference on the BraTS 2018 Validation Data to produce
binary mask for each of the four segmentation labels.

2.2 Training and Validation Set Results

The segmentation results from the full inference on the validation set were
uploaded to the BraTS Challenge portal where the Dice score, sensitivity, speci-
ficity, and Hausdorff distance were calculated. Results for the 66 patients in the
validation set are shown in Table 1. We also performed a full inference on the
5% of training set cases which were excluded from the model training process,
so that we can compare the performance of the model against the ground truth
segmentations. This comparison is shown in Table 2. From these samples, we
can see that the CNN classifies the overall tumor well but has greater difficulty
classifying regions with a dense mix of lower and higher grades.

Table 1. Mean values for metrics from segmentations on the training and validation
data sets.

Data set Label Dice Sensitivity Specificity Hausdorff

Training Enhancing tumor 0.7332 0.84265 0.99781 6.20545

Whole tumor 0.89633 0.88636 0.99531 5.14866

Tumor core 0.75292 0.73297 0.99833 8.47618

Validation Enhancing tumor 0.67831 0.72923 0.99611 14.52297

Whole tumor 0.80558 0.81374 0.98703 14.415

Tumor core 0.6852 0.68018 0.99619 20.01745

3 Survival Analysis

Of the 285 training cases, 163 cases had age (range 19–86 years) and overall sur-
vival data (range 5–1767 days) provided. We used this clinical data and features
extracted from segmentations to predict the overall survival in days.

After determining the best model, we applied it to the 28 challenge validation
set cases with patient age and gross total resection status.

The challenge assesses the predictions based on the accuracy: total number
of cases correctly assigned a survival <10 months, between 10 and 15 months,
and >15 months. The mean-square-error (MSE) is also used as a performance
metric.
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Table 2. Ground truth versus CNN segmentation samples from the validation data
excluded from training. Red is nonenhancing tumor and necrosis (tumor core), green
is edema, and yellow is enhancing tumor. The T1 weighted image for each patient is
shown for reference.

Patient ID
Brats18 CBICA

AQQ 1
Brats18 CBICA

AXL 1
Brats18 CBICA

AYA 1

Ground
Truth

CNN
Segmentation

T1 Image

3.1 Image Processing

The format of the provided imaging data is described in Sect. 2.1. For the survival
task, we further pre-processed the data by normalizing based on reference tissue
intensities. Creating a consistent intensity scale between patients allows images
features to discriminate short and long survival patients. Note, this is different
than the normalization used in the segmentation task where each image had
mean zero and standard deviation one. To apply this normalization, we placed
small regions of interest for each patient in the gray matter (GM) of the lentiform
nucleus, the cerebrospinal fluid (CSF) of the ventricles, and the normal appearing
white matter (WM). Using the mean intensity for a pair of reference tissues,
each voxel in the image was linearly scaled to map the mean intensities to 0
and 1 respectively. For example, in the FLAIR image each voxel value x was
transformed according to

yCSF/WM =
x− CSF

WM − CSF
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For the FLAIR image CSF and WM were chosen because they were the dark-
est and brightest reference tissues respectively. For sequences T1 and FLAIR we
normalized using the CSF/WM pair, for T2 we used the WM/CSF pair, and
for the T1 contrast enhanced image we used a CSF/GM pair. This procedure
is similar to other methods presented in the literature [10]. Although we per-
formed the normalization semi-automatically with manually placed ROIs, this
procedure can be performed fully automated using brain tissue segmentation
software applied to the non-tumor regions.

3.2 Image Features

To predict patient overall survival we calculated image features for each of the
available image sequences and segmentation labels from Sect. 2. We also com-
puted the union of the three regions (nonenhancing, enhancing, and edema)
to generate a whole-tumor ROI for each patient. For each region (enhancing,
nonenhancing, edema, and whole tumor) we computed the mean intensity of
that region for each image. (T1, T1 contrast enhances, T2, FLAIR) as well as
the volume using the Pyradiomics software package [11]. So, in total 20 features
(16 means and 4 volumes) were used for predicting overall survival.

We experimented with features quantifying higher order histogram statistics
(quantiles, skewness, etc) and complex shape descriptors (i.e. flatness). However,
we found these features did not improve the performance of predictive modeling
beyond using just mean values. Similarly, we quantified image texture using gray
level co-occurrence matrices and gray level run length matrices, and nearest gray
tone difference matrices [12] but again found that including these features did
not substantially increase model performance. Since these higher-order features
are less robust to variability in the underlying image data and segmentation, we
chose to consider only mean intensity and volume features in our final analysis.

3.3 Survival Task

An overview of our model development approach to predict survival is shown in
Fig. 1. A family of models was considered with distinct permutations of variable
selection methods and machine learning prediction algorithm. The best model
was used to make predictions on the provided validation data. Modeling for the
survival task was implemented in R version 3.4.0.

We partitioned the training data into 80% training and 20% testing data
with an approximately equal proportion of short, medium, and long survivors in
each set. Using the 80% partition, we performed variable selection and trained
several classes of predictive models including linear models, neural networks, and
random forests using leave-one-out cross validation. We selected the model with
the highest Pearson correlation (R2) between predicted and observed overall
survival within the cross validation and made predictions on the testing set to
see how well the model generalized.

