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Abstract. Deep convolution neural networks, in particular, the
encoder-decoder networks, have been extensively used in image segmen-
tation. We develop a deep learning approach for tumor segmentation by
combining a modified U-Net and its domain-adapted version (DAU-Net).
We divide training samples into two domains according to preliminary
segmentation results, and then equip the modified U-Net with domain
adaptation structure to obtain a domain invariant feature representation.
Our proposed segmentation approach is applied to the BraTS 2018 chal-
lenge for brain tumor segmentation, and achieves the mean dice score of
0.91044, 0.85057 and 0.80536 for whole tumor, tumor core and enhancing
tumor, respectively, on the challenge’s validation data set.

Keywords: Confusion loss · Domain adaptation ·
Encoder-decoder network · Brain tumor · Segmentation

1 Introduction

Image segmentation plays an important role in the accurate diagnosis and effi-
cient treatment of brain tumors. However, segmenting brain tumors, such as
glioblastomas and gliomas, is difficult, because of poor tissue contrast, irregu-
lar shapes and various appearing locations. Moreover, manual segmentation can
be very time-consuming and may have large intra/inter-expert variability. This
creates a great need to develop reliable automatic approaches for brain tumor
segmentation.

The Brain Tumor Segmentation (BraTS) challenge [2–4,14] is an event to
evaluate state-of-the-art methods in automating tumor segmentation on a large
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data set of annotated, high-grade glioblastomas and lower grade gliomas. To fos-
ter accurate segmentation, the BraTS 2018 challenge provides multimodal MRI
scans of each patient, including native T1-weighted, post-contrast T1-weighted,
T2-weighted, and T2 Fluid Attenuated Inversion Recovery (FLAIR) volumes.

Modern deep convolutional networks have exhibited exceptional competitive-
ness in image segmentation, becoming industrial benchmarks [10,11,13,17]. One
widely-used is the encoder-decoder networks with U-shaped architectures, such
as SegNet [1], U-Net [7] and DeconvNet [15]. These networks are composed of a
convolutional encoder to extract salient features, and a deconvolutional decoder
to recover image details. Such architecture has advantages, including flexible
input image sizes, consideration of spatial information, and an end-to-end pre-
diction, leading to lower computational cost and higher representation power.

Despite the excellent performance in the 2017 challenge, the state-of-the-art
encoder-decoder network of [10] in our model exploration still loses significant
segmentation accuracy for part of the BraTS 2018 training set. This is probably
because the network primarily captures the key features of well-segmented sam-
ples, but misses those of the others. From the transfer learning perspective, as in
[19], if treating the well-segmented samples as samples in the “source” domain
and the poor-segmented samples in the“target” domain, then the network fails to
learn a domain invariant feature representation. This can hence be viewed as the
so-called domain adaptation problem, which aims to match the marginal feature
distributions of source and target. Inspired by the domain adaptation technique
of [19], we add a domain classifier to the modified U-net of [10], together with
a confusion loss to learn a domain invariant feature representation for the brain
tumor segmentation task. Our proposed network with domain adaptation signifi-
cantly enhances the segmentation accuracy on the validation set, with mean Dice
scores 0.91044, 0.85057 and 0.80536 for whole tumor, tumor core and enhancing
tumor, respectively. The scores on the final test set are 0.871, 0.788 and 0.738,
respectively, where detailed comparison with all the other participants in this
challenge can be found in [5].

2 Data Description

The BraTS 2018 challenge data are collected from three different resources that
are denoted as “2013”,“CBICA”, and “TCIA”, respectively. The training data
set includes 20 high-grade glioma subjects (HGGs) from the group 2013, 88
HGGs from CBIC, and 102 HGGs from TCIA, and also includes 10 from 2013
and 65 from TCIA subjects with low-grade gliomas (LGG) that are less aggres-
sive and infiltrative. Each subject has four modalities of MRI scans, including
native T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2),
and T2 FLAIR volumes. All MRI images are registered to a common template
with the volume size of 240× 240× 155 voxels resampled to 1 mm isotropic res-
olution. The tumor regions are annotated into three classes: the GD-enhancing
tumor (ET, labeled 4), the peritumoral edema (ED, labeled 2), and the necrotic
and non-enhancing tumor (NCR/NET, labeled 1).
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A validation data set of 66 subjects is also provided for each participating team,
but with no HGG/LGG status or tumor labels. The final evaluation of the segmen-
tation approach is conducted on an independent test data set of 191 subjects.

