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Abstract. Precise 3D computerized segmentation of brain tumors remains,
until nowadays, a challenging process due to the variety of the possible shapes,
locations and image intensities of various tumors types. This paper presents a
fully automated and efficient brain tumor segmentation method based on 2D
Deep Convolutional Neural Networks (DNNs) which automatically extracts the
whole tumor and intra-tumor regions, including enhancing tumor, edema and
necrosis, from pre-operative multimodal 3D-MRI. The network architecture was
inspired by U-net and has been modified to increase brain tumor segmentation
performance. Among applied modifications, Weighted Cross Entropy
(WCE) and Generalized Dice Loss (GDL) were employed as a loss function to
address the class imbalance problem in the brain tumor data. The proposed
segmentation system has been tested and evaluated on both, BraTS’2018
training and validation datasets, which include a total of 351 multimodal MRI
volumes of different patients with HGG and LGG tumors representing different
shapes, giving promising and objective results close to manual segmentation
performances obtained by experienced neuro-radiologists. On the challenge
validation dataset, our system achieved a mean enhancing tumor, whole tumor,
and tumor core dice score of 0.783, 0.868 and 0.805 respectively. Other
quantitative and qualitative evaluations are presented and discussed along the
paper.
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1 Introduction

Brain tumor segmentation in multimodal Magnetic Resonance Imaging (MRI) is
widely used as a vital process for surgical planning and simulation, treatment planning
prior to radiation therapy, therapy evaluation [1–5], and intra-operative neuro navi-
gation and image neurosurgery [6–8]. However, segmenting brain tumor manually is
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not only a challenging task, but also a time-consuming one, favoring therefore, the
emergence of computerized approaches.

Despite considerable research works and encouraging results in the medical
imaging domain, fast and precise 3D computerized brain tumors segmentation remains
until now a challenging process and a very difficult task to achieve because brain
tumors may appear in different size, shape, location and image intensity [2–5]. Many
recent research adopted deep learning methods [9], specifically Convolutional Neural
Networks (CNNs) [9–12]. CNN shown their effectiveness and were proved successful
to automatically classify the normal and pathological brain MRI scans in the past few
BraTS challenges as well as other semantic and medical segmentation problems.

This paper proposes an automated and efficient segmentation method of whole
tumor and intra-tumor structures, including enhancing tumor, edema and necrosis, in
multimodal 3D-MRI. It is based on 2D Deep Convolutional Neural Networks (DNNs)
using a modified U-net architecture [10]. The proposed DNN model is trained to
segment both High Grade Glioma (HGG) and Lower Grade Glioma (LGG) volumes.

The rest of the paper is organized as follows. First, Sect. 2 presents an overview of
the proposed segmentation method. Experimental results with their evaluations are
given in Sect. 3. Finally, a conclusion and future work are presented in Sect. 4.

2 The Proposed Method

The proposed segmentation system is entirely automated. The brain tumor segmenta-
tion process is based on deep learning more precisely on 2D Convolutional Neural
Networks. It includes the main following steps: pre-processing of the 3D-MRI data,
training using a U-net architecture, and brain tumoral structures prediction.

2.1 Data and Pre-processing

The BraTS’2018 challenge training dataset consists of 210 pre-operative multimodal
MRI scans of subjects with HGG and 75 scans of subjects with LGG, and the
BraTS’2018 challenge validation dataset includes 66 different multimodal 3D-MRI
[13–16]. Images were acquired at 19 different centers using MR scanners from different
vendors and with 3T field strength. They comprise co-registered native (T1) and
contrast-enhanced T1-weighted (T1Gd) MRI, as well as T2-weighted (T2) and T2
Fluid Attenuated Inversion Recovery (FLAIR) MRI. All 3D-MRI of BraTS’2018
dataset have a volume dimension of 240 � 240 � 155. They are distributed, co-
registered to the same anatomical template and interpolated to the same resolution (1
mm3). All MRI volumes have been segmented manually, by one to four raters, and
their annotations were approved by experienced neuro-radiologists. Each tumor was
segmented into edema, necrosis and non-enhancing tumor and active/enhancing tumor.

