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Abstract. Accurate segmentation of brain tumors is critical for clinical
quantitative analysis and decision making for glioblastoma patients. Con-
volutional neural networks (CNNs) have been widely used for this task.
Most of the existing methods integrate the multi-modality information
by merging them as multiple channels at the input of the network. How-
ever, explicitly exploring the complementary information among differ-
ent modalities has not been well studied. In fact, radiologists rely heavily
on the multi-modality complementary information to manually segment
each brain tumor substructure. In this paper, such a mechanism is devel-
oped by training the CNNs like the annotation process by radiologists.
Besides, a 3D lightweight CNN is proposed to extract brain tumor sub-
structures. The dilated convolutions and residual connections are used
to dramatically reduce the parameters without loss of the spatial reso-
lution and the number of parameters is only 0.5M. In the BraTS 2018
segmentation task, experiments with the validation dataset show that
the proposed method helps to improve the brain tumor segmentation
accuracy compared with the common merging strategy. The mean Dice
scores on the validation and testing dataset are (0.743, 0.872, 0.773) and
(0.645, 0.812, 0.725) for enhancing tumor core, whole tumor, and tumor
core, respectively.
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1 Introduction

Glioblastoma is the most common primary malignant brain tumor [17]. Medi-
cal imaging technologies play an important role in the diagnosis, preoperative
planning, intraoperative navigation, and postoperative evaluation of the brain
cancer. Magnetic Resonance Imaging (MRI) is the most frequently used imaging
method in the clinical routine of brain tumors, because it is noninvasive and free
of radiation.
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Brain tumor segmentation in multi-modality MRI scans is crucial for the
quantitative analysis in clinic. However, it is time-consuming and labor-intensive
for radiologists to manually delineate brain tumors. Automatic segmentation of
brain tumors in multi-modality MRI scans has a potential to provide a more
effective solution, but due to the highly heterogeneous appearance and various
shapes of brain tumors, it is one of the most challenging tasks in medical image
analysis. Figure 1 presents a brain tumor case and the corresponding label in the
BraTS 2018 training dataset.

(a) T1 (b) T2

(c) Flair (d) T1ce (e) Ground Truth

Edema (ED)

Enhancing
Tumor (ET)

Tumor Core (TC)

Fig. 1. A brain tumor example (named “Brats18 2013 2 1”) in BraTS 2018 dataset.
(a–d) show four slices with the same position (107th slice) in different MRI scans. The
manual segmentation results of the different substructures are shown in (e).

In recent years, convolutional neural networks (CNNs) have emerged as a
powerful tool for medical image segmentation tasks, including organ and lesion
segmentation, and achieved unprecedented accuracy. Benefiting from the mul-
timodal brain tumor segmentation challenge [15] which is long-term and com-
petitive, many CNN architectures have been proposed and also achieved state-
of-the-art performance. In [13], Kamnitsas et al. constructed an Ensemble of
Multiple Models and Architectures (EMMA) for robust brain tumor segmenta-
tion including two deepMedic models, three 3D FCNs, and two 3D U-Nets.
Wang et al. [19] developed a cascade of fully convolutional neural networks
to decompose the multi-class segmentation problem into a sequence of three
binary segmentation problems according to the brain tumor substructures hier-
archy and proposed anisotropic networks to deal with 3D images as a trade-off
among the receptive field, model complexity and memory consumption. The
multi-view fusion was used to further reduce noises in the segmentation results.
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Isensee et al. [12] modified the U-Net to maximize brain tumor segmentation
performance. The architecture consisted of a context aggregation pathway which
was used to encode increasingly abstract representations of the input and a local-
ization pathway which was designed to transfer the low level features to a higher
spatial resolution.

Most of the existing multi-modality brain tumor segmentation methods use
an early-fusion strategy which integrates the multi-modality information from
the original MRI scans. For example, four MRI modalities (T1, T2, T1ce, and
Flair) are simply merged as four channels at the input of the network [12,13,19].
However, as argued in [18] in the context of multi-modal learning, it is difficult
to discover highly non-linear relationships among the low-level features of dif-
ferent modalities. Besides, early-fusion methods implicitly assume that the rela-
tionship among different modalities is simple (e.g., linear) and the importance
among these modalities is equal for the segmentation of different brain tumor
substructures. In fact, when radiologists manually segment tumor substructures,
they pay different attention to different modalities. For example, when segment-
ing the tumor core, radiologists will pay more attention to T1ce modality rather
than Flair or T2 modalities. Thus, the importance of different modalities is not
the same when segmenting a specific tumor substructure; The complementary
information among these modalities plays an important role to the final brain
tumor labels. As far as we know, explicitly exploring the complementary infor-
mation among different modalities has not been well studied for brain tumor
substructures segmentation.

