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Abstract. Automated segmentation of brain tumors from 3D magnetic
resonance images (MRIs) is necessary for the diagnosis, monitoring, and
treatment planning of the disease. Manual delineation practices require
anatomical knowledge, are expensive, time consuming and can be inaccu-
rate due to human error. Here, we describe a semantic segmentation net-
work for tumor subregion segmentation from 3D MRIs based on encoder-
decoder architecture. Due to a limited training dataset size, a variational
auto-encoder branch is added to reconstruct the input image itself in
order to regularize the shared decoder and impose additional constraints
on its layers. The current approach won 1st place in the BraTS 2018
challenge.

1 Introduction

Brain tumors are categorized into primary and secondary tumor types. Pri-
mary brain tumors originate from brain cells, whereas secondary tumors metas-
tasize into the brain from other organs. The most common type of primary
brain tumors are gliomas, which arise from brain glial cells. Gliomas can be
of low-grade (LGG) and high-grade (HGG) subtypes. High grade gliomas are
an aggressive type of malignant brain tumor that grow rapidly, usually require
surgery and radiotherapy and have poor survival prognosis. Magnetic Resonance
Imaging (MRI) is a key diagnostic tool for brain tumor analysis, monitoring
and surgery planning. Usually, several complimentary 3D MRI modalities are
acquired - such as T1, T1 with contrast agent (T1c), T2 and Fluid Attenuation
Inversion Recover (FLAIR) - to emphasize different tissue properties and areas
of tumor spread. For example the contrast agent, usually gadolinium, emphasizes
hyperactive tumor subregions in T1c MRI modality.

Automated segmentation of 3D brain tumors can save physicians time and
provide an accurate reproducible solution for further tumor analysis and mon-
itoring. Recently, deep learning based segmentation techniques surpassed tra-
ditional computer vision methods for dense semantic segmentation. Convolu-
tional neural networks (CNN) are able to learn from examples and demonstrate
state-of-the-art segmentation accuracy both in 2D natural images [6] and in 3D
medical image modalities [19].

Multimodal Brain Tumor Segmentation Challenge (BraTS) aims to evalu-
ate state-of-the-art methods for the segmentation of brain tumors by providing
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a 3D MRI dataset with ground truth tumor segmentation labels annotated by
physicians [2–5,18]. This year, BraTS 2018 training dataset included 285 cases
(210 HGG and 75 LGG), each with four 3D MRI modalities (T1, T1c, T2 and
FLAIR) rigidly aligned, resampled to 1 × 1 × 1 mm isotropic resolution and
skull-stripped. The input image size is 240 × 240 × 155. The data were col-
lected from 19 institutions, using various MRI scanners. Annotations include 3
tumor subregions: the enhancing tumor, the peritumoral edema, and the necrotic
and non-enhancing tumor core. The annotations were combined into 3 nested
subregions: whole tumor (WT), tumor core (TC) and enhancing tumor (ET),
as shown in Fig. 2. Two additional datasets without the ground truth labels
were provided for validation and testing. These datasets required participants
to upload the segmentation masks to the organizers’ server for evaluations. The
validation dataset (66 cases) allowed multiple submissions and was designed for
intermediate evaluations. The testing dataset (191 cases) allowed only a single
submission, and was used to calculate the final challenge ranking.

In this work, we describe our semantic segmentation approach for volumetric
3D brain tumor segmentation from multimodal 3D MRIs, which won the BraTS
2018 challenge. We follow the encoder-decoder structure of CNN, with asym-
metrically large encoder to extract deep image features, and the decoder part
reconstructs dense segmentation masks. We also add the variational autoencoder
(VAE) branch to the network to reconstruct the input images jointly with seg-
mentation in order to regularize the shared encoder. At inference time, only the
main segmentation encode-decoder part is used.