First, a minimal pre-processing of MRI data is applied, as in [11]. The 1% highest
and lowest intensities were removed, then each modality of MR images was normal-
ized by subtracting the mean and dividing by the standard deviation of the intensities
within the slice. To address the class imbalance problem in the data, data augmentation
technique [17] were employed. This consists in adding new synthetic images by
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performing operations and transformations on data and the corresponding manual
tumors segmentation images obtained by human experts (i.e., ground truth data). The
transformations comprise rotation, translation, and horizontal flipping and mirroring.

2.2 Network Architecture and Training

The CNN used in this study has a similar architecture as that of U-net [10]. Our
network architecture can be seen in Fig. 1. It consists of a contracting path (left side)
and an expanding path (right side). The contracting path consists of 3 pre-activated
residual blocks, as in [18, 19], instead of plain blocks in the original U-net. Each block
has two convolution units each of which comprises a Batch Normalization (BN) layer,
an activation function, called Parametric Rectified Linear Unit (PReLU) [20],instead of
ReLU function used in the original architecture [10], and a convolutional layer, like in
[12], instead of using Maxpooling [10], with Padding = 2, Stride = 1 and a 3 � 3 size
filter. For down sampling, a convolution layer with a 2 � 2 filter and a stride of 2 is
applied. At each down sampling step, the number of feature channels is doubled. The
contracting path is followed by a fourth residual unit that acts as a bridge to connect
both paths. In the same way, the expanding path is built using 3 residual blocks. Prior
to each block, there is an upsampling operation which increases the feature map size by
2, followed by a 2 � 2 convolution and a concatenation with the feature maps cor-
responding to the contracting path. In the last layer of the expanding path, a 1 � 1
convolution with the Softmax activation function is used to map the multi-channel
feature maps to the desired number of classes.

In total, the proposed network model contains 7 residual blocks, 25 convolution
layers, 15 layers of BN and 10159748 parameters to optimize.

The designed network was trained with axial slices extracted from training MRI set,
including HGG and LGG cases, and the corresponding ground truth segmentations.
The goal is to find the network parameters (weights and biases) that minimize a loss
function. In this work, this can be achieved by using Stochastic Gradient Descent
algorithm (SGD) [17], at each iteration SGD updates the parameters towards the
opposite direction of the gradients. In our network model, we used a loss function that
adds Weighted Cross Entropy (WCE) [17] and Generalized Dice (GDL) [21] to address
the class imbalance problem present in brain tumor data. So, the two components of the
loss function are defined as follows:

WCE ¼ � 1
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where L is the total number of labels, K denotes the batch size. wi represents the weight
assigned to the ith label. As in [21], we set wi to 1P

k
gikð Þ2. pik and gik representing the

value of the (ith, kth) pixel of the segmented binary image and of the binary ground
truth image, respectively.
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Fig. 1. Architecture of the proposed Deep Convolutional Neural Network.
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2.3 Brain Tumoral Structures Prediction

After network training, prediction may be performed. This step consists to provide the
network with the four MRI modalities of an unsegmented volume that it has never
processed or encountered before, and it must be able to return a segmented image.

3 Experimental Results and Discussion

In this study, we have tested and evaluated our segmentation system on pre-operative
multimodal MRI scans of both the training/testing and the validation datasets of the
BraTS’2018 challenge [22]. The results of automatically segmented tumors, denoted by
A, can be compared with manually segmented tumors by human experts, denoted by B,
which are considered as ground truth for evaluation. The results presented in subse-
quent sections, were obtained during the BraTS’2018 challenge, for training and val-
idation [22]. The top 63 approaches are further compared in terms of results (Dice,
Sensitivity and Specificity) and one surface measure based on the Hausdorff distance
(HD), in [23] on 191 cases. These measures allow to assess the segmentation results
accuracy, as well as measuring the similarity between the segmentations A and B [2,
24]. The Dice metric is computed as a performance metric. It measures the similarity
between two volumes A and B, corresponding to the output segmentation of the model
and clinical ground truth annotations, respectively. The Sensitivity metric measures the
proportion of positive voxels of the real brain tumor that are correctly segmented as
such, while Specificity metric indicates how well the true negatives are predicted.
Employing Sensitivity and Specificity can provide a good assessment of the segmen-
tation result. The HD metric indicates the segmentation quality at the tumor’s border by
evaluating the greatest distance between the two segmentation surfaces A and B, and is
independent of the tumor size.

