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Abstract. The segmentation of a brain tumour in an MRI scan is a challenging
task, in this paper we present our results for this problem via the BraTS 2018
challenge, consisting of 210 high grade glioma (HGG) and 75 low grade glioma
(LGG) volumes for training. We train and evaluate a convolutional neural
network (CNN) encoder-decoder network based on a singular hourglass struc-
ture. The hourglass network is able to classify the whole tumour (WT),
enhancing (ET) tumour and core tumour (TC) in one pass. We apply a small
amount of preprocessing to the data before feeding it to the network but no post
processing. We apply our method to two different unseen sets of volumes
containing 66 and 191 volumes. We achieve an overall Dice coefficient of 92%
on the training set. On the first unseen set our network achieves Dice coefficients
of 0.66, 0.82 and 0.72 for ET, WT and TC. On the second unseen set our
network achieves Dice coefficients of 0.62, 0.79 and 0.65 on ET, WT and TC.

Keywords: Convolutional neural network � Deep learning � Hourglass �
Glioma

1 Introduction

Identifying regions of the brain which are tumourous is a task often carried out by
medical professionals. Manually classifying segments of the tumour is a subset of a
group of problems commonly referred to as semantic segmentation. Semantic seg-
mentation is the task of assigning a class to each pixel within an image, modern
automated solutions to this problem often use convolutional neural networks (CNN).
The introduction of fully convolutional networks (FCN) [1] established a convolutional
neural network architecture that is widely used for the task of semantic segmentation.
Architectures such as U-NET [2] achieved success in biomedical imaging by adopting
a similar architecture.

We propose the use of an adapted hourglass [3] network to solve the problem of
tumour segmentation. The hourglass network improves on U-NET by using bottleneck
blocks and adding convolutions to the skip connections. Training a CNN for this
problem is a natural choice as they have demonstrated state-of-the-art performance on
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semantic segmentation problems such as the widely used Pascal VOC2012 [9] and
cityscapes [10] datasets.

2 Methods

2.1 Data

The dataset of BraTS 2018 [4–8] provides defined training and validation sets. The
training set is composed of 210 MRI scans of high grade gliomas (HGG) and 75 MRI
scans of low grade gliomas (LGG). Whilst the validation set is a group of 66 mixed
HGG and LGG tumours. The MRIs are volumes in the format given by Eq. (1), in that
format they have the dimensions 240 � 240 � 155. Each volume has four corre-
sponding modalities FLAIR T1, T2 and T1CE.

X � Y � Z ð1Þ

Where x is the delineation between dimensions and X, Y and Z are the dimensions
on a 3D coordinate system.

2.2 PreProcessing

A high variance in intensity in both validation and training set was observed this lead
us normalise the training set to be centred around zero with a standard deviation of one.
By normalizing the data, we found that the required training time was reduced and the
accuracy of the network was increased. The formula for normalization is given in
Eq. (2). Each modality was normalized separately due to the variance in intensity
profile between modalities.

Z ¼ x� l
r

ð2Þ

Where x is the current intensity, l is the mean of the modality and r is the standard
deviation of the modality.

2.3 Hourglass Architecture

Our approach is to handle 2D slices of each volume separately, a 2D semantic seg-
mentation problem. We performed additional experimentation using a volumetric
encoder-decoder but found that the benefit of an end-to-end volumetric approach was
outweighed by the significant necessary drop in features at each layer due to memory
restrictions.

We design our network using an encoder-decoder structure, adapted from an
hourglass network, popularized in the domain of human-pose estimation [3] The
structure of the hourglass is similar to other encoder-decoder networks, but contains a
denser use of residual blocks throughout.
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The encoder starts with an input of 4 channels and contains 7 residual bottleneck
blocks [14], after each a max-pooling layer performs spatial downsampling. A further
three residual blocks at the lowest spatial resolution derive higher-level features before
a series of bilinear upsampling operations return the network to the original spatial
resolution. As in the encoder, all upsampling operations of the decoder are interleaved
with residual blocks. Skip layers are added between each matching resolution of the
encoder and decoder, with each containing an additional residual block to learn an
appropriate mapping.

The first residual block has 64 filters, the filter amount doubles after each pooling
operation up to a maximum of 512 filters in a convolution.