3 Segmentation

In this section, we introduce the details of our framework for brain tumor seg-
mentation. Our model is an ensemble of two base models: a modified U-Net
and a U-Net with domain adaptation (DAU-Net). In either model, modalities
are treated as channels. Domain adaptation is applied to regulate the feature
representation learning process so that the extracted features are more invari-
ant to differences between domains. We also discuss our data preprocessing and
post-processing procedures that smooth and optimize the segmentation results.
Figure 1 contains the workflow illustration.

Fig. 1. Segmentation pipeline

3.1 Data Preprocessing

The main purpose of data preprocessing is to bring data to a similar distribu-
tion to avoid any initial bias, which is important for data-driven approaches.
The provided data has already been skull stripped, co-registered, and resized to
uniform resolution. On top of that, we remove the top and bottom 1 percentile of
intensity in the brain areas for each image, and normalized the brain intensities
by subtracting the mean and dividing the standard deviation. The preprocess-
ing is conducted on brain regions only and independently across modalities and
individuals.

3.2 Modified U-Net

Model Description. Our modified U-Net is inspired by [10]. In our model, each
level of the encoding pathway consists of a residual block with the same structure.
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The first convolution layer of each residual block halves the spatial dimension
with a stride of 2 (except for the first residual block), and increases the number of
channels to 8×2n, with n being the level counting from 1. As a result, the stack
of 5 residual blocks progressively reduces the spatial dimension of the input ten-
sor by a factor of 16 and learns increasingly abstract feature representations. To
increase the prediction resolution, the decoding pathway progressively doubles
the spatial dimension on each level by an upsampling layer of scale 2, and even-
tually recovers the spatial dimension of input data. The feature maps generated
by the first four residual blocks are concatenated to decoding pathway of the
same level to encourage the gradient flow. We apply group normalization [21] to
all normalization layers, because it is more stable given a small batch and yields
a better result compared to instance normalization [20]. The group number is 16
for level 1 and 32 for the remaining levels. Moreover, we adopt the idea of deep
supervision [12], where output maps of different levels are combined sequentially
through element-wise addition to constitute the network’s final prediction via
the softmax function. We integrate the multiclass dice loss function into our
framework, since it can effectively mitigate the problem of class imbalance:
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where K is the set of prediction classes, u is the probability maps output by the
backbone structure, v is the one-hot encoding of the ground truth, and i is the
voxel index.

3.3 DAU-Net

Model Description The backbone structure is the same as the model in Subsec-
tion 3.2, except all normalization layers are instance normalization [20], because
we observe more boost by domain adaptation with the presence of instance
normalization. The domain classifier is appended to the end of the encoding
pathway, where the feature representation is the most complex. A 1× 1× 1 con-
volution layer is first applied to significantly reduce the number of channels from
256 to 32, followed by alternating three fully-connected layers of lengths 256, 32,
and 1, and two leaky ReLU rectifiers.

Domain Division. We perform two sets of five-fold cross-validation on training
data with the backbone structure only. One set follows the data preprocessing
procedure described in Subsect. 3.1, while the other set has an additional N4 bias
correction processed by ANTs [18]. We compare the differences of Dice coefficient
between the segmented tumors of the two sets. Although N4 bias correction has
a minimal effect on most samples, it does yield significantly different results for
some cases. We pick 75 subjects with the most variations and classified them to
a different domain from the rest. The full list of those 75 subjects can be found
in the Table 3. Based on the two domains of subjects, the network is shown in
Fig. 2.
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Training Procedure. The backbone structure and the domain classifier are
trained alternatively. In the 2n-th epoch, the objective function adds an addi-
tional confusion loss onto the dice loss function Ldice, which is the cross entropy
between the predicted domain label and a uniform distribution:

