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Abstract. Gliomas are the most common primary brain tumors, and
their accurate manual delineation is a time- consuming and very user-
dependent process. Therefore, developing automated techniques for
reproducible detection and segmentation of brain tumors from mag-
netic resonance imaging is a vital research topic. In this paper, we
present a deep learning-powered approach for brain tumor segmenta-
tion which exploits multiple magnetic-resonance modalities and processes
them in two cascaded stages. In both stages, we use multi-modal fully-
convolutional neural nets inspired by U-Nets. The first stage detects
regions of interests, whereas the second stage performs the multi-class
classification. Our experimental study, performed over the newest release
of the BraTS dataset (BraTS 2018) showed that our method delivers
accurate brain-tumor delineation and offers very fast processing—the
total time required to segment one study using our approach amounts
to around 18 s.
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1 Introduction

Gliomas are the most common primary brain tumors in humans. They are char-
acterized by different levels of aggressiveness which directly influences prognosis.
Due to the gliomas’ heterogeneity (in terms of shape and appearance) manifested
in multi-modal magnetic resonance imaging (MRI), their accurate delineation is
an important yet challenging medical image analysis task. However, manual seg-
mentation of such brain tumors is very time-consuming and prone to human
errors. It also lacks reproducibility which adversely affects the effectiveness of
patient’s monitoring, and can ultimately lead to inefficient treatment.

Therefore, automatic brain tumor detection (i.e., which pixels in an input
image are tumorous) and classification (what is a type of a tumor and/or which
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part of a tumor, e.g., edema, non-enhancing solid core, or enhancing structures
a given pixel belongs to; see examples in Fig. 1) from MRI are vital research
topics in the pattern recognition and medical image analysis fields. A very wide
practical applicability of such techniques encompasses computer-aided diagnosis,
prognosis, staging, and monitoring of a patient. In this paper, we propose a
deep learning technique to detect and segment gliomas from MRI in a cascaded
processing pipeline. These gliomas are further segmented into the enhancing
tumor (ET), tumor core (TC), and the whole tumor (WT).

T2-FLAIR T2 T1Gd

Fig. 1. Different parts of a brain tumor (detection is presented in the second row—
green parts show the agreement with a human reader) segmented using the proposed
method (third row) alongside original images (first row): red—peritumoral edema,
yellow—necrotic and non-enhancing tumor core, green—GD-enhancing tumor. (Color
figure online)

1.1 Contribution

The contribution of this work is multi-fold:

– We propose a deep learning technique for detection and segmentation of
brain tumors from MRI. Our deep neural networks (DNNs) are inspired by
the U-Nets [28] with considerable changes to the architecture, and they are
cascaded—the first DNN performs detection, whereas the second segments a
tumor into the enhancing tumor, tumor core, and the whole tumor (Fig. 1).
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– To improve generalization capabilities of our segmentation models, we build
an ensemble of DNNs trained over different folds of a training set, and average
the responses of the base classifiers.

– We show that our approach can be seamlessly applied to the multi-modal
MRI analysis, and allows for introducing separate processing pathways for
each modality.

– We validate our techniques over the newest release of the Brain Tumor Seg-
mentation dataset (BraTS 2018), and show that they provide high-quality
detection and segmentation, and offer instant segmentation.

1.2 Paper Structure

This paper is organized as follows. In Sect. 2, we discuss the current state of the
art in brain-tumor delineation. The proposed deep learning-based techniques
are presented in Sect. 3. The results of our experiments are analyzed in Sect. 4.
Section 5 concludes the paper and highlights the directions of our future work.

2 Related Literature

Approaches for automated brain-tumor delineation can be divided into atlas-
based, unsupervised, supervised, and hybrid techniques (Fig. 2). In the atlas-based
algorithms, manually segmented images (referred to as atlases) are used to seg-
ment incoming (previously unseen) scans [25]. These atlases model the anatom-
ical variability of the brain tissue [22]. Atlas images are extrapolated to new
frames by warping and applying non-rigid registration techniques. An important
drawback of such techniques is the necessity of creating large (and representa-
tive) annotated reference sets. It is time-consuming and error prone in practice,
and may lead to atlases which cannot be applied to other tumors because they
do not encompass certain types of brain tumors [1,6].

Automated delineation of brain tumors from MRI

Atlas-based Unsupervised Supervised Hybrid
[22, 6, 1] [9, 29, 7, 33, 35, 14, 30, 19] [10, 39, 17, 36, 24, 38, 12, 15] [26, 31, 37]

Fig. 2. Automated delineation of brain tumors from MRI—a taxonomy.

