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Abstract. The extraction of brain tumor tissues in 3D Brain Magnetic Reso-
nance Imaging plays an important role in diagnosis gliomas. In this paper, we
use clinical data to develop an approach to segment Enhancing Tumor, Tumor
Core, and Whole Tumor which are the sub-regions of glioma. Our proposed
method starts with Bit-plane to get the most significant and least significant bits
which can cluster and generate more images. Then U-Net, a popular CNN model
for object segmentation, is applied to segment all of the glioma regions. In the
process, U-Net is implemented by multiple kernels to acquire more accurate
results. We evaluated the proposed method with the database BRATS challenge
in 2018. On validation data, the method achieves a performance of 82%, 68%,
and 70% Dice scores and of 77%, 48%, and 51% on testing data for the Whole
Tumor, Enhancing Tumor, and Tumor Core respectively.

Keywords: 3D brain MRI � Brain tumor � Bit-plane �
2D U-Net � CNN � BRATS challenge in 2018

1 Introduction

Accurate extraction of brain tumor types plays an important role in diagnosis and
treatment planning. Neuro-imaging methods in Magnetic Resonance Imaging
(MRI) provide anatomical and pathophysiological information about brain tumors and
aid in diagnosis, treatment planning and follow-up of patients. Manual segmentation of
brain tumor tissue is a difficult and time-consuming job. Therefore, brain tumor seg-
mentation from 3D Brain MRI automatically can solve these problems. Among many
types of brain tumor, Gliomas are the most common primary brain malignancies, with
different degrees of aggressiveness, variable prognosis and various heterogeneous
histological sub-regions. In this paper, we focus on Enhancing Tumor, Tumor Core,
and Whole Tumor segmentation which are the sub-regions of gliomas segmentation.

Segmentation of brain tumors in multimodal MRI scans is one of the most chal-
lenging tasks in medical image analysis. Currently, there are many methods related to
brain tumor segmentation have been proposed [1, 2]. In this paper, we divide these
methods into two categories: mathematical methods and machine learning methods
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• In mathematical methods: the tumor can be segmented by using threshold, Edge-
Based Method [3], Atlas [4]. In Dubey et al. [5], rough set based fuzzy clustering is
proposed to segment the tumor.

• In machine learning methods: Traditionally, many features are extracted manually
from image and given to the classifier. However, in recent years, Convolution
Neural Networks (CNNs) which have been shown to excel learning a hierarchy
task-adapted complex feature are seen prominent success in image classification,
object detection and image semantic segmentation [6–8]. Many of the brain tumor
segmentation methods based on CNNs or combining CNNs with the traditional
method are also proposed [9–11].

In this study, we combine the Bit-plane method [12] and U-Net architecture [13] for
tumor segmentation. First, we use Bit-plane to divide images into many images by
determining significant bits. Second, the images with the significant bits can be used to
segment the object boundary. Finally, original images and images with least significant
bits can be used to determine tissues inside the boundary. Both stages used the U-Net
with multiple kernels to segment the tissues more accurately.

The rest of the paper is organized as follows: in the next Sect. 2, we present our
proposed method for brain tumor segmentation and the experimental results are shown
in Sect. 3. We give the conclusion and discussion in Sect. 4.

2 Our Method

The proposed method is illustrated in Fig. 1. There are three main stages: preprocess,
object boundary segmentation, and tissues segmentation. As shown in Fig. 1, after
converting to 2D images and grouping images, the first U-Net predicts object boundary
of the Whole Tumor and the other U-Net utilizes features to predicts the label of all
pixel inside the boundary.

Fig. 1. The overall of our proposed method for brain tumor segmentation
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2.1 Preprocessing

The preprocessing is the necessary stage before any tissue segmentation. We imple-
ment three main steps

• Normalization: each individual 3D image is scaled to the range [0–255].
• Brain Slice Category [14]: We group the slices which can contain the tumors

together to get the accuracy better. The implementation can be done automatically
by learning feature or set manually by omitting some first and end slices. Here, we
detect the tumor from slices 40–140.

• Object Region: each 2D image can be cropped to implement deep learning effec-
tively. Here, we cropped the image size from (256, 256) to (176, 176).

Majority of the volumes in the dataset were acquired along the axial plane and
hence had the highest resolution this plane. Therefore, all 3D brain MRI is transformed
to 2D brain slices on axial slice extracted from all four sequences. After the prepro-
cessing stage, all the 2D slices is from (155, 256, 256) to (100, 176, 176) with value
range (0–255).