L2n = − 2
|K|

∑

k∈K

∑
i u

k
i v

k
i∑

i u
k
i +

∑
i v

k
i

− λ
∑

d

1
|D| log qd,

where D is the set of domain categories, and qd is the estimated probability
for the d-th domain from the domain classifier. qd is modeled by a softmax
function of the classifier activations qd = softmax(θT1 f(θ2)), where θ1 includes
activation parameters in the fully connected layer and θ2 includes representation
parameters in the modified U-net (Fig. 2). In this step, θ1 is kept unchanged
and parameter of the backbone structure θ2 is updated. The hyperparameter λ
controls the degree of the domain confusion relative to the backbone structure.

In the (2n + 1)-th epoch, θ2 is frozen so that only θ1 is updated. The
domain classifier aims to discriminate samples according to the feature repre-
sentation output by the encoding pathway. The cross-entropy loss is computed
with domain labels as follows:

L2n+1 = −
∑

d

I[yD = d] log qd.

In summary, the two steps update different parts of parameters. By training
the model iteratively, both the backbone structure and the domain classifier are
optimized. The best domain classifier learned by minimizing L2n+1 is expected
to still perform poorly on the final domain prediction, due to the confusion loss
in L2n. With such a domain classifier, the encoding pathway has incentives to
capture the domain-invariant features. This helps to improve the generalizability
of the model, since differences in MRI data representation are usually significant.
The training was carried out on 4 NVIDIA Titan Xp GPU cards for about 2 days.

3.4 Experiment Configuration

The input tensors of size 128× 128× 128 are randomly sampled from brain areas
and augmented by random flipping and transpose during each epoch. The train-
ing is implemented by PyTorch using the Adam optimizer with the learning rate
initially set to be 8× v10−4 and exponentially decaying at a rate of 0.98 every
epoch for the modified U-Net, and every two epochs for the DAU-Net. All net-
works are trained for about 600 epochs, and the ones with the lowest Dice loss
of whole tumor are selected as candidates for ensemble.

At the test time, the domain classifier is dropped. The whole brain regions
whose dimensions are padded to the nearest multiple of 16 are served as inputs
to the modified U-Net, and the returned segmentation maps are subsequently
padded with zeros to reach the original dimension.
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3.5 Model Ensemble and XGBoost

XGBoost [6], short for extreme gradient boosting, is an implementation of
gradient-boosted decision trees designed for speed and performance. The term
gradient boosting was proposed by Friedman [8]. It is a tree-based machine
learning algorithm that usually dominates structured or tabular datasets on
classification and regression predictive modeling problems, and boosting is an
ensemble technique where new models are added to correct the errors made by
existing models.

We aim to ensemble multiple models trained from deep learning for brain
tumor segmentation using XGBoost. Most of the previous literature focused on
majority voting and averaging; [9] compared the three ensembling approaches
including majority voting, averaging and expectation-maximization; [22] demon-
strated that the XGBoost approach can outperform the majority voting label
fusion. We here train different models, which differ in preprocessing meth-
ods (with or without bias correction), different patch sizes, different splits of
training dataset into training and validation parts, and different normalization
(instance/group) of the network (modified U-net with group normalization and
the DAU-net with instance normalization). We choose the 9 models with top
Dice coefficients on the validation set; for each subject in the training dataset,
we make predictions using the 9 models; next we calculate the set S of voxels
where there exists disagreement for the 9 models; then, for each tumor class
and each subject, we randomly choose 1000 voxels without replacement from
the set S, and we use the predicted probability of each model for the four tumor
classes at each voxel as covariates to predict the true label using XGBoost; to
determine the hyperparameters, we split the training dataset into five parts and
used a 5-fold cross-validation to optimize the maximal depth, minimum child
weight, penalization parameters and learning rate, etc., to minimize the softmax
loss function.

3.6 Post-processing

We employ the following post-processing techniques [22] to fill in the holes and
delete the small, isolated clusters:

1. Segment the tumor mask into all connected components/clusters. Voxels in
clusters whose volume is less than 0.2 times the largest connected cluster
volume will be reclassified as non-tumor.