Unsupervised algorithms search for hidden structures within unlabeled
data [9,19]. In various meta-heuristic approaches, e.g., in evolutionary algo-
rithms [33], brain segmentation is understood as an optimization problem, in
which pixels (or voxels) of similar characteristics are searched. It is tackled in a
biologically-inspired manner, in which a population of candidate solutions (being
the pixel or voxel labels) evolves in time [7]. Other unsupervised algorithms
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encompass clustering-based techniques [14,29,35], and Gaussian modeling [30].
In supervised techniques, manually segmented image sets are utilized to train a
model. Such algorithms include, among others, decision forests [10,39], condi-
tional random fields [36], support vector machines [17], and extremely random-
ized trees [24].

Deep neural networks, which established the state of the art in a plethora
of image-processing and image-recognition tasks, have been successful in seg-
mentation of different kinds of brain tissue as well [12,16,21] (they very often
require computationally intensive data pre-processing). Holistically nested neu-
ral nets for MRI were introduced in [38]. White matter was segmented in [11],
and convolutional neural networks were applied to segment tumors in [13]. Inter-
estingly, the winning BraTS’17 algorithm used deep neural nets ensembles [15].
However, the authors reported neither training nor inference times of their algo-
rithm which may prevent from using it in clinical practice. Hybrid algorithms
couple together methods from other categories [26,31,37].

We address the aforementioned issues and propose a deep learning algorithm
for automated brain tumor segmentation which exploits a new multi-modal fully-
convolutional neural network based on U-Nets. The experimental evidence (pre-
sented in Sect. 4) obtained over the newest release of the BraTS dataset (BraTS
2018) shows that it can effectively deal with multi-class classification, and it
delivers high-quality tumor segmentation in real time.

3 Methods

In this work, we propose an algorithm which utilizes cascaded U-Net-based deep
neural networks for detecting and segmenting brain tumors. Our approach for
this task is driven by an assumption that the most salient features of a lesion
are not contained in a single image modality.

There are multiple ways to exploit all the modalities in deep learning-based
engines. One way is to store three (or four) modalities as channels of a single
image, like RGB (RGBA), and process it as a standard color image. Although
this approach has a significant downside—only the first layer (which extracts
the most basic features) has access to the modalities as separate inputs, it can
be successfully applied to easier computer-vision and image-processing tasks.
Consecutive layers in the network process the outputs of the previous layers—a
mix of features from all the modalities.

Hu and Xia processed each modality separately, and merged them at the
very end of the processing chain to produce the final segmentation mask, to
fully benefit from information manifested in each modality [8]. In this work, we
combine both techniques—we use merged modalities for brain-tumor detection,
and separate processing pathways for further segmentation of a tumor.
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3.1 Detection of Brain Tumors from MRI

The first stage of our image analysis approach involves taking the whole image
as an input (i.e., different modalities are stacked together as the channels of
an image), and producing a binary mask of the region of interest (therefore, it
performs detection of a tumor). This binary mask is used to select the voxels of all
modalities from the original images (rendering remaining pixels as background).
This region is passed to the segmentation unit by the U-Net in the second stage
for the final multi-class segmentation.

The architecture of our DNN used for detection is visualized in Fig. 3 (note
that we present multiple processing pathways which are exploited in segmen-
tation; for detection, only one pathway is used, and the sigmoid function was
applied as the non-linearity). The DNN prediction is binarized using a thresh-
old Tb . The binary mask is post-processed using the 3D connected components
analysis—the size of connected components is calculated, and the one with the
largest volumes remains. If the next (second) largest connected component is
at least Tcc (in %) of the volume of the largest, it is kept as well. The binary
masks resulting from the first stage are used to produce input to the second
stage. More details on the architecture of our deep network itself are presented
in the following subsection.

3.2 Segmentation of Detected Brain Tumors

Our DNN for brain tumor segmentation separates processing pathways and
merges them at the very bottom of the network, where the feature space is
compacted the most, and at each bridged connection (Fig. 3). By doing that, we
assure that the low- and high-level features are extracted separately for all modal-
ities in the contracting path. Those features can “interact” with each other in the
expanding path, producing high-quality segmentations. Our preliminary experi-
ments showed that the pre-contrast T1 modality carries the smallest amount of
information, therefore in order to reduce the amount of segmentation time and
resources (to make our method easily applicable in a real-life clinical setting), we
did not use that modality in our pipeline. However, the proposed U-Net-based
architecture is fairly flexible and allows for using any number of input modalities.