In this paper, we train the networks like the manual segmentation process by
radiologists to explicitly explore the complementary information among different
MRI modalities. Specifically, the pipeline design of the brain tumor segmentation
is guided by clinical brain tumor annotation protocol. In addition, we propose a
novel 3D lightweight Convolutional Neural Network (CNN) architecture which
captures high-level features from a large receptive field without the loss of resolu-
tion of the feature maps. The proposed lightweight CNN makes a good balance
between the 3D receptive field and model complexity. It has only ten hidden
layers and the number of parameters is only 0.5M . We evaluate the proposed
lightweight CNN architecture on the BraTS 2018 validation and testing dataset
and achieve the promising segmentation results. Besides, experiments show that
an improvement of segmentation accuracy is achieved by exploring the comple-
mentary information among different modalities.

2 Methods

2.1 MRI Modality Analysis and Selection of Brain Tumors

The MRI modality selection method is inspired by how radiologists segment
the brain tumor substructures. From [15], it can be found that different brain
tumor substructures are annotated by different strategies in clinic. Specifically,
the edema (belongs to the whole tumor) is segmented primarily from T2 images.
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Flair images are used to cross-check the extension of the edema. The enhanc-
ing tumor and the tumor core are identified from T1ce images. Motivated by
this annotation protocol, different modalities are selected for the segmentation
of different brain tumor substructures. Table 1 presents an overview of the used
modalities for different substructures segmentation. Briefly, like annotation pro-
cess by radiologists, we mainly use the Flair and the T2 modalities to segment
the whole tumor and use the T1ce modality to segment the enhancing tumor
and the tumor core.

Table 1. Overview of the used modalities for the segmentation of different brain tumor
substructures.

Substructures Used modalities

Whole tumor Flair and T2

Tumor core T1ce

Enhancing tumor T1ce

2.2 Proposed 3D Lightweight CNN Architecture

Although for 3D volume data segmentation, traditional 3D architectures such as
3D U-Net and FCN, have high memory consumption in the training phase, the
3D context information would be degenerated if changing the inputs as 2D or
2.5D slices to relieve the computational burden. As a trade-off between memory
consumption and 3D context information, a 3D lightweight CNN architecture
(Fig. 2) is proposed for 3D brain tumor segmentation which integrates the dilated
convolution with different dilated rates and residual connections. Table 2 presents
the detailed configurations of the proposed architecture.
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Fig. 2. The proposed 3D lightweight CNN architecture. The number 1, 2, and 4 denote
the corresponding dilated rates.
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Dilated Convolution with Increasing and Decreasing Dilated Rates.
Dilated convolutions have been verified as a very effective structure in deep
neural networks [6,21]. The main idea of dilated convolution is to insert “holes”
among pixels in traditional convolutional kernels to enlarge the respective field.
In order to obtain multi-scale semantic information, we employ different dilation
factors in the proposed architecture. The dilation factors are set to 1, 2, and 4
with the increasing and decreasing sequences which can avoid the gridding effect
of the standard dilated convolution [8,20].

Residual Connections. To train deep CNNs more effectively, residual connec-
tions were first introduced by He et al. [10]. The main idea of residual connections
is to learn residual functions through the use of identity-based skip connections
which ease the flow of information across units. Our proposed lightweight archi-
tecture adds residual connections to each dilated convolutional layer. In addition,
each convolutional layer is associated with a batch normalization layer [11] and
an element-wise parametric rectified linear Unit (prelu) layer [9] to speed up the
convergence of the training process.

Table 2. Configurations of the proposed lightweight CNN architecture. Note that each
“Conv” corresponds the sequence Conv-BN-ReLU and a residual connection is added
to each “Dilated Conv”.

Layers Configurations (kernel size, channel number)