2. Segment the enhancing core mask into all connected components/clusters.
Voxels in clusters whose volume is less than 0.01 times the largest connected
cluster volume will be reclassified as the necrosis.

3. Fill in the holes within the tumor mask and assign voxels within the holes to
necrosis area.

We find that the performance can be improved by applying post-processing on
the existing results.
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3.7 Survival Prediction

Based on the previous segmentation results, we crop out the tumor core region
and extract various radiomic features to predict the survival time for the three
modalities Flair, T1 post-contrast, and T2. For each modality, features include:
10 intensity statistics features (such as maximum, minimum, median, and quan-
tiles, skewness, kurtosis, and entropy), 51 shape features (24 Zernike moment
based shape descriptors, 21 Hu Moment based shape descriptors, and 6 statis-
tics of local binary patterns), 112 texture features (13 gray-level co-occurrence
matrix features, 27 threshold adjacency statistics, and 72 wavelet transform fea-
tures). We also add the ratio of all tumor class volumes to the whole brain
volume as additional features. Similar features are used in [22].

We use XGBoost to predict survival time based on the above radiomic fea-
tures, together with age. The difference between the prediction here and that
in Subsect. 3.5 is the dimension adopted in the survival prediction task is much
higher, which will bring about overfitting and high computational complexity.
We use a 5-fold cross-validation to select important features and optimize the
maximal depth, minimum child weight, penalization parameters and learning
rate, and other tuning parameters.

4 Results

4.1 Selection of λ

To investigate the optimum value of λ introduced in L2n, we conduct multiple
trials with λ as the only varying parameter (Fig. 3). Within a certain range of
λ, there is a clear enhancement of the average dice coefficient for whole tumor
and tumor core, whose optimum values are achieved at λ = 0.1 and λ = 0.075,
respectively. Passing over the optimum point, we can see a clear decline in the
average dice coefficient for both. The average dice coefficient of enhancing tumor

Fig. 3. Dice coefficients with varying λ.
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Table 1. Segmentation results on validation data

Method Dice ET Dice WT Dice TC

Phase1 0.75245 0.89571 0.81561

Phase2 Model a 0.75983 0.90397 0.82489

Phase2 Model b 0.76091 0.90616 0.83622

Phase2 Model c 0.74669 0.90349 0.8278

Phase2 Model d 0.74187 0.90435 0.83211

Phase2 Model e 0.75779 0.90733 0.83824

Phase2 Model f 0.76091 0.90420 0.83713

Phase2 Model g 0.76814 0.90574 0.84704

Phase2 Model h 0.75440 0.90594 0.83826

Phase2 Model i 0.78582 0.90491 0.83689

XGBoost+Postprocessing 0.80536 0.91044 0.85057

fluctuates with λ, but its highest peak is at λ = 0.1, which is very close to the
optimal λ’s of whole tumor and tumor core. We hence choose λ = 0.1 for our
proposed network. Detailed segmentation results for the validation set, with
and without domain adaptation, are shown in Table 1, Phase 1 and Phase 2a,
respectively.

4.2 Results of Mean Dice Score and Survival Prediction

The prediction results of the validation set after XGBoost and postprocessing are
the best, as shown in the final row (i.e., XGBoost+Postprocessing of Table 1).
According to the Wilcoxon signed-rank test, its Dice scores are significantly

Fig. 4. Ensemble of models. Examples are from the patient “Brats18 CBICA ALV 1”.
The numbers above each sub-figure are the dice coefficients of whole tumor for that
patient.
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larger than those in phases 1 (in the 1st row), whose p-values are less than
0.048, 4 × 10−5, and 3 × 10−4, for ET, WT and TC, respectively. We use an
example from the validation dataset to illustrate the improvement of ensemble
in Fig. 4. The prediction results of the patients’ survival time for the validation
set are shown in Table 2.

