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Abstract. Brain tumor segmentation is a difficult task due to the
strongly varying intensity and shape of gliomas. In this paper we pro-
pose a multi-stage discriminative framework for brain tumor segmen-
tation based on BraTS 2018 dataset. The framework presented in this
paper is a more complex segmentation system than our previous work
presented at BraTS 2016. Here we propose a multi-stage discriminative
segmentation model, where every stage is a binary classifier based on the
random forest algorithm. Our multi-stage system attempts to follow the
layered structure of tumor tissues provided in the annotation protocol.
In each segmentation stage we dealt with four major difficulties: feature
selection, determination of training database used, optimization of classi-
fier performances and image post-processing. The framework was tested
on the evaluation images from BraTS 2018. One of the most impor-
tant results is the determination of the tumor ROI with a sensitivity of
approximately 0.99 in stage I by considering only 16% of the brain in
the subsequent stages. Based on the segmentation obtained we solved
the survival prediction task using a random forest regressor. The results
obtained are comparable to the best ones presented in previous BraTS
Challenges.

Keywords: Multi-stage classifier · Random forest · Feature selection ·
Variable importance · MRI brain tumor segmentation

1 Introduction

Image processing is a powerful tool for computer-aided diagnosis especially in the
medical field. The most important advantage of medical imaging is the fact that
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examination performed non-intrusively. MR imaging and diagnosis is increas-
ingly being used for medical investigation. This article is restricted to MRI brain
imaging and provides a framework for the automated brain tumor segmenta-
tion method proposed, delimiting different types of tumors in multi-modal MRI
images. Automatic systems based on machine learning overcomes the laborious,
lengthy work of segmentation done manually by experts. It is replicable and
much faster than the segmentation performed by experts, which might be fairly
different. The most important advantage of such a system is that it can lend
assistance in determining the correct diagnosis, surgery or treatment plan and
monitor the evolution of the disease. A comprehensive study of all the partici-
pating methods at BraTS 2018 Challenges is described in paper [6].

The framework presented in this paper is an extended segmentation system of
greater complexity based on our model presented at MICCAI-BraTS 2016 [15].
This model was built on a feature extraction algorithm [14] and single-staged
random forest (RF) [11] classifiers with optimized parameters. The random forest
approach was used in few systems presented at BraTS 2017 [10,17–19]. The
segmentation results obtained showed that the tumor region is well detected,
but the contours of the whole tumor and the interior tumor tissues are not
well delimited. The source of the aforementioned errors could be the choice
of training samples used, the unbalanced database provided, and its enormous
size. These three factors cannot be counteracted by a single-stage RF classifier.
Another deficiency in our previous model is that it considered almost any spatial
relationship between the tumor tissues, according to the annotation protocol
described in [12,16].

In the current work we propose a multi-stage classifier based on the ran-
dom forest algorithm. In our current experiments we attempt to circumvent the
deficiencies of our old framework and improve the segmentation results.

The proposed framework is built around the model given in Fig. 1. The stage
I classifier detects the tumorous zone from the entire 3D MRI image. This phase
is tuned to have extremely good sensitivity. It considers the tumor zone to be
the goal of detection, and therefore this is the positive segmentation zone. Thus,
it is able to delimit the image ROI containing the tumor with a sensitivity of
approximately 0.99, which is only around 16% of the entire brain. This means
that our ROI considered in the subsequent stages is a highly reduced region.
In stage II we developed a classifier that is able to separate the images in the
two types given, i.e., LGG and HGG. Consequently, at this point our method
is split into two structurally similar branches, because the classifiers are trained
differently only on LGG or HGG images. In stage III the WT (whole tumor)
classifier delimits the whole tumor from healthy brain tissue. In stage IV the
role of the classifier is the determination of the ET (enhancing tumor) region.
In the case of HGG, this region is a considerable part of the tumor and includes
necrotic tissue regions too. The necrotic tissue inside ET is labelled with the
same class number as the non-enhancing tumor. These two tissue types had
different annotations at BraTS 2016. In the case of LGG, the segmentation of
ET is more difficult because of its small size, and it can also be confused with
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Fig. 1. Discriminative model proposed for segmentation (Each stage-classifier is binary
as described in Subsect. 2.1.)

other tissues such as vessels. Stage V tries to delimit the edema from the non-
enhancing tumor. Because of the similar visual aspects of the two tissues, this
segmentation step is error-sensitive.

The use of binary classifiers for all these classification decisions follows from
the annotation protocol. It states that “the various tissue elements (edema, non-
enhancing, enhancing, necrosis) usually follow an outside-inside sequence there-
fore one should start from the outside and delineate regions within the previous
layer. Due to this «Mozart kugel » appearance it is enough to always delimitate
what is outside and internal border should not be delimitated [12]”.