2 Related Work

Last year, BraTS 2017, top performing submissions included Kamnitsas
et al. [13] who proposed to ensemble several models for robust segmentation
(EMMA), and Wang et al. [21] who proposed to segment tumor subregions in
cascade using anisotropic convolutions. EMMA takes advantage of an ensemble
of several independently trained architectures. In particular, EMMA combined
DeepMedic [14], FCN [16] and U-net [20] models and ensembled their segmen-
tation predictions. During training they used a batch size of 8, and a crop of
64 × 64 × 64 3D patch. EMMA’s ensemble of different models demonstrated
a good generalization performance winning the BraTS 2017 challenge. Wang
et al. [21] second place paper took a different approach, by training 3 networks
for each tumor subregion in cascade, with each subsequent network taking the
output of the previous network (cropped) as its input. Each network was simi-
lar in structure and consists of a large encoder part (with dilated convolutions)
and a basic decoder. They also decompose the 3 × 3 × 3 convolution kernel into
intra-slice (3 × 3 × 1) and inter-slice (1 × 1 × 3) kernel to save on both the GPU
memory and the computational time.

This year, BraTS 2018 top performing submission (in addition to the current
work) included Isensee et al. [12] in the 2nd place, McKinly et al. [17] and Zhou
et al. [23], who shared the 3rd place. Isensee et al. [12] demonstrated that a
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generic U-net architecture with a few minor modifications is enough to achieve
competitive performance. The authors used a batch size of 2 and a crop size
of 128 × 128 × 128. Furthermore, the authors used an additional training data
from their own institution (which yielded some improvements for the enhancing
tumor dice).

McKinly et al. [17] proposed a segmentation CNN in which a DenseNet [11]
structure with dilated convolutions was embedded in U-net-like network. The
authors also introduce a new loss function, a generalization of binary cross-
entropy, to account for label uncertainty. Finally, Zhou et al. [23] proposed to
use an ensemble of different networks: taking into account multi-scale context
information, segmenting 3 tumor subregions in cascade with a shared backbone
weights and adding an attention block.

Compared to the related works, we use the largest crop size of 160×192×128
but compromise the batch size to be 1 to be able to fit network into the GPU
memory limits. We also output all 3 nested tumor subregions directly after the
sigmoid (instead of using several networks or the softmax over the number of
classes). Finally, we add an additional branch to regularize the shared encoder,
used only during training. We did not use any additional training data and used
only the provided training set.

Fig. 1. Schematic visualization of the network architecture. Input is a four channel
3D MRI crop, followed by initial 3 × 3 × 3 3D convolution with 32 filters. Each green
block is a ResNet-like block with the GroupNorm normalization. The output of the
segmentation decoder has three channels (with the same spatial size as the input)
followed by a sigmoid for segmentation maps of the three tumor subregions (WT, TC,
ET). The VAE branch reconstructs the input image into itself, and is used only during
training to regularize the shared encoder. (Color figure online)
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3 Methods

Our segmentation approach follows encoder-decoder based CNN architecture
with an asymmetrically larger encoder to extract image features and a smaller
decoder to reconstruct the segmentation mask [6,7,9,19,20]. We add an addi-
tional branch to the encoder endpoint to reconstruct the original image, sim-
ilar to auto-encoder architecture. The motivation for using the auto-encoder
branch is to add additional guidance and regularization to the encoder part,
since the training dataset size is limited. We follow the variational auto-encoder
(VAE) approach to better cluster/group the features of the encoder endpoint.
We describe the building parts of our networks in the next subsections (see also
Fig. 1).

3.1 Encoder Part

The encoder part uses ResNet [10] blocks, where each block consists of two
convolutions with normalization and ReLU, followed by additive identity skip
connection. For normalization, we use Group Normalization (GN) [22], which
shows better than BatchNorm performance when batch size is small (bath size
of 1 in our case). We follow a common CNN approach to progressively downsize
image dimensions by 2 and simultaneously increase feature size by 2. For down-
sizing we use strided convolutions. All convolutions are 3 × 3 × 3 with initial
number of filters equal to 32. The encoder endpoint has size 256 × 20 × 24 × 16,
and is 8 times spatially smaller than the input image. We decided against further
downsizing to preserve more spatial content.

3.2 Decoder Part

The decoder structure is similar to the encoder one, but with a single block per
each spatial level. Each decoder level begins with upsizing: reducing the number
of features by a factor of 2 (using 1 × 1 × 1 convolutions) and doubling the
spatial dimension (using 3D bilinear upsampling), followed by an addition of
encoder output of the equivalent spatial level. The end of the decoder has the
same spatial size as the original image, and the number of features equal to the
initial input feature size, followed by 1 × 1 × 1 convolution into 3 channels and
a sigmoid function.