Conv (3 ∗ 3 ∗ 3), 8

Dilated Conv (3 ∗ 3 ∗ 3), 16, dilated factor = 1

Dilated Conv (3 ∗ 3 ∗ 3), 32, dilated factor = 2

Dilated Conv (3 ∗ 3 ∗ 3), 64, dilated factor = 4

Dilated Conv (3 ∗ 3 ∗ 3), 64, dilated factor = 4

Dilated Conv (3 ∗ 3 ∗ 3), 64, dilated factor = 2

Dilated Conv (3 ∗ 3 ∗ 3), 64, dilated factor = 1

Conv (3 ∗ 3 ∗ 3), 64

Conv (1 ∗ 1 ∗ 1), 64

Conv (1 ∗ 1 ∗ 1), 2 or 3 for binary/triple segmentation, respectively

2.3 Two-Stage Cascaded Framework

Cascaded strategy has been proved to be an effective way for brain tumor sub-
structures segmentation [19] in the BraTS 2017. Inspired by this work, we deal
with the task with a two-stage cascaded framework. Figure 3 presents the whole
pipeline. The lightweight CNN architecture is iteratively used to sequentially
segment brain tumor substructures. In the first stage, the whole tumor is seg-
mented from Flair and T2 modalities. The segmentation results of Flair and
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T2 modalities are merged by simply making an union to generate a bounding
box of the whole tumor region of interest (ROI). Besides, an extension with 5
pixels is applied to the whole tumor ROI bounding box so as to avoid possible
under-segmentation. Specifically, each side of the bounding box is relaxed by 5
pixels. The whole tumor segmentation from the Flair modality is used as the
final whole tumor segmentation result. Besides, we also try to use the union seg-
mentation from Flair and T2 modalities segmentation results as the final whole
tumor segmentation result, but there is no improvement of the accuracy. In the
second stage, the corresponding T1ce images in the ROI are used to train a new
3D lightweight CNN to make a triple prediction for the enhancing tumor and
the tumor core segmentation.

Flair

T2

Lightweight 
CNN

Lightweight 
CNN

Whole Tumor
ROI

T1ce ROI Lightweight 
CNN

WT

ET & TC

Stage 1 Stage 2

Fig. 3. The two-stage cascaded framework for brain tumor substructures segmentation.

3 Experiments and Results

3.1 Preprocessing

The proposed method was evaluated on the Brain Tumor Segmentation Chal-
lenge (BraTS 2018) dataset [2–4]. The training dataset consisted of 210 cases
with high grade glioma (HGG), 75 cases with low grade glioma (LGG) and the
corresponding manual segmentation. Each case had four 3D MR modalities (T1,
T2, Flair, and T1ce).

Table 3. Data preprocessing methods.

Modality Preprocessing methods

Flair z-score, histogram equalization, and scale to [0, 1]

T2 z-score and scale to [0, 1]

T1ce z-score and scale to [0, 1]

To enforce the MR volume data to be more uniform, the following prepro-
cessing strategies (Table 3) were applied to the used modalities. It can be seen
that the Flair modality is added an additional histogram equalization compared
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to the preprocessing methods for the remained modalities. This was because
the intensity distributions of the Flair images vary considerably across different
cases. Figure 4 presents two examples of Flair modalities in the training dataset.
Obviously, the intensity distributions of the two cases still differed remarkably
after the z-score normalization. Therefore, the histogram equalization was fur-
ther applied to make them share similar intensity distribution. For the T2 and
T1ce modalities, however, there were no such significant intensity differences
among different cases, so a simple z-score preprocessing was enough.

(a) Original (b) Z-score (c) Histogram equalization

Fig. 4. Preprocessing results of two Flair images. The first row is the case
named “Brats18 TCIA02 135 1 (78th slice)” and the second row is the case named
“Brats18 TCIA02 283 1 (78th slice)”. After z-score normalization, there is still a great
difference between the two images (the 2nd column). Further, the histogram equaliza-
tion is applied to make them share similar intensity distributions (the 3rd column).

3.2 Implementation Details

The BraTS 2018 training dataset was randomly divided into training data (80%),
validation data (10%), and test data (10%) to find the proper parameters. After
that, all the training data were employed to train the final models which were
used for the official validation and testing dataset.

The proposed networks were implemented in tensorflow [1] and NiftyNet
[7,14]. The input 3D volume data was resized to 64 ∗ 64 ∗ 64 by the first order
spline interpolation. The predicted segmentation was also resized in the same
way to retrieve the original 3D volume. The batch size was set to 2 and the
maximum number of iterations was 10k. The optimizer was the adam with an
initial learning rate 0.001. The loss function was Dice coefficient [16] which can
deal with the data imbalance. A L2 weight decay of 10−5 was used. No external
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data was used and data augmentation included random rotation, random spatial
scaling, and random flipping. The whole training process cost about 30 h on a
desktop with an Intel Core i7 CPU and a NVIDIA 1080Ti GPU.

(a) Flair (b) T1ce (c) Ordinary fusion (d) Complementary fusion

A
xial

Sagittal
C

oronal

Fig. 5. Segmentation results of the brain tumor substructures from the BraTS 2018
validation dataset (named “Brats18 CBICA ALV 1”) by the proposed method (com-
plementary fusion) and its variant (ordinary fusion). Green: edema; red: necrotic
and the non-enhancing tumor core; yellow: enhancing tumor core. The obvious mis-
segmentations of the non-enhancing tumor core are highlighted by white arrows. (Color
figure online)

3.3 Segmentation Results

We test our framework on the BraTS 2018 validation dataset with 66 new cases.
To evaluate whether the proposed method (termed as complementary fusion)
could improve the brain tumor segmentation results, we compare it with the
ordinary strategy which merges four MR modalities as four channels at the input
of the network. The whole pipeline is also a two-stage cascaded way and we refer
to it as ordinary fusion. Except the difference at the input of the network, all
the hyper-parameters of the ordinary fusion are the same with the proposed
complementary fusion strategy during the training process.