The rest of the paper is organized as follows: in Sect. 2 the proposed cas-
caded binary classification model is described, followed by Sect. 3 presenting the
validation and test results both for the segmentation and survival tasks. Finally,
conclusions are drawn and discussion and further improvements are proposed.
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2 Method

2.1 Segmentation

The delimitation of the brain tumor from the healthy tissues can be achieved by
a voxel-wise segmentation. To solve this task we propose a multi-stage discrim-
inative model based mainly on the random forest algorithm and its facilities.
Voxel-wise segmentation starts with the construction of the feature database
obtained from the annotated image database. The feature database generation
process is identical both for the segmentation (classification) and the training
phases, as well. It consists of the following steps: preprocessing, local feature
definition and extraction (Figs. 1 and 2).

Fig. 2. Discriminative model proposed for training each stage

The database used in our segmentation made up of was the training and
validation databases created for the BraTS 2018 Challenge [4]. The training set
consists of 75 low-grade and 210 high-grade MRI brain images. The image data
consists of 4 modalities T1, T1c, T2 and FLAIR, acquired from 19 different
MRI scanners using different protocols [4,7]. All the images had been segmented
manually by several experts, and the average annotation is in fact the ground
truth given in the database. The modalities are co-registered, interpolated to the
same resolution and skull-striped. The annotated regions [8,9] are labeled in 4
different classes: 0 for background and healthy tissue, 1 for NCR/NET (necrotic
and/or non-enhancing tumor), label 2 for ED (the edema) and label 4 for ET
(the enhancing tumor).

During preprocessing we handled three important artifacts: inhomogene-
ity correction, noise filtering and intensity standardization. For inhomogene-
ity reduction in MR images, we applied the N4 filter implemented in the ITK
package [1]. The anisotropic filtering from the same package was used for noise
reduction. Intensity normalization was done by histogram linear transformation
in such a way that the first and third quartiles had predefined values.
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In voxel-wise segmentation it is necessary to define a set of intensity- and
local neighboring features. The following features were extracted: first order
operators (mean, standard deviation, max, min, median, Sobel, gradient); higher
order operators (laplacian, difference of gaussian, entropy, curvatures, kurtosis,
skewness); texture features (Gabor filter); spatial context features (symmetry,
projection, neighborhoods), – the same as in our previous work.

The segmentation workflow given in Fig. 1 requires nine binary classifiers.
Each classifier is trained and evaluated on its own feature database during its
training process (Fig. 2). The global training consists of five training stages and
each stage is composed of the following four steps:

1. feature selection based on variable importance [13] provided by the random
forest;

2. incremental training of the RF stage-classifier;
3. optimization of the classification performance according to the task of the

given tumor tissue segmentation;
4. image post-processing, with the role of reducing false detections and imple-

menting the layered structure of tumor tissues.

The first step (1), feature selection based on the variable importance provided
by the RF algorithm, and the third step (3), the performance optimization of the
random forest classifier, were presented in our previous articles [14,15]. These
approaches were used to create our one-stage segmentation system presented at
the previous BraTS Challenge in 2016 [15]. In our current work we use these
algorithms in each of the five stages.

In the first step we defined 960 different features for each voxel. The RF clas-
sification algorithm is not able to deal with all the input image voxels and all
960 features previously defined, due to hardware and software limits. Therefore,
this large amount of data was handled by taking advantage of the random forest
variable importance evaluation. Our idea was to implement an iterative feature
selection algorithm presented in [14]. The main idea of the algorithm is to eval-
uate the variable importance several times on a randomly chosen part of the
feature database (Fig. 3). If the OOB error of the forest ensemble was below a
certain threshold then the variable importance was taken into consideration and
cumulated. Averaging the variable importances in the iterations the algorithm
was able to eliminate the most unimportant 20–40% of variables in each run.

Fig. 3. Feature selection algorithm
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In random forest approaches the training set is usually created out of the
existing annotated images by random subsampling. In the case of BraTS 2018
the annotated image set contains 285 MR images and each image is made up
of about 1,500,000 voxels, which means about 450 million samples. This huge
database is, in addition, extremely unbalanced. In consequence we must obtain
a well-defined database for training our random forest classifier. The solution to
this is the incremental learning procedure that consists of enlarging the current
training set by incrementally adding incorrectly classified random subsamples. In
the second step (2), this incremental learning is repeated several times until the
classification performances are adequate or the upper limit of hardware and/or
software is reached. The flowchart of the incremental learning is given in Fig. 4.