3.3 VAE Part

Starting from the encoder endpoint output, we first reduce the input to a low
dimensional space of 256 (128 to represent mean, and 128 to represent std).
Then, a sample is drawn from the Gaussian distribution with the given mean
and std, and reconstructed into the input image dimensions following the same
architecture as the decoder, except we don’t use the inter-level skip connections
from the encoder here. The VAE part structure is shown in Table 1.
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Table 1. VAE decoder branch structure, where GN stands for group normalization
(with group size of 8), Conv - 3 × 3 × 3 convolution, Conv1 - 1 × 1 × 1 convolution,
AddId - addition of identity/skip connection, UpLinear - 3D linear spatial upsampling,
Dense - fully connected layer

Name Ops Repeat Output size

VD GN, ReLU, Conv (16) stride 2, Dense (256) 1 256 × 1

VDraw Sample ∼ N (μ(128), σ2(128)) 1 128 × 1

VU Dense, ReLU, Conv1, UpLinear 1 256 × 20 × 24 × 16

VUp2 Conv1, UpLinear 1 128 × 40 × 48 × 32

VBlock2 GN, ReLU, Conv, GN, ReLU, Conv, AddId 1 128 × 40 × 48 × 32

VUp1 Conv1, UpLinear 1 64 × 80 × 96 × 64

VBlock1 GN, ReLU, Conv, GN, ReLU, Conv, AddId 1 64 × 80 × 96 × 64

VUp0 Conv1, UpLinear 1 32 × 160 × 192 × 128

VBlock0 GN, ReLU, Conv, GN, ReLU, Conv, AddId 1 32 × 160 × 192 × 128

Vend Conv1 1 4 × 160 × 192 × 128

3.4 Loss

Our loss function consists of 3 terms:

L = Ldice + 0.1 ∗ LL2 + 0.1 ∗ LKL (1)

Ldice is a soft dice loss [19] applied to the decoder output ppred to match the
segmentation mask ptrue:

Ldice =
2 ∗ ∑

ptrue ∗ ppred∑
p2true +

∑
p2pred + ε

(2)

where summation is voxel-wise, and ε is a small constant to avoid zero division.
Since the output of the segmentation decoder has 3 channels (predictions for
each tumor subregion), we simply add the three dice loss functions together.

LL2 is an L2 loss on the VAE branch output Ipred to match the input image
Iinput:

LL2 = ||Iinput − Ipred||22 (3)

LKL is standard VAE penalty term [8,15], a KL divergence between the
estimated normal distribution N (μ, σ2) and a prior distribution N (0, 1), which
has a closed form representation:

LKL =
1
N

∑
μ2 + σ2 − log σ2 − 1 (4)

where N is total number of image voxels. We empirically found a hyper-parameter
weight of 0.1 to provide a good balance between dice and VAE loss terms in Eq. 1.
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3.5 Optimization

We use Adam optimizer with initial learning rate of α0 = 1e−4 and progressively
decrease it according to:

α = α0 ∗
(

1 − e

Ne

)0.9

(5)

where e is an epoch counter, and Ne is a total number of epochs (300 in our
case). We use batch size of 1, and draw input images in random order (ensuring
that each training image is drawn once per epoch).

3.6 Regularization

We use L2 norm regularization on the convolutional kernel parameters with a
weight of 1e − 5. We also use the spatial dropout with a rate of 0.2 after the
initial encoder convolution. We have experimented with other placements of the
dropout (including placing dropout layer after each convolution), but did not
find any additional accuracy improvements.

3.7 Data Preprocessing and Augmentation

We normalize all input images to have zero mean and unit std (based on non-
zero voxels only). We apply a random (per channel) intensity shift (−0.1..0.1 of
image std) and scale (0.9..1.1) on input image channels. We also apply a random
axis mirror flip (for all 3 axes) with a probability 0.5.

4 Results

We implemented our network in Tensorflow [1] and trained it on NVIDIA Tesla
V100 32 GB GPU using BraTS 2018 training dataset (285 cases) without any
additional in-house data. During training we used a random crop of size 160 ×
192× 128, which ensures that most image content remains within the crop area.
We concatenated 4 available 3D MRI modalities into the 4 channel image as
an input. The output of the network is 3 nested tumor subregions (after the
sigmoid).