2.2 Boundary for All Tumors

The bit plane method [12] is based on decomposing a multilevel image into a series of
binary images. The intensities of an image are based on the Eq. (1):

am�12m�1 þ am�22m�2 þ . . . þ a121 þ a020 ð1Þ

We realize that the final plane contains themost significant bit. In order to segment the
boundary of the object, we proposed using k significant bits to eliminate the noise which
can affect the image. Instead of using a single plane, we can combine multiple planes
together. We represented the slice by keeping from one-bit to eight-bit planes in Fig. 2.

Fig. 2. An example of most significant bits from Flair image. In the first row, from the left to the
right are images keeping one-bit to four-bit plane. In the second row, from the left to the right are
images keeping five-bit to eight-bit plane.
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In this study, we eliminate the last 6 bits to remove the noise and only used the first 2
bits to keep the significant data to generate images for training to detect the object
boundary. After getting the images, U-Net is used to segment the background and the
Whole Tumor by using the 2D slices input and the imagewhich contains 2 significant bits.

2.3 Tissues Segmentation

After segmenting the tumor boundary, different types of tumors inside the boundary
can be segmented by using other U-Net. The input data is the data which is prepro-
cessed from the first stage. However, to get a better result, we suggest two contributions
to enhance the segmentation:

• Another training data are the images with noises which are generated from the least
significant bits. In this study, we implement the noise from three last bits of each
image. The example of the implementation is shown in Fig. 3 with the input from
Flair image.

• Implementing U-Net with multiple kernel size to get the better segmentation [15].
Let K ¼ fðK1; ða1; b1ÞÞ; . . . ; ðKn; ðan ; bnÞÞg is the set of n filters K with size (a,
b). The output of layer i is the merge of feature maps that the layer i generateSn

j¼1 Kj. In this study, the numbers within each Conv block comprises of 2 sets of
convolutions by 3 � 3 kernels and 2 sets of convolutions by 5 � 5 kernel as shown
in Fig. 3.

Fig. 3. Example using multiple kernels in each convolution for segmentation model
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3 Results

We use BraTS’2018 training data [16–19], consisting of 210 pre-operative MRI scans
of subjects with glioblastoma (HGG) and 75 scans of subjects with lower grade glioma
(LGG). These multimodal scans describe (a) native (T1) and (b) post-contrast T1-
weighted (T1Gd), (c) T2-weighted (T2), and (d) T2 Fluid Attenuated Inversion
Recovery (FLAIR) volumes and were acquired with different clinical protocols and
various scanners from multiple (n = 19) institutions. Ground truth annotations com-
prise the GD-Enhancing Tumor (ET—label 4), the peritumoral edema (ED—label 2),
and the necrotic and non-enhancing tumor core (NCR/NET—label 1)

Our proposed method is implemented based on a Keras library [20] with backend
Tensorflow [21]. ‘Adam’ optimizer [22] and ‘binary_crossentropy’ loss [23] are used in
UNET. We run the method with 50 epochs on Ge-force GTX980 graphics card. Fig-
ure 4 shows the result from an example of experiments in the samples of image scans
on the real data of the BraTS’18. The top row of Fig. 4 are the original images, from
the left to the right: FLAIR, T1, T1ce and T2. The second row contains images from
two most significant bits. The third row contains images with noise from three least
significant bits. The fourth and the last row is the result of segmentation for each stage.

Tables 1 and 2 show the average performance for each label and score for all the
validation patients and all the testing patients [24]. The BraTS’18 competition has four
metrics to assess the accuracy of segmentation results and to measure the similarity
between the segmentations A and B. For the segmentation task, and for consistency
with the configuration of the previous BraTS challenges, we will use the Dice score and
the Hausdorff distance. Expanding upon this evaluation scheme, BraTS’18 also use the
metrics of Sensitivity and Specificity, allowing to determine potential over- or under-
segmentations of the tumor sub-regions by participating methods. They are defined as
Eqs. (2), (3), (4) and (5)

Dice A;Bð Þ ¼ 2 A\Bj j
Aj j þ Bj j ð2Þ

Sensitivity ¼ number of true positives
number of true positives þ number of false negatives

ð3Þ

Specificity ¼ number of true negatives
number of true negativesþ number of false postives

ð4Þ

Hausdorff A;Bð Þ ¼ max h A;Bð Þ; h B;Að Þð Þ ð5Þ

The Dice metric is the similarity between two volumes A and B, corresponding to
the output segmentation of the model and clinical ground truth annotations, respec-
tively. Sensitivity and Specificity are statistical measures employed to evaluate the
behavior of the predictions and the proportions of True Positives, False Negatives,
False Positives, and True Negatives voxels. Hausdorff(A, B) is the Hausdorff distance
between the two surfaces of A and B where h A;Bð Þ ¼ maxa2Aminb2Bd a; bð Þ. Here,
d a; bð Þ is the Euclidean distance between a and b. This metric indicates the
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Original image
FLAIR T1     T1ce T2

Generating images from two most significant bits

Generating images with noise from three least significant bits

Tumor boundary

Result segmentation

Fig. 4. The results from an example of brain tumor segmentation on the real data of the
BraTS’18.
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segmentation quality at the border of the tumors by evaluating the greatest distance
between the two segmentation surfaces and is independent of the tumor size.