Fig. 4. Incremental learning

The classifier performance optimization (step 3) is in strong correlation with
the segmentation task. This assumes the correct choice of training parameters.
The random forest classification performance can be tuned via three important
parameters: mtires– the number of randomly chosen features used as a splitting
criterion in each node of the trees; the ntrees– the number of trees in the forest;
nnodes– the maximum number of nodes in each tree. These parameters determine
the size of the random forest ensemble. the segmentation performances, training
time and system complexity, as well. In our experiments [15] these durations can
be drastically reduced without any loss in segmentation accuracy.

The last step (4), after the training of each stage-classifier (Fig. 2), is an
image post-processing step to do with the segmentation goal of the current stage.
Here we managed to incorporate some knowledge about the tumor, such as the
number of distinct tumors in a brain, one tumor is a connected zone within the
healthy brain tissue, the tumor core is inside the edema, the enhancing tumor is
a connected zone inside the whole tumor, etc. By applying this post-processing
step we succeeded to eliminate the most of the false detections and improve the
quality of segmentation.
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2.2 Survival Prediction

Survival prediction has a considerable role, especially from a medical perspective,
as well as that of the life expectancy of the patient. It helps in monitoring the
effects of the medication and treatment applied. This prediction has to be cor-
related with the disease state and physical well-being of the patient. In this task
the only information available were the MRI scans and the age of a small number
of patients (59). In the case of this reduced dataset, prediction becomes difficult
and leads to a high margin of error. In our survival prediction approach, we eval-
uated first-order statistics of feature values used in the segmentation phase. The
mean and standard deviation of features were computed in the three segmented
regions: edema, enhancing tumor and non-enhancing tumor. In order to include
the size of each region, the statistical values were weighted by the number of
voxels detected over the size of the brain in voxels. During the segmentation
task, we determined a total of 120 local features with high importance values.
Hence, the means and standard deviations of these 120 features are computed
for the 3 tumoral regions, giving a total of 720 features. In our survival predic-
tion method, we trained a random forest regressor with these features, limited
the number of trees to 300 and considered the mean squared error as a split
criterion. In order to reduce the effect of overfitting, the number of leaves on
each tree was also maximized to 128.

3 Results

3.1 Segmentation

The proposed discriminative model is quite laborious and the proposed classifiers
have to be tuned separately (Fig. 1). For training we used well-chosen samples,
provided by incremental learning, from the entire BraTS 2018 training dataset.
In training, beginning with Stage II, we created different classifiers for HGG
and LGG as explained above. The results obtained were evaluated on both sets,
namely, the complete training and validation sets, and on the test set within the
challenge.

The stage I classifier determines the ROI (region of interest) that contains the
tumor region with a high probability. This binary classifier was trained on the
whole brain in order to delimit the healthy region from the tumoral region. In this
step we used an incrementally trained classifier and applied a post-processing
step consisting of a region dilation of 3 voxels. In addition, the two most impor-
tant connected zones were taken into consideration. The results of the last three
incremental steps are given in Table 1 and the improvement brought by the post-
processing in Table 2. In this way the ROI obtained is about twice as large as the
whole tumor, but the sensitivity reached on the complete training set is 0.989.
The correct determination of this ROI has a crucial role in the subsequent stages.
Table 1 and Fig. 5a show the average of the sensitivity after the binary segmenta-
tion and post-processing in stage I. The ROI obtained reduces the image region
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Fig. 5. Stage I segmentation

Table 1. Incremental training of Stage I segmentation

Stage I Training Test

Sens. PPV ROI% Sens. PPV ROI%

Step 01 0.9959 0.5184 0.1143 0.9319 0.508 0.1257

Step 02 0.9971 0.4526 0.1301 0.9712 0.444 0.1523

Step 03 0.9984 0.4299 0.1615 0.9898 0.4257 0.1642

and, implicitly, the feature database, by about 8 times (Fig. 5b). This allows us
to create a more precise classifier in the next stages.

In stage II the images are classified into two types with regard to segmen-
tation. In the HGG images, the enhancing tumor is a considerable part of the
whole tumor and may include some necrotic tissue. In LGG images, the greater
part of the tumor consists of edema and non-enhancing tumor. By applying this
kind of LGG-HGG separation, we could reduce the effects of unbalanced data
(especially the ET in LGG). The image classes obtained correspond in a pro-
portion of more than 95% to the medical LGG-HGG classification given for the
training set. The subsequent stages (III, IV and V) are trained differently for
LGG and HGG images.

The stage III classifier is applied only on the ROI. Its segmentation task
is to delimit the remainder of healthy tissue from the WT. In this stage the
segmentation with post-processing creates two disjunct regions, considering the
tumor zone a connected region inside the healthy tissue. The Dice scores obtained
for the whole tumor (WT) are 0.911 on the training and 0.885 on the validation
sets (Table 3).