Our models are based on a well-known U-Net [28], with considerable changes
to the architecture. First, there are separate pathways for each modality, effec-
tively making three contracting paths. In the original architecture the number
of filters was doubled at each down-block, whereas in our model it is constant
everywhere, except in the very bottom part of the network (where the concatena-
tion and merging of the paths takes place) where it is doubled. The down-block
in our model consists of three convolutional layers (48 filters of the size 3 × 3
each, with stride 1). The second alteration to the original U-Net are the bridged
connections, which join (concatenate) activations from each pathway of the con-
tracting paths with their corresponding activations from the expanding path,
where they become merged. This procedure allows the DNN to extract high-
level features while preserving the context stored earlier. The expanding path is



18 M. Marcinkiewicz et al.

Down block Up block Merge block 

2402 

1202 

602 

302 

T2-FLAIR T2 T1Gd

Fig. 3. The proposed deep neural network architecture. Three separate pathways
(e.g., for FLAIR, T1c, and T2) are shown as a part of the contractive path. At each
level (each set of down blocks) the output is concatenated and sent to a corresponding
up block. At the bottom, there is a merging block, where all the features are merged
before entering the expanding path. The output layer is a 1 × 1 convolution with one
filter for the first stage (detection), and three filters for the second stage (segmentation).

standard—each up-block doubles the size of an activation map by the upsam-
pling procedure, which is followed by two convolutions (48 filters of 3 × 3 size
each, with stride 1). In the last layer, there is a 1 × 1 convolution with 1 filter in
the detection, and 3 filters in the multi-class classification stages, respectively.

The output of the second stage is an activation map of the size Iw × Ih × 3,
where the last dimension represents the number of classes, and Iw and Ih are
the image width and height, respectively. The activation is then passed through
a softmax operation, which performs the final multi-class classification.

4 Experimental Validation

4.1 Data

The Brain Tumor Segmentation (BraTS) dataset [2–5,20] encompasses MRI-
DCE data of 285 patients with diagnosed gliomas—210 high-grade glioblastomas
(HGG), and 75 low-grade gliomas (LGG). Each study was manually annotated
by one to four experienced readers. The data comes in four co-registered modal-
ities: native pre-contrast (T1), post-contrast T1-weighted (T1c), T2-weighted
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(T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR). All the pixels have
one of four labels attached: healthy tissue, Gd-enhancing tumor (ET), peritu-
moral edema (ED), the necrotic and non-enhancing tumor core (NCR/NET).

The data was acquired with different clinical protocols, various scanners, and
at 19 institutions, therefore the pixel intensity distribution may vary significantly.
The studies were interpolated to the same shape (240 × 240× 155, hence 155
images of 240 × 240 size, with voxel size 1 mm3), and they were pre-processed
(skull-stripping was applied). Overall, there are 285 patients in the training set
T (210 HGG, 75 LGG), 66 patients in the validation set V (without ground-
truth data provided by the BraTS 2018 organizers), and 191 in the test set Ψ
(unseen data used for the final verification of the trained models).

4.2 Experimental Setup

The DNN models were implemented using Python3 with the Keras library over
CUDA 9.0 and CuDNN 5.1. The experiments were run on a machine equipped
with an Intel i7-6850K (15 MB Cache, 3.80 GHz) CPU with 32 GB RAM and
NVIDIA GTX Titan X GPU with 12 GB VRAM. The training metric was the
DICE score for both stages (detection and segmentation), which is calculated as

DICE(A,B) =
2 · |A ∩ B|
|A| + |B| , (1)

where A and B are two segmentations, i.e., manual and automated. DICE ranges
from zero to one (one is the perfect score). The optimizer was Nadam (Adam
with Nesterov momentum) with the initial learning rate 10−5, and the optimizer
parameters: β1 = 0.9, β2 = 0.999. The training ran until DICE over the valida-
tion set did not increase by at least 0.002 in 10 epochs. The training time for
one epoch is around 10 min (similar for both stages). The networks converges
in around 20–30 epochs (the complete training for each fold takes 7–8 h). For
detection, we used the manually-tuned thresholds: Tb = 0.5, and Tcc = 20%.

Both networks are relatively small, which directly translates to the low com-
putational requirements during inference—one volume can be processed and
classified end-to-end within around 5 s. To exploit the training set completely,
and still be able to use validation subset to avoid over-fitting, the final predic-
tion was performed with an ensemble of five models trained on different folds of
the training set (we followed the 5-fold cross-validation setting over the training
set). Using an ensemble of five models (and averaging their outputs to elaborate
the final prediction) was shown to improve the performance, while extending the
inference time to around 18 s per full volume.

4.3 Experimental Results

In Table 1, we gather the results (DICE) obtained over the training and vali-
dation BraTS 2018 datasets (in the 5-fold cross-validation setting). The whole
tumor class represents the performance of the first stage of our classification
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system (evaluated on all the classes merged into one—exactly as the first stage
model is trained). Here, we report the average DICE for 5 non-overlapping folds
of the training set T , and the final DICE for validation V , and test Ψ sets
obtained using the ensembles of 5 base deep classifiers learned using training
examples belonging to different folds. Note that the ground-truth data (pixel
labels) for V and Ψ were not known to the participants during the BraTS 2018
challenge, hence they could not be exploited to improve the models.