3.1 Performance on 20% of BraTS’2018 Training Dataset (Testing Set)

Preliminary segmentation results for the 285 3D-MRI of the BraTS’2018 training data
set have been obtained using 80% of this data set (i.e., 228 subjects) for training and the
remaining 20% (i.e., 57 subjects) for validation purposes. Results obtained by our
automated system for 10 sample cases are shown in Figs. 2 and 3. Figure 2 shows
segmentation results from 5 multimodal MRI where HGG tumors are present and
Fig. 3 shows other segmentation results from other 5 MRI with LGG tumors. In these
figures, each row represents one clinical case. In the first four columns from left to
right, images show one axial slice of MRI acquired in Flair, T1, T1C and T2 modality,
respectively, used as input channels to our CNN model. In the fifth and the sixth
columns, images show the ground truth (GT) and the prediction labels respectively,
where we can distinguish intra-tumoral regions by color-code: enhancing tumor (yel-
low), peritumoral edema (green) and necrotic and non-enhancing tumor (red). As it can
be seen, tumors in the brain MRI of the 10 cases vary in size, shape, position and
intensity. By visual inspection, the proposed method usually generates segmentations
(Prediction) sensibly similar to the ones obtained by the experts (GT).
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Fig. 2. Intra-tumoral structures segmentation results from 5 multimodal 3D-MRI with HGG of
BraTS’2018 training dataset corresponding to 5 different subjects. (Color figure online)
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Fig. 3. Intra-tumoral structures segmentation results from 5 other multimodal 3D-MRI with
LGG of BraTS’2018 training dataset corresponding to 5 different subjects. (Color figure online)
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A quantitative evaluation of segmentation results of Enhancing Tumor (ET), Whole
Tumor (WT) and Tumor Core (TC) using the four previously mentioned metrics is
given in Tables 1 and 2. Mean, standard deviation, median and 25th and 75th per-
centile are given for Dice and Sensitivity metrics in Table 1 and for Specificity and
Hausdorff distance in Table 2. Values presented in Table 1 show high performance on
the Dice metric for WT region, but lower performance for ET and TC regions.
Moreover, the proposed method showed good performances for the segmentation of the
three intra-tumoral regions. However, the effectiveness, of the approach, is high-lighted
in the case of HGG tumors, when compared with the LGG ones.

3.2 Performance on BraTS’2018 Validation Dataset

For our participation to BraTS’2018 competition, 100% of the training, including the
previous testing dataset (i.e., 285 subjects) is used for training. The performance on
BraTS’2018 validation dataset, which is composed of 66 subjects, is diffused in the
challenge leaderboard Web site1 and presented with more statistics in Tables 3, 4,
Figs. 4 and 5. In this context, we can compare the obtained segmentation results with
those of other participants. The method achieved a mean ET, WT, and TC dice score of
0.783, 0.868 and 0.805 respectively. These scores are close to those obtained by the top

Table 1. Quantitative evaluation of segmentation results on 20% of BraTS’2018 training dataset
(57 MRI scans) using Dice and Sensitivity metrics.

Dice Sensitivity

ET WT TC ET WT TC

Mean 0.717 0.867 0.798 0.778 0.907 0.84
Std. Dev. 0.275 0.078 0.226 0.3 0.107 0.223
Median 0.831 0.887 0.889 0.912 0.943 0.927
25 quantile 0.726 0.839 0.808 0.777 0.896 0.847
75 quantile 0.859 0.926 0.935 0.951 0.974 0.961

Table 2. Quantitative evaluation of segmentation results on 20% of BraTS’2018 training dataset
(57 MRI scans) using Specificity and Hausdorff distance metrics.

Specificity Hausdorff95

ET WT ET WT ET WT

Mean 0.999 0.998 0.999 4.742 8.706 6.4
Std. Dev. 0.001 0.001 0.002 2.079 2.822 3.685
Median 1 0.999 1 4.123 8.062 5.099
25 quantile 0.999 0.998 0.999 3 6.442 3.871
75 quantile 1 0.999 1 6.633 10.951 8.303

1 https://www.cbica.upenn.edu/BraTS18/lboardValidation.html.
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performing methods. Also, an average HD scores of 3.728, 8.127 and 9.84 for ET, WT,
and TC, respectively were obtained. In addition, it was observed that our DNN model
maintains similar WT scores on both, 20% of BraTS’2018 training/testing set used for
validation and the final validation dataset proposed for the competition purposes.
However, a slight increase in performance on the validation dataset was observed in the
ET and TC compartments. It should be noted that this performance was not obtained by
overfitting the validation data (i.e., our DNN model has not previously trained on MRI
volumes of BraTS’2018 validation dataset).