The stage IV classifier is applied only inside the WT region, and its task is
to delimit the enhancing tumor. In the case of HGG images, the ET forms a
significant connected region including some necrotic tissue. In the case of LGG
images, the region is only a small piece in the WT and may easily be confused
with vessels. If the segmentation obtains an ET region of less than 100 voxels,
it will be neglected and considered to be a vessel. If the ET is near vessels, false
detections are often obtained.
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Fig. 6. Segmentation example (Rows represent the 4 MRI modalities and the segmen-
tation obtained. Column 1 is the annotated contour of edema; column 2 is the segmen-
tation result of it. Column 3 is the annotation contour of the ET⊃NECR; column 4 is
the segmentation results of it.)
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Table 2. Post-processing: Improvements in sensitivity

Sensitivity PPV ROI% Dice

Classif. 0.963 0.581 0.112 0.707

Step 03 0.990 0.426 0.164 0.574

Table 3. Segmentation results of Stage IV & V on the validation database

Label Dice Hausdorff95

ET WT TC ET WT TC

Training Mean 0.880 0.913 0.911 3.433 4.721 5.434

HGG StdDev 0.067 0.064 0.061 6.973 7.580 7.244

Training Mean 0.808 0.916 0.908 3.057 2.725 2.907

LGG StdDev 0.320 0.045 0.120 5.974 2.050 3.399

Validation Mean 0.801 0.883 0.786 5.811 7.410 11.511

HGG StdDev 0.161 0.082 0.180 9.418 12.644 14.141

Validation Mean 0.489 0.891 0.415 10.265 4.741 15.858

LGG StdDev 0.420 0.081 0.285 8.864 2.951 9.875

Final Mean 0.730 0.885 0.702 6.349 6.803 12.499

Validation StdDev 0.275 0.081 0.259 9.392 11.230 13.349

Final Mean 0.684 0.830 0.657 6.186 9.180 11.649

Test StdDev 0.302 0.193 0.308 9.394 13.062 12.670

The stage V classifier has the most difficult task working on the WT, exclud-
ing the ET obtained in stage IV. It has to delimit the edema from the non-
enhancing tumor tissues. In the case of HGG images, this stage contains another
classifier that finds the necrotic tissues inside the ET. The results obtained on the
training validation and test images are given in Table 3. A visual segmentation
sample is depicted in Fig. 6.

3.2 Survival Prediction

The results obtained in survival prediction are in strong correlation with the seg-
mentation performances. Concerning the MSE parameter (Mean Squared Error),
meaning the squared difference in number of days, we managed to take the first
place on the validation database, as shown on the leaderboard [5] and in Table 4.
The individual results of the test have no basis for comparison to the other teams
owing to the lack of their results. The comparative study will be published by
the organizers of BraTS 2018 [6].
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Table 4. Survival prediction of the validation database

Team Cases Eval. Acc. MSE median SE std SE Spearman R

lefko 28 0.429 76081.29 24352 111586.8 0.342

Ranking 13 1 4 2 5

4 Conclusion and Discussion

In this paper we developed a five-stage discriminative model for brain tumor
segmentation based on multi-modal MRI data. Our five-stage model implements
the layered tissue structure by adequate training of binary classifiers and image
post-processing in each segmentation stage. In each stage we attempted to solve
the four important issues concerning discriminative models. Our results show
that binary classifiers are very efficient for the layered segmentation task. One of
the most important results is the determination of a ROI that has to enclose the
whole tumor with a very high probability. In stage I, the sensitivity attained is
0.989, with a PPV of 0.426. This step reduces the size of the feature database by
about 8 times and provides a reliable ROI for the next segmentation stages. Fur-
thermore, the LGG-HGG separation increased the Dice score by 2%. The WT
segmentation reached a Dice score of about 0.885 both on the training and vali-
dation sets [5]. This result is comparable to the most well-performing methods.
In the test set, the reported Dice decreased by 5%, to 0.83. Analysing the test set,
we came to the conclusion that the test set contained many HGG images with
different visual aspects compared to the training or validation images. The finals
results of the survival task in correlation with segmentation performances will be
published soon by the BraTS organizers. In our opinion, the MSE score is much
more relevant than the accuracy that considers three disjunct time periods as
a crisp set (less than 10 months, between 10–15 months, more than 15 months).
The system developed is a complex implementation using a large variety of soft-
ware packages and modules such as ITK in C++ [1], Java, ImageJ and Fiji with
Trainable Weka Segmentation [2], the random forest package from R [3], Matlab
for performance evaluation and image conversion. Our system is quite complex
and still we are working on its dockerized version.
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