We report the results of our approach on BraTS 2018 validation (66 cases)
and the testing sets (191 cases). These datasets were provided with unknown
glioma grade and unknown segmentation. We uploaded our segmentation results
to the BraTS 2018 server for evaluation of per class dice, sensitivity, specificity
and Hausdorff distances.

Aside from evaluating a single model, we also applied test time augmentation
(TTA) by mirror flipping the input 3D image axes, and averaged the output of
the resulting 8 flipped segmentation probability maps. Finally, we ensembled a
set of 10 models (trained from scratch) to further improve the performance.
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Fig. 2. A typical segmentation example with true and predicted labels overlaid over
T1c MRI axial, sagittal and coronal slices. The whole tumor (WT) class includes all
visible labels (a union of green, yellow and red labels), the tumor core (TC) class is a
union of red and yellow, and the enhancing tumor core (ET) class is shown in yellow (a
hyperactive tumor part). The predicted segmentation results match the ground truth
well. (Color figure online)

Table 2 shows the results of our model on the BraTS 2018 validation dataset.
At the time of initial short paper submission (Jul 13, 2018), our dice accuracy
performance was second best (team name NVDLMED1) for all of the 3 segmenta-
tion labels (ET, WT, TC). The TTA only marginally improved the performance,
but the ensemble of 10 models resulted in 1% improvement, which is consistent
with the literature results of using ensembles.

For the testing dataset, only a single submission was allowed. Our results are
shown in Table 3, which won the 1st place at BraTS 2018 challenge.

Table 2. BraTS 2018 validation dataset results. Mean Dice and Hausdorff measure-
ments of the proposed segmentation method. EN - enhancing tumor core, WT - whole
tumor, TC - tumor core.

Validation dataset Dice Hausdorff (mm)

ET WT TC ET WT TC

Single model 0.8145 0.9042 0.8596 3.8048 4.4834 8.2777

Single model + TTA 0.8173 0.9068 0.8602 3.8241 4.4117 6.8413

Ensemble of 10 models 0.8233 0.9100 0.8668 3.9257 4.5160 6.8545

1 https://www.cbica.upenn.edu/BraTS18/lboardValidation.html.

https://www.cbica.upenn.edu/BraTS18/lboardValidation.html
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Table 3. BraTS 2018 testing dataset results. Mean Dice and Hausdorff measurements
of the proposed segmentation method. EN - enhancing tumor core, WT - whole tumor,
TC - tumor core.

Testing dataset Dice Hausdorff (mm)

ET WT TC ET WT TC

Ensemble of 10 models 0.7664 0.8839 0.8154 3.7731 5.9044 4.8091

Time-wise, each training epoch (285 cases) on a single GPU (NVIDIA Tesla
V100 32 GB) takes 9 min. Training the model for 300 epochs takes 2 days. We’ve
also trained the model on NVIDIA DGX-1 server (that includes 8 V100 GPUs
interconnected with NVLink); this allowed to train the model in 6 h (7.8x speed
up). The inference time is 0.4 s for a single model on a single V100 GPU.

5 Discussion and Conclusion

In this work, we described a semantic segmentation network for brain tumor
segmentation from multimodal 3D MRIs, which won the BraTS 2018 challenge.
While experimenting with network architectures, we have tried several alterna-
tive approaches. For instance, we have tried a larger batch size of 8 to be able to
use BatchNorm (and take advantage of batch statistics), however due to the GPU
memory limits this modification required to use a smaller image crop size, and
resulted in worse performance. We have also experimented with more sophis-
ticated data augmentation techniques, including random histogram matching,
affine image transforms, and random image filtering, which did not demonstrate
any additional improvements. We have tried several data post-processing tech-
niques to fine tune the segmentation predictions with CRF [14], but did not find
it beneficial (it helped for some images, but made some other image segmenta-
tion results worse). Increasing the network depth further did not improve the
performance, but increasing the network width (the number of features/filters)
consistently improved the results. Using the NVIDIA Volta V100 32 GB GPU
we were able to double the number of features compared to V100 16 GB version.
Finally, the additional VAE branch helped to regularize the shared encoder (in
presence of limited data), which not only improved the performance, but helped
to consistently achieve good training accuracy for any random initialization. Our
BraTS 2018 testing dataset results are 0.7664, 0.8839 and 0.8154 average dice
for enhanced tumor core, whole tumor and tumor core, respectively.
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