For our participation in BraTS’2018 competition, we used 100% of the training
dataset (285 subjects) for training purpose. Our model was trained to segment both
HGG and LGG volumes. The result of the proposed method for Enhancing Tumor
(ET), Whole Tumor (WT) and Tumor Core (TC) segmentation using the four previ-
ously defined metrics are given in Tables 1 and 2. Mean, standard deviation, median
are given for Dice and Sensitivity metrics in Table 1 and for Specificity and Hausdorff
distance in Table 2. Values presented in Table 1 show high performance on the Dice
metric for WT region, but lower performance for ET and TC regions because the noise
generating from the Bitplane method has a small difference and is not verified to make
it as a real image (Table 3).

Table 1. Dice score and Sensitivity for Enhancing Tumor (ET), Whole Tumor (WT) and Tumor
Core (TC) on validation data

Label Dice_ET Dice_WT Dice_TC Sensitivity ET Sensitivity WT Sensitivity TC

Mean 0.68252 0.81871 0.69986 0.70254 0.77338 0.64729
StdDev 0.28138 0.16968 0.2913 0.25413 0.20257 0.30542
Median 0.80902 0.88296 0.82567 0.7804 0.83364 0.75828

Table 2. Specificity, and Hausdorff distance for Enhancing Tumor (ET), Whole Tumor
(WT) and Tumor Core (TC) on validation data

Label Specificity
ET

Specificity
WT

Specificity
TC

Hausdorff95
ET

Hausdorff95
WT

Hausdorff95
TC

Specificity
ET

Mean 0.99783 0.99525 0.99862 7.01652 9.42113 12.46282 0.99783
StdDev 0.00403 0.00589 0.00197 9.53618 9.74773 14.68491 0.00403

Median 0.9989 0.9967 0.99905 2.82843 6.04138 6.16441 0.9989

Table 3. Dice score, and Hausdorff distance for Enhancing Tumor (ET), Whole Tumor
(WT) and Tumor Core (TC) on testing data

Label Dice_ET Dice_WT Dice_TC Hausdorff ET Hausdorff WT Hausdorff TC

Mean 0.47623 0.77338 0.51291 12.3933 14.19183 15.62507
StdDev 0.26239 0.15914 0.24294 12.33002 16.98779 14.32559
Median 0.55018 0.83227 0.56504 8.11168 8.06226 12.08305
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4 Conclusions and Discussion

Nowadays, generating data is a good approach for segmentation. In this paper, we
propose using Bit-plane to generate more image remaining significant features.
Besides, we also implement the U-Net with multiple kernels to get better performance.
The result is evaluated without additional data and is shown with a promising per-
formance. In the future, we can concentrate on two main aspects:

• Using type of image
As shown in Fig. 5, every type of image has specific characteristics. Therefore,
instead of using all 4 types of images as an input for all stages, we can use a suitable
type of image for each stage to get the better result.

• Using GAN
Generative Adversarial Networks (GAN) [25] is one of the most promising recent
developments in deep learning. GAN solve the problem of unsupervised learning by
training two deep networks, called Generator and Discriminator, that compete and
cooperate with each other. If we can combine GAN with Bitplane to generate more
real images, the result segmentation will be better.

Acknowledgement. We would like to thank Business Intelligence LAB at University of Eco-
nomics and Law for supporting us throughout this paper. The study was supported by Science
and Technology Incubator Youth Program, managed by the Center for Science and Technology
Development, Ho Chi Minh Communist Youth Union, 2018.

Fig. 5. Glioma sub-regions. Shown are image patches with the tumor sub-regions that are
annotated in the different modalities (top left) and the final labels for the whole dataset (right).
The image patches show from left to right: the Whole Tumor (yellow) visible in T2-FLAIR
(Fig. A), the Tumor Core (red) visible in T2 (Fig. B), the Enhancing Tumor structures (light blue)
visible in T1Gd, surrounding the cystic/necrotic components of the core (green) (Fig. C). The
segmentations are combined to generate the final labels of the tumor sub-regions (Fig. D): edema
(yellow), non-enhancing solid core (red), necrotic/cystic core (green), enhancing core (blue) [16–
19]. (Color figure online)
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