In order to improve the network’s results for the final test set we made architectural
changes to improve accuracy whilst keeping memory consumption to a minimum. We
found that the choice of upsampling layer (e.g. bilinear, max-unpooling [11]) made
little difference to the performance of the network. Unlike the original work [3] we
chose not to stack hourglass networks sequentially and perform intermediate super-
vision, we found this too had a negligible effect on performance. The number of
spatial-downsampling layers, 7 in total, were originally chosen based on the input
resolution. However, through experimentation we found that using 5 downsampling
layers was optimal and save memory. Only one residual block is used at each depth
because adding two at all depths immediately doubles memory consumption which
surpasses current memory constraints. We also found that replacing elementwise
summation with concatenation followed by a 1 � 1 convolution improved results
noticeably. Despite the additional memory consumption of the concatenation and
convolutional layer, the increase in performance boost makes the change worthwhile.

2.4 Training

The training was split into two phases pre and post true validation set release. In the
first phase the dataset was split into a test set, validation set and training set where each
set was 10%, 10% and 80% of the original training set respectively. The data provided
is treated as though it is the entire dataset so that our training can be validated and
tested in preparation for the true validation set. This allows the network to avoid
overfitting and approximate the results expected on the release of the second dataset.
Later the network is retrained using a 10% test set and 90% training set split in order to
obtain test results on the original data whilst maximizing the training set size. The
network is trained for the same number of epochs for all training. The second phase is
conducted post true validation set release. In this phase the BraTS dataset is split into
10% validation and 90% training.

The network is trained using an identical training scheme for both the natural and
augmented dataset.

The hourglass network implemented in this paper only uses spatial convolutions, to
accommodate this we convert MR volumes into a set of 155 images of spatial reso-
lution 2402. To do this we separate the volume along the depth dimension. For con-
venience we pad the images to the new resolution 2562, this allows us to perform
pooling operations where the output resolution of a feature map is always 2x. In turn
this allows us to perform concatenations or elementwise summations in the decoder
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network without a resolution difference between two feature maps. The 285 volumes
therefore become a dataset of 44175 images. All four modalities are used for training
and are given to the network as 4 input channels of a single image.

The hourglass network was chosen because it has been successful in other tasks
such as human pose estimation [3] and allows the stacking of the network. Stacking the
network multiple times sequentially can give performance boosts as shown before [3].
Spatial convolutions were chosen instead of volumetric convolutions because they
consume much less memory, volumetric convolutions would exceed available memory
if a stacked network was used. In addition, volumetric convolutions are so memory
intensive that they do not allow a network to be trained on the entire MR volume at the
same time as having a rich set of filters in a deep network. An alternative to this
volumetric network is a volumetric network with a subset of a volume included E.g.
A 32 � 32 � 32 chunk. However, the problems remain largely unsolved, the per-
formance boost given by depth context is potentially outweighed by the larger number
of filters available in a spatial network. This multitude of reasons led to the choice of a
spatial network which would be deeper and wider than the equivalent volumetric
network given the same memory constraints.

The hourglass is trained on a NVIDIA TITAN X GPU using a cross entropy loss
function with a learning rate of 10−5 which is decreased by a factor of 10 every 30
epochs. A batch size of 8 is used and the network is trained for a total of 50 epochs
therefore the learning rate is only adapted once. The adaptive gradient descent algo-
rithm, RMSProp is used to train the network faster than the typical stochastic gradient
descent.

2.5 Data Augmentation

Two methods of data augmentation are used in this paper vertical flipping and random
intensity variation. Vertical flipping is used because it matches the natural symmetrical
shape of the brain.

Random intensity variation is used because the intensity between MRI scans varies
significantly. This is shown by the fact that the standard deviation of the FLAIR
modality in the dataset is greater than the mean by almost a factor of 10. E.g. The
standard deviation and mean for the FLAIR modality are 529.2 and 61.8 respectively.
The T1, T1CE and T2 modalities have similar standard deviations. Intensity variation is
performed on the normalised dataset by first rescaling the standard deviation of the
dataset and then shifting the mean. This allows the dataset to include image intensities
which are not present in the original dataset but could appear on an MRI volume. The
range for randomly changing the standard deviation is between zero and two. The mean
is shifted between values of 0.4 and –0.4. Values above a standard deviation of two
were experimented with but lead to a significant decrease in accuracy. Shifting the
mean by over 0.5 and under –0.5 were trialed but also caused an accuracy decrease.
The network is trained with and without data augmentation to experimentally ascertain
whether augmentation gives any performance increase when using this network on the
dataset.
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3 Results and Discussion

The results are split into three sections, the results on the training data set, the results on
the later released validation set and the results on the final test set. Results are shown
for networks trained on the standard data and on augmented data in the validation set.

3.1 Training Dataset

We trained the network on 90% of the data leaving 10% for testing purposes. The
network achieved a Dice coefficient of 92% with an IOU of 86%. We find that IOU
approximates the network’s worst performance on the test set in contrast to Dice which
gives an approximate representation of the average case.