Table 1. Segmentation performance (DICE) over the BraTS 2018 validation set
obtained using our DNNs trained with T1c, T2, and FLAIR images. The scores are
presented for whole tumor (WT), tumor core (TC), and enhancing tumor (ET) classes.
For the training set, we report the average across 5 non-overlapping folds, whereas for
the validation set—the results reported automatically by the BraTS competition server
(for validation, we used an ensemble of 5 DNNs trained over different folds).

Dataset Label DICE Sensitivity Specificity

Training ET 0.7365 0.8483 0.9981

WT 0.9268 0.9239 0.9956

TC 0.8779 0.8891 0.9973

Validation ET 0.7519 0.8373 0.9972

WT 0.8980 0.9096 0.9935

TC 0.8118 0.8142 0.9974

The results show that an ensemble of DNNs manifests fairly good generaliza-
tion capabilities over the unseen data, and it consistently obtains high-quality
classification. Interestingly, we did not use any data augmentation techniques in
our approach (which can be perceived as an implicit regularization), and even
without increasing the size and heterogeneity of the training data, the ensembles
were able to accurately delineate brain tumors in unseen scans. It also indicates
that data augmentation could potentially further improve the capabilities (both
detection and segmentation) of our deep models by providing a large number
of artificially created (but visually plausible and anatomically correct) training
examples generated using the original T .

In Table 2, we gather the results obtained over the unseen test set Ψ—we
report not only DICE, but also the Hausdorff distance (HD) given as

HD(A,B) = max (h(A,B), h(B,A)) , (2)

where h(A,B) is the directed Hausdorff distance:

h(A,B) = max
a∈A

min
b∈B

||a − b|| , (3)

and ||·|| is a norm operation (e.g., Euclidean distance) [32]. It can be noted
that this metric is quite sensitive to outliers (the lower HD, the higher quality
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Table 2. The results reported for the unseen test set Ψ show that our models can gen-
eralize fairly well over the unseen data (however, the results are worse when compared
to the validation set). We report DICE alongside the Hausdorff distance (HD).

Measure DICE (ET) DICE (WT) DICE (TC) HD (ET) HD (WT) HD (TC)

Mean 0.6493 0.8590 0.7342 7.3117 9.5128 11.5729

Std dev. 0.3021 0.1272 0.2604 12.8380 16.1665 15.1306

Median 0.7770 0.8983 0.8332 3.0000 4.1231 7.3485

25 quantile 0.6023 0.8376 0.6877 2.0000 2.4495 3.4783

75 quantile 0.8423 0.9299 0.9010 5.0500 7.8717 13.9277

segmentation we have in terms of contour similarity). The results show that our
deep-network ensemble can generalize quite well over the unseen data, however
the DICE values are slightly lowered when compared to the validation set. We
can attribute it to the heterogeneity of the testing data (as mentioned earlier,
we did not apply any data augmentation to increase the representativeness of
the training set). Interestingly, the whole-tumor segmentation remained at the
very same level (see DICE in Table 2), and our method delivered high-quality
whole-tumor delineation (we can observe the highest decrease of accuracy for the
enhancing part of a tumor, and it amounts to more than 0.08 DICE on average).
It also leads us to the conclusion that for tumor segmentation (differentiating
between different parts of a lesion), the deep models require larger and more
diverse sets (perhaps due to subtle tissue differences which cannot be learnt from
a limited number of brain-tumor examples) and potentially better regularization.

5 Conclusions

In this paper, we presented an approach for effective detection and segmenta-
tion (into different parts of a tumor) of brain lesions from magnetic resonance
images which exploits cascaded multi-modal fully-convolutional neural networks
inspired by the U-Net architecture. The first deep network in our pipeline per-
forms tumor detection, whereas the second—multi-class tumor segmentation.
We cross-validated the proposed technique (in the 5-fold cross-validation setting)
over the newest release of the BraTS dataset (BraTS 2018), and the experimental
results showed that:

– Our cascaded multi-modal U-Nets deliver accurate segmentation, and ensem-
bling the models (and averaging the response of base classifiers) trained across
separate folds allows us to build the final model which generalizes well over
the unseen testing data.

– We showed that our networks can be trained fairly fast (7–8 h using 1 GPU),
and deliver real-time inference (around 18 s per volume).

– We showed that our models can be seamlessly applied to both two- and multi-
class classification (i.e., tumor detection and segmentation, respectively).
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Our current research is focused on applying our techniques to different organs
and modalities (e.g., lung PET/CT imaging [23]), and developing data augmen-
tation approaches for medical images. Such algorithms (which ideally generate
artificial but visually plausible and realistic images) can be perceived as implicit
regularizers which help improve the performance of models over the unseen data
by introducing new examples into a training set [18,27,34].
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