Table 2. The prediction result on validation data

Accuracy MSE MedianSE stdSE SpearmanR

0.5 99409.107 33754.5 210658.725 0.332

5 Conclusion

We presented our contribution to the BraTS 2018 challenge in this paper. We
developed a deep learning approach for the tumor segmentation by combining
a modified U-Net and the DAU-Net. Both models were trained with extensive
data augmentation. We applied the XGBoost procedure to ensemble our image
segmentation predictions. The ensemble of the 9 top-performing models out-
performed each individual model on validation data. Due to time constraints,
we did not explore the effect of domain adaptation on feature learning, which
can explain the improvement on performance. How domain adaptation regulates
feature learning will be a promising research topic that sheds lights on a better
design of data augmentation as well as a preprocessing pipeline. Moreover, we
tried a few ways of defining domains, including dividing the data by gliomas’
grades and data source, but have not yet developed a common standard for auto-
matic domain split with good interpretability. Keeping in mind that it is hard
to train an effective domain classifier by dividing a small dataset into groups, we
also expect the model to have a better result with the introduction of external
data. In this case, the data naturally come from different domains. Besides, we
tried different hyperparameters in our postprocessing to make improvement of
Dice performance on validation dataset, which may cause overfitting.

For survival prediction, we extracted radiomic features based on the seg-
mentation results, but did not include deep-learning features together, due to
time constraints. Neural networks for predictions can usually outperform the
traditional prediction methods [16], which is worth further exploration.
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Appendix