3.2 Validation Dataset

The results presented in this section are those achieved when segmenting the validation
set using the network trained in Sect. 3.1. Table 1 shows the results of the segmen-
tation without augmentation and Table 2 shows the results with flipping and intensity
variation. The metrics provided in both tables are the standard metrics output by the
BraTS automatic online evaluation server. Some metrics have been omitted to save
space, only the most important evaluation metrics have been included.

After comparing the metrics between a dataset with augmentation and one without
we find that in this challenge augmentation appears to give a small increase in accuracy
for Dice coefficient and improves the Hausdorff accuracies significantly. It is likely the

Table 1. The results of the hourglass network segmenting the unseen validation set without
augmentation in the training data.

Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausedorff TC

Mean 0.59 0.82 0.64 18.12 94.28 130.70
Std 0.28 0.12 0.24 26.62 50.15 42.40
Median 0.71 0.86 0.71 5.732 97.13 132.59
25 quantile 0.48 0.78 0.51 3.162 52.72 103.36
75 quantile 0.80 0.90 0.83 20.03 135.81 163.39

Table 2. The results of the hourglass network segmenting unseen validation set where the
network has been trained with augmented data

Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausedorff TC

Mean 0.56 0.82 0.61 14.29 13.57 17.95
Std 0.29 0.13 0.22 23.26 15.32 18.14
Median 0.67 0.87 0.67 5.92 6.59 11.18
25 quantile 0.40 0.78 0.50 2.83 4.18 8.30
75 quantile 0.80 0.90 0.79 12.56 14.97 18.79
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case that the frequency at which the network misclassifies pixels remains similar but
the network’s ability to localize the pixels is increased.

Overall the network segments the whole tumour more accurately than it does the
core tumour or enhancing tumour, from the results in previous challenges this result is
expected. Naturally the enhancing and core tumour are much more difficult to segment
due to the similarity between all classes.

Tables 1 and 2 both show a large disparity between the median and mean accuracy
especially with results for the enhancing tumour where the difference is around 10%.
The difference is caused by the difficulty of detecting the enhancing tumour and core
tumour in some volumes. In most volumes the Dice coefficients are well above the
mean however some outliers achieve a score of 0 therefore reducing the mean sig-
nificantly. When removing these cases the mean Dice coefficient increases by 4%
showing that the disparity can be explained by a few very difficult volumes. Some
examples of the metrics achieved on these volumes are shown in Table 3.

3.3 Test Dataset

Before the release of the final evaluation dataset we train our network using 95% of the
training data. The remaining 5% of the training data is used for on the fly validation of
the network to monitor training and prevent overfitting. The network architecture has
been adapted to improve the results on the validation set, these architectural changes
are discussed in Sect. 2.3. We present the new validation set results along with the test
set results. Section 3.2 showed that the network has an increase in Hausdorff95
accuracy when data augmentation was used. The network used for the results in this
section was trained using data augmentation.

Table 3. Segmentation results for very difficult volumes using a network trained with
augmented data

Dice
ET

Dice
WT

Dice
TC

Hausdorff
ET

Hausdorff
WT

Hausedorff
TC

TCIA09_248_1 0 0.79 0.63 0 14.18 10.82
TCIA10_195_1 0 0.80 0.63 0 15.23 25.98
TCIA11_612_1 0 0.74 0.60 0 52.78 48.52
TCIA12_613_1 0 0.69 0.26 0 49.97 9.00
TCIA13_646_1 0 0.90 0.40 0 35.83 6.48

Table 4. The results of the hourglass network segmenting unseen the validation set

Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausdorff TC

Mean 0.66 0.82 0.72 15.94 26.41 18.87
Std 0.27 0.10 0.23 25.56 23.61 20.56
Median 0.79 0.84 0.80 4.69 17.32 12.47
25 quantile 0.56 0.78 0.62 2.45 7.19 6.61
75 quantile 0.84 0.89 0.89 17.60 38.13 19.60
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Table 4 shows the results of the hourglass network on the validation set. The dice
scores for the validation set increase by 10% for both ET and TC whilst remaining
approximately the same for the whole tumour segmentation. Conversely the Hausdorff
scores increase (where a higher score is a decrease in performance) by 1, 13 and 2 for
ET, WT and TC respectively. The increase in dice score indicates that the total number
of pixels that are being classified correctly has increased but the decrease in Hausdorff
score shows that the largest error in the shape of the classified pixels is much higher.
The qualitative analysis presented in Sect. 3.4 shows that this may be because mis-
classification of background pixels far away from the site of the tumour.

The median Hausdorff distance and dice score are significantly better than the mean
indicating that the mean results are being distorted by a small subset of difficult to
segment brain tumour volumes. This is discussed in Sect. 3.2. The std of both metrics
is also very high showing that the networks performance varies largely between
volumes.