This performance can be explained by the fact that the number of learned cases
(training dataset) used later for the segmentation of the validation dataset is larger than
the one used for the BraTS’2018 segmentation on the training/testing dataset. This
represents 285 and 228 cases for both trainings respectively. It is also possible that the
slight improvements obtained on the validation dataset, are due to the fact that this
latter contains more MRI with HGG tumors than MRI with LGG tumors. Indeed, the
segmentation efficiency obtained using the proposed network, is more evident on HGG
volumes when compared to LGG ones.

Boxplots showing the dispersion of Dice and Sensitivity scores are represented in
Fig. 4 and boxplots of the dispersion of Specificity and HD scores are represented in
Fig. 5. In these figures, boxplots show quartile ranges of the scores; whiskers and dots
‘●’ indicate outliers; and ‘x’ indicates the mean score.

Table 3. Quantitative evaluation of segmentation results on BraTS’2018 validation dataset (66
MRI scans) by using Dice and Sensitivity metrics.

Dice Sensitivity

ET WT TC ET WT TC

Mean 0.783 0.868 0.805 0.826 0.895 0.807
Std. Dev. 0.216 0.101 0.199 0.241 0.149 0.222
Median 0.846 0.898 0.891 0.901 0.955 0.895
25 quantile 0.769 0.855 0.756 0.82 0.901 0.71
75 quantile 0.893 0.919 0.928 0.969 0.971 0.965

Table 4. Quantitative evaluation of segmentation results on BraTS’2018 validation dataset (66
MRI scans) by using Specificity and Hausdorff distance metrics.

Specificity Hausdorff95

ET WT ET WT ET WT

Mean 0.997 0.991 0.997 3.728 8.127 9.84
Std. Dev. 0.004 0.007 0.003 4.471 10.426 15.385
Median 0.998 0.993 0.998 2.236 4.243 5.431
25 quantile 0.997 0.988 0.997 1.637 3 2.871
75 quantile 0.999 0.996 0.999 3.317 7.778 10.728
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4 Conclusion and Future Work

In this paper, a fully automatic and accurate method for segmentation of whole brain
tumor and intra-tumoral regions using a 2D deep convolutional network based on a
well-known architecture in medical imaging called “U-net” is proposed. The con-
structed DNN model was trained to segment both HGG and LGG volumes.

The proposed method was tested and evaluated quantitatively on both BraTS’2018
training and challenge validation datasets. The total learning computation time of the
285 multimodal MRI volumes of BraTS’2018 training dataset is 185 h on a Cluster
machine with Intel Xeon E5-2650 CPU@ 2.00 GHz (64 GB) and NVIDIA Quadro
4000–448 Core CUDA (2 GB) GPU. The average segmentation time of a brain tumor
and its components from a given MRI volume is about 62 s on the same GPU. The
different tests showed that the segmentation results were very satisfactory, and the
evaluation measures confirm that our results are very similar to those manually
obtained by the experts, although the proposed method can be further improved.

Fig. 4. Dispersion of Dice and Sensitivity scores for results segmentation of ET, WT, and TC in
multimodal MRI scans of the 66 subjects of BraTS’2018 validation dataset.

Fig. 5. Dispersion of Specificity and Hausdorff distance scores for results segmentation of ET,
WT, and TC in multimodal MRI scans of the 66 subjects of BraTS’2018 validation dataset.
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As future work, a more powerful GPU to further accelerate learning phase of DNN
is planned. Thus, a larger number of CNN topologies as well other data augmentation
methods may be tested. Also, other interesting perspective consists to use ensemble
learning methods, like Stacking and Blending, to improve segmentation performance in
tumor core and active tumor regions. Finally, a future work possibility may focus on
refining the segmentation results by reducing the false-positive rate using post-
processing techniques, such as: applying a conditional random field (CRF) and
removing small connected components.
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