Table 3. Selected 75 cases to be another domain

Name Type Name Type

1 Brats18 2013 11 1 HGG 46 Brats18 2013 0 1 LGG

2 Brats18 2013 19 1 HGG 47 Brats18 2013 15 1 LGG

3 Brats18 2013 22 1 HGG 48 Brats18 2013 16 1 LGG

4 Brats18 2013 25 1 HGG 49 Brats18 2013 1 1 LGG

5 Brats18 2013 4 1 HGG 50 Brats18 2013 9 1 LGG

6 Brats18 CBICA ABB 1 HGG 51 Brats18 TCIA09 141 1 LGG

7 Brats18 CBICA ABO 1 HGG 52 Brats18 TCIA09 177 1 LGG

8 Brats18 CBICA ANG 1 HGG 53 Brats18 TCIA09 255 1 LGG

9 Brats18 CBICA ANP 1 HGG 54 Brats18 TCIA09 402 1 LGG

10 Brats18 CBICA AOD 1 HGG 55 Brats18 TCIA09 462 1 LGG

11 Brats18 CBICA AOH 1 HGG 56 Brats18 TCIA09 493 1 LGG

12 Brats18 CBICA AOZ 1 HGG 57 Brats18 TCIA09 620 1 LGG

13 Brats18 CBICA AQA 1 HGG 58 Brats18 TCIA10 130 1 LGG

14 Brats18 CBICA AQQ 1 HGG 59 Brats18 TCIA10 261 1 LGG

15 Brats18 CBICA AQR 1 HGG 60 Brats18 TCIA10 266 1 LGG

16 Brats18 CBICA AQU 1 HGG 61 Brats18 TCIA10 276 1 LGG

17 Brats18 CBICA ARW 1 HGG 62 Brats18 TCIA10 282 1 LGG

18 Brats18 CBICA ARZ 1 HGG 63 Brats18 TCIA10 413 1 LGG

19 Brats18 CBICA ASE 1 HGG 64 Brats18 TCIA10 420 1 LGG

20 Brats18 CBICA ASH 1 HGG 65 Brats18 TCIA10 442 1 LGG

21 Brats18 CBICA ATF 1 HGG 66 Brats18 TCIA10 490 1 LGG

22 Brats18 CBICA AUQ 1 HGG 67 Brats18 TCIA10 628 1 LGG

23 Brats18 CBICA AWI 1 HGG 68 Brats18 TCIA10 629 1 LGG

24 Brats18 CBICA AXN 1 HGG 69 Brats18 TCIA10 637 1 LGG

25 Brats18 CBICA AXQ 1 HGG 70 Brats18 TCIA10 644 1 LGG

26 Brats18 CBICA AYI 1 HGG 71 Brats18 TCIA13 618 1 LGG

27 Brats18 CBICA BFP 1 HGG 72 Brats18 TCIA13 621 1 LGG

28 Brats18 CBICA BHB 1 HGG 73 Brats18 TCIA13 633 1 LGG

29 Brats18 CBICA BHK 1 HGG 74 Brats18 TCIA13 645 1 LGG

30 Brats18 TCIA01 180 1 HGG 75 Brats18 TCIA13 650 1 LGG

31 Brats18 TCIA01 190 1 HGG

32 Brats18 TCIA01 411 1 HGG

33 Brats18 TCIA01 425 1 HGG

34 Brats18 TCIA02 168 1 HGG

35 Brats18 TCIA02 226 1 HGG

36 Brats18 TCIA03 257 1 HGG

37 Brats18 TCIA04 328 1 HGG

38 Brats18 TCIA04 343 1 HGG

39 Brats18 TCIA04 437 1 HGG

40 Brats18 TCIA05 277 1 HGG

41 Brats18 TCIA06 165 1 HGG

42 Brats18 TCIA06 211 1 HGG

43 Brats18 TCIA06 409 1 HGG

44 Brats18 TCIA08 278 1 HGG

45 Brats18 TCIA08 406 1 HGG
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7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46723-8 49

8. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 1189–1232 (2001)

9. Huo, J., Okada, K., Pope, W., Brown, M.: Sampling-based ensemble segmenta-
tion against inter-operator variability. In: Medical Imaging 2011: Computer-Aided
Diagnosis, vol. 7963, p. 796315. International Society for Optics and Photonics
(2011)

10. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain
tumor segmentation and radiomics survival prediction: contribution to the BRATS
2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.)
BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75238-9 25

11. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust
brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes,
M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75238-9 38

12. Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical
imaging data. arXiv preprint arXiv:1701.03056 (2017)

13. Li, T., Fan, Z., Ziliang, Z., Hai, S., Hongtu, Z.: A label-fusion-aided convolutional
neural network for isointense infant brain tissue segmentation. In: 2018 IEEE 15th
International Symposium on Biomedical Imaging, pp. 692–695 (2018)

14. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(brats). IEEE Trans. Med. Imaging 34(10), 1993 (2015)

15. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1520–1528 (2015)

16. Notley, S., Magdon-Ismail, M.: Examining the use of neural networks for feature
extraction: A comparative analysis using deep learning, support vector machines,
and k-nearest neighbor classifiers. arXiv preprint arXiv:1805.02294 (2018)

http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1811.02629
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-75238-9_25
https://doi.org/10.1007/978-3-319-75238-9_25
https://doi.org/10.1007/978-3-319-75238-9_38
http://arxiv.org/abs/1701.03056
http://arxiv.org/abs/1805.02294


392 L. Dai et al.

17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

18. Tustison, N.J., et al.: Large-scale evaluation of ants and freesurfer cortical thickness
measurements. Neuroimage 99, 166–179 (2014)

19. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across
domains and tasks. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 4068–4076 (2015)

20. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance Normalization: The Missing
Ingredient for Fast Stylization. arXiv.org, November 2017

21. Wu, Y., He, K.: Group Normalization. arXiv.org, June 2018
22. Zhou, F., Li, T., Li, H., Zhu, H.: TPCNN: two-phase patch-based convolutional

neural network for automatic brain tumor segmentation and survival prediction.
In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017.
LNCS, vol. 10670, pp. 274–286. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-75238-9 24

https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/org
http://arxiv.org/abs/org
https://doi.org/10.1007/978-3-319-75238-9_24
https://doi.org/10.1007/978-3-319-75238-9_24

	Automatic Brain Tumor Segmentation with Domain Adaptation
	1 Introduction
	2 Data Description
	3 Segmentation
	3.1 Data Preprocessing
	3.2 Modified U-Net
	3.3 DAU-Net
	3.4 Experiment Configuration
	3.5 Model Ensemble and XGBoost
	3.6 Post-processing
	3.7 Survival Prediction

	4 Results
	4.1 Selection of 
	4.2 Results of Mean Dice Score and Survival Prediction

	5 Conclusion
	References