Table 4 presents quantitative evaluations of the proposed method (comple-
mentary fusion) and its variant (complementary fusion) on the BraTS 2018
validation dataset. For the ordinary fusion, the Dice scores are 0.709, 0.851,
and 0.751 for enhancing tumor core, whole tumor, and tumor core respectively.
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Table 4. Mean values of Dice and 95th percentile Hausdorff measurements of the
proposed method on the BraTS 2018 Validation dataset. EN, WT, and TC denote
enhancing tumor core, whole tumor and tumor core, respectively. The ordinary fusion
denotes that four modalities are simply merged as four channels at the input of the
network. The complementary fusion denotes that the proposed method which explicitly
explores the complementary information among different modalities.

Dataset Dice ET Dice WT Dice TC Hdff95 ET Hdff95 WT Hdff95 TC

Ordinary fusion 0.709 0.851 0.751 5.65 8.64 13.6

Complementary fusion 0.743 0.872 0.773 4.69 6.12 10.4

For the proposed complementary fusion, an improvement is achieved, and the
Dice scores are 0.743, 0.872, and 0.773 for these substructures respectively.

Figure 5 shows an example for the brain tumor substructures segmentation
from the BraTS 2018 validation dataset. Three views are presented, including
the axial view, the sagittal view, and the coronal view. For the simplicity of visu-
alization, only the Flair and T1ce images are shown, because the two modalities
can clearly display the whole tumor, enhancing tumor, and tumor core. The first
and the second columns present the input images from Flair and T1ce modali-
ties, respectively. We have compared the proposed method with its variant that
employed the ordinary fusion method at the input. The third and the fourth
columns show the ordinary fusion and the complementary fusion segmentation
results, respectively. The green, red, and yellow colors show the edema, tumor
core, and enhancing tumor, respectively. It can be observed that the predic-
tions by the ordinary fusion seem to have an over segmentation (highlighted
by white arrows) of the tumor core. When using the complementary fusion, the
segmentation results are more accurate.

Table 5 presents quantitative evaluations with the BraTS 2018 testing
dataset. It shows the mean values, standard deviations, medians, Dice, and 25
and 75 quantiles of the 95th Hausdorff distance. Compared with the performance
on the validation dataset, the performance on the testing dataset is lower, with
average Dice scores of 0.645, 0.812, and 0.725 for enhancing tumor core, whole

Table 5. Dice and the 95th percentile Hausdorff measure of the proposed method on
the BraTS 2018 Testing dataset. EN, WT, and TC denote enhancing tumor core, whole
tumor and tumor core, respectively.

Dataset Dice ET Dice WT Dice TC Hdff95 ET Hdff95 WT Hdff95 TC

Mean 0.645 0.812 0.725 41.1 10.0 28.6

StdDev 0.300 0.175 0.291 105 15.7 78.8

Median 0.768 0.875 0.855 3.00 5.39 5.20

25quantile 0.541 0.829 0.678 1.73 3.74 2.83

75quantile 0.844 0.910 0.921 10.2 8. 22 13.6
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tumor, and tumor core, respectively. The higher median values show that good
segmentation results are achieved for most cases, and some outliers lead to the
lower average scores. The ranking analysis is reported in [5].

4 Discussion and Conclusion

There are several advantages of the proposed framework. Firstly, the comple-
mentary information among different modalities is explicitly explored to segment
brain tumor substructures which can avoid the interference from other confus-
ing modalities as well as reducing the complexity compared with using all the
modalities as inputs simultaneously. Besides, the proposed 3D lightweight CNN
effectively uses the dilated convolutions to enlarge the receptive fields and to
aggregate the global information. The increasing and decreasing arrangement
of the dilate factors can alleviate the gridding effect caused by the standard
dilated convolutions. The architecture is very compact and computation efficient.
Finally, the cascaded CNNs, which have been proved to be an effective strategy,
can separate the complex multiple class segmentation into simper problems and
reduce false positives by spatial constrains of brain tumor anatomical structures.

In conclusion, we explicitly explore the complementary information among
different modalities according to the clinical annotation protocol. In addition, a
compact 3D lightweight CNN architecture is proposed and the number of param-
eters is only 0.5M . The proposed approach achieves a promising performance
on the BraTS 2018 validation and testing dataset. Experiments with the BraTS
2018 validation dataset show that the complementary fusion strategy helps to
improve the brain tumor segmentation accuracy compared with the ordinary
fusion method.
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