For feature selection we consecutively applied univariate, multivariate, and
step-wise feature elimination. After each selection step the resulting variables
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Fig. 1. Flowchart depicting the modeling process and variable selection methods for
predicting overall survival. First the imaging data and computed segmentations (a) are
used to extract mean intensity features and volumes. Panel (b) shows a histogram of
the mean FLAIR intensity over the tumor core (TC) region. Several variable selection
methods based on the cox model are used to generate input sets for predictive models
(c). Features were first tested for significant association with overall survival using
univariate cox models and discarding non-significant features. The set of univariate
significant features was further reduced by constructing a multivariate cox model and
again eliminating redundant (non-significant features), followed by stepwise AIC. The
remaining image features and the patient’s age, an important clinical factor, were used
to predict overall survival (d). Before the variable selection 20% of the training data
was held out for as an independent testing and the remaining 80% is used to select the
best variable and model combination.

were stored as a possible set of inputs to predictive models. First, we used a
Cox model to individually determine which image features were significantly
associated with overall survival. Any feature with p > 0.05 for the Wald-test
was discarded. Next, the remaining features were fed into a multivariate Cox
model to reduce redundancy. Features with p < 0.05 in the multivariate Cox
model were retained. Lastly, we further reduced the set of inputs using step-wise
elimination based on Akaike Information Criteria (AIC) [13]. Starting with all
variables, the stepwise AIC algorithm eliminates or replaces variables one at a
time to maximize the AIC.

In addition, we applied the Boruta method [14] to select variables predictive
of overall survival. The Boruta method is based on variable importance from the
random forest algorithm, which has traditionally been a top performing machine
leaning model.

Each variable subset was used to train several candidate models for predicting
overall survival. We tested a linear model, random forest, and neural network
and assessed the average cross-validation accuracy of each. After selecting the
best model and variable combination, we trained a final model on all the training
data, made predictions on the challenge-provided validation set, and compared
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the performance to the leave-one-out cross validation. In particular, we checked
for substantially decreased performance on the test data that would indicate
model over-fitting.

3.4 Results

Landmark normalization was successfully applied to all patients. One case had
poor fluid suppression on the FLAIR image and could not be effectively normal-
ized. This case was excluded from the training.

Among the mean intensities for each image over each region, the region vol-
umes, and the patient age, we found five features were significantly associated
with overall survival in the cox model. They are: mean FLAIR intensity over the
nonenhancing and necrotic region, mean T1ce intensity over the whole tumor,
the volumes of the nonenhancing and enhancing regions, and age. With these
variables input into a multivariate Cox model only age, the FLAIR nonenhanc-
ing mean, and nonenhancing volume were independently significant. Applying
stepwise AIC did not change the variable selections any further.

Among the candidate models we tested (random forest, neural network, linear
model) the linear model performed best with R2 = 0.134 and mean-square-error
114994 using the three inputs selected by the multivariate cox model. With the
same model parameters fit to all 162 evaluable challenge cases the model to
predict overall survival is given by.

Survival = 926.8 − 10.5 · Age + 91.6 · FTCM − 55.1 · TCV

where Age is the patient’s age in years, FTCM is the “FLAIR Tumor Core
Mean” value on the landmark normalized scale, and TCV is the “Tumor Core
Volume” in units of mm3/10000 consisting of nonenhancing and necrotic areas.
This volume scaling makes the range of values comparable to the other fea-
tures. Surprisingly, this simple linear model performed substantially better on
the testing data and on the challenge validation dataset. This strongly suggests
the model is not over fitting the data. The metrics are provided in Table 3.

Table 3. Performance metrics for our linear model on the training data: (80% of 163
provided cases), testing data (20% of 163 provided cases), and validation data (26 cases
without known survival). The Pearson R2 for the validation data is not provided.

R2, predicted vs observed Accuracy MSE

Training data 0.134 44.5% 114994

Testing data 0.399 38.2% 55193

Validation data - 53.6% 87998
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4 Discussion

Brain tumor segmentation and prediction of overall survival are both challenging
tasks. Despite good results, our segmentation model did not perform as well as
the implementation of DeepMedic by Kamnitsas et al. that won the BraTS 2017
challenge [15]. Their model achieved better segmentation results by averaging
results across an ensemble of six different models. The single model we used is
not as robust as their ensemble method but provides satisfactory results without
the high computational cost.

In the task of predicting patients as short, medium, or long survivors we
achieved a validation accuracy of 54% with a MSE of 87998. In the training
data the most frequent class is short survivors at 65 of 163 (39.9%) which means
our models are performing better than chance. The root mean square error for
continuous prediction is on the order of 300 days, which is comparable to the
range seen among all patients. Overall survival is impacted by several factors,
including age, treatment, and performance status (not provided) and the accu-
racy and MSE reflects the complexity of this task even when some variables are
controlled for.

We were able to produce good results using two highly primitive image mea-
surements (mean intensity and volume) and a linear regression model. Although
vast numbers of higher-order texture features and nonlinear models are com-
monly employed to mine imaging data, we found they were not useful in pre-
dicting overall survival for this task. We suspect this is because these features are
more sensitive to tumor segmentation (and segmentation error) as well as other
variations in image quality and processing. Since predicting overall survival is
already a highly uncertain task, it is easy for models to over-fit the higher order
features. In other words, the simple and robust features more easy to generalize.

Our best performing model only included intensity information from one of
the four magnetic resonance sequences available (FLAIR) and only one of the
four segmentation labels used to extract features (enhancing tumor, tumor core
consisting of nonenhancing tumor and necrosis, edema, and whole tumor). This
may have happened for a few reasons: While the available image types (T1, T2,
etc) contain different kinds of information about the tumors, there was a lot of
variability between images of the same type from different patients. This intra-
sequence variability reduces the impedes the models ability to predict overall
survival based on the complementary nature of the different image contrasts.

5 Conclusion

We found we could segment glioma tumors with high accuracy using a multi-scale
convolutional neural net. Using these segmentations and simple image features
we were able to predict overall survival with reasonable accuracy.
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