The network shows a significant improvement in the most problematic volumes
highlighted in Table 3. Table 6 shows the modified network’s performance on the
selected examples. The average Hausdorff distance for the selected examples indicates
an overall performance decrease however performance on individual volumes varies
significantly when dice scores are compared. The network architecture was modified in
order to increase performance on the enhanced tumour, Table 6 shows that on 3 out of
5 selected cases there is an increase of between 4.6% and 38% for the enhancing
tumour dice score. The variability in dice score amongst the other two metrics indicates
that the training scheme has altered the networks ability to classify the tumour in these
volumes.

Table 5. The results of the hourglass network segmenting unseen test set

Label Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausdorff TC

Mean 0.62 0.79 0.65 47.48 13.54 31.58
Std 0.32 0.25 0.34 113.76 23.51 83.24
Median 0.77 0.88 0.82 3.00 5.00 6.40
25 quantile 0.47 0.80 0.48 1.73 3.00 3.32
75 quantile 0.85 0.92 0.90 9.84 9.72 14.80

Table 6. The modified network’s segmentation results on a subset of problematic volumes

Dice
ET

Dice
WT

Dice
TC

Hausdorff
ET

Hausdorff
WT

Hausedorff
TC

TCIA09_248_1 0.00 0.80 0.48 0.00 61.26 12.41
TCIA10_195_1 0.00 0.86 0.71 0.00 22.67 30.23
TCIA11_612_1 0.38 0.63 0.40 98.47 59.87 98.25
TCIA12_613_1 0.06 0.94 0.94 58.26 4.12 2.83
TCIA13_646_1 0.05 0.70 0.61 111.19 87.68 15.13
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The test set results show a decrease in performance on both dice score and haus-
dorff distance when compared to validation set results. The median scores for both
metrics are noticeably better. This indicates that the validation set contains easier to
segment volumes but the ratio between difficult and easy volumes is higher. The test set
appears to have much more difficult volumes, this is corroborated by the very high
standard deviation values. The results suggest that the percentage of easily segmented
volumes in the test set is higher than the validation set.

Despite the differences between the network’s performance on the validation and
test sets both Tables 4 and 5 indicate the same overall strengths and weaknesses of the
network as well as the difficulties within the dataset.

3.4 Qualitative Analysis

In this section we present singular slices taken from the network output. The output has
4 classes which are represented by 4 different colours in the segmentation map. Black,
yellow, blue and red represent background, whole tumour, core tumour and enhancing
tumour.

The network makes many mistakes when segmenting unseen volumes, most often
these errors are misclassifying healthy brain tissues as tumourous. Often the mistakes
are of a small area which does not affect the dice score significantly but has a noticeable
impact on the hausdorff distance. These errors are important and can be improved upon
however for brevity this section will focus on the largest errors associated with the
problematic volumes highlighted in Sect. 3.3. Figure 1 shows large errors in classifi-
cation. The largest errors the network makes occur when the input image has large
errors of darkness within the tumour caused by necrosis or an irregular tumour shape. It
is unclear why this occurs but could be because the training set contains mostly tumour
which have small amounts of necrosis which are masses enveloped by the whole
tumour. Therefore when given to the network it is unable to deal with the variance.

Fig. 1. Left, a FLAIR volume slice containing both brain and tumour tissues. Right, a slice from
the network output showing erroneous segmentation results. Two similar looking dark regions on
the left side of tumour have been classified different despite having largely the same appearance.
These are the most error prone areas for the network.
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4 Conclusion

We propose a solution which achieves a 92% Dice coefficient on the training set and
0.66, 0.82 and 0.72 on the validation set. On the test set the network achieves 0.62,0.79
and 0.65 Dice scores. Although the network underperforms on Dice score it can
achieve a competitive Hausdorff distance.

Much of the network’s underperformance is related to outliers in the set which
could be mitigated in future with better preprocessing techniques. Future networks
should train more on these difficult volumes using wider public datasets or through
synthetic images generated by a CNN. Memory consumption is often a problem when
using CNNs, to combat this we plan to add residual blocks in depths which increase the
overall accuracy of the network the most. We also plan to add skip connections with an
inception block structure [12] as shown in [13] to increase accuracy further.

We show that 2D architectures can segment 3D volumes with success but require
fine tuning and a deeper architecture to achieve better results. An approach to bridge
the gap may between 2D and 3D may be required. 3D networks outperform 2D
networks when depth context is key, how much context is required in most tasks
remains unclear. In future works we plan to use a 2.5D approach where each slice has
an accompanying adjacent slice either side to provide some depth context.
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