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Abstract. This paper proposes, in the context of brain tumor study, a
fast automatic method that segments tumors and predicts patient overall
survival. The segmentation stage is implemented using a fully convolu-
tional network based on VGG-16, pre-trained on ImageNet for natu-
ral image classification, and fine tuned with the training dataset of the
MICCAI 2018 BraTS Challenge. It relies on the “pseudo-3D” method
published at ICIP 2017, which allows for segmenting objects from 2D
color-like images which contain 3D information of MRI volumes. With
such a technique, the segmentation of a 3D volume takes only a few
seconds. The prediction stage is implemented using Random Forests. It
only requires a predicted segmentation of the tumor and a homemade
atlas. Its simplicity allows to train it with very few examples and it can
be used after any segmentation process. The presented method won the
second place of the MICCAI 2018 BraTS Challenge for the overall sur-
vival prediction task. A Docker image is publicly available on https://
www.lrde.epita.fr/wiki/NeoBrainSeg.
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1 Introduction

Gliomas are the most common brain tumors in adults, growing from glial cells
and invading the surrounding tissues [9]. Two classes of tumors are observed.
The patients with the more aggressive ones, classified as high-grade gliomas
(HGG), have a median overall survival of two years or less and imply immedi-
ate treatment [13,16]. The less aggressive ones, the low-grade gliomas (LGG),
allow an overall survival of several years, with no need of immediate treatment.
Multimodal magnetic resonance imaging (MRI) helps practitioners to evaluate
the degree of the disease, its evolution and the response to treatment. Images
are analyzed based on qualitative or quantitative measures of the lesion [8,21].
Developing automated brain tumor segmentation techniques that are able to
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analyze these tumors is challenging, because of the highly heterogeneous appear-
ance and shapes of these lesions. Manual segmentations by experts can also be
a challenging task, as they show significant variations in some cases. During
the past 20 years, different algorithms for segmentation of tumor structures has
been developed and reviewed [1,6,7]. A fair comparison of those implies a bench-
mark based on the same dataset, and MICCAI BraTS Challenges [15] serve this
purpose.

The work we present here has been done in the context of the MICCAI 2018
Multimodal Brain Tumor Segmentation Challenge (BraTS)1. The goal of the
challenge was to provide a fully automated pipeline for the segmentation of the
glioma from multi modal MRI scans without any manual assistance and to pre-
dict the patient overall survival. Despite the relevance of glioma segmentation,
this task is challenging due to the high heterogeneity of tumors. The develop-
ment of an algorithm that can perform fully automatic glioma segmentation and
overall prediction of survival would be an important improvement for patients
and practitioners. A review and results of the 2018 Challenge can be found in [5].

During the challenge, multiple datasets were provided with different volumes
(T1, T1ce, T2 and FLAIR):

– a training dataset of 285 patients preprocessed and with ground truth anno-
tated [2–4],

– a dataset without public ground truth but with the possibility to evaluate
online our method and obtain preliminary results,

– a final dataset without ground truth, used to rank the participants.

Our contribution is composed of two independent modules: one for tumor seg-
mentation and one for survival time prediction. The tumor segmentation module
(Sect. 2.1) blends ideas from two previous publications. It first builds on a work
published in the IEEE Intl. Conf. on Image Processing (ICIP) in 2017 [22], which
proposed to segment 3D brain MR volumes using fully convolutional network
(FCN). It leveraged transfer learning thanks to a VGG network [18] pre-trained
on the ImageNet dataset and later fine-tuned on the training set of the chal-
lenge. Its input were 2D color-like images composed of 3 consecutive slices of the
3D volume (see Fig. 1). This method used only one modality, and reached good
results for brain segmentation with a decent speed. Based on this architecture,
we incorporated the ideas of [24] which reused this architecture to take slices
from several modalities as input. Our final segmentation solution provides spe-
cially designed pre- and post-processing dedicated to the challenge and makes
use of both local 3D and multi-modal information. The survival prediction mod-
ule (Sect. 2.2) we introduce here is based on Random Forests and relies on a
very light training to cope with the limited amount of examples available in the
challenge. Despite its apparent simplicity, it provides a reasonable survival time
estimate as reported in the results (Sect. 3).

1 https://www.med.upenn.edu/sbia/brats2018.html.

https://www.med.upenn.edu/sbia/brats2018.html
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Fig. 1. Illustration of 3D-like color image and associated segmentation used in [22].
(Color figure online)

2 Method

This section describes the method we submitted to the MICCAI 2018 Mul-
timodal Brain Tumor Segmentation Challenge (BraTS). As it was previously
mentioned, it is composed of a tumor segmentation module and a survival pre-
diction module, mapping the two tasks of the challenge.

2.1 Tumor Segmentation

An overview of the proposed segmentation method is given in Fig. 2. The method
is fully automatic, and takes pseudo-3D images as input. It is really fast as about
10 s are needed to process a complete volume with a GPU-equipped machine.
It consists in three sub-stages: a data pre-processing, a deep network inference,
and a segmentation post-processing.

Pre-processing. We first normalize the input data to fit in the range imposed
by the original network (before fine tuning). Let n,m be respectively the mini-
mum non-null and maximum gray-level value of the histogram. We requantize all
voxel values using a linear function so that the gray-level range [n,m] is mapped
to [−127, 127].

Then, as our inference network processes 2D color-like images (3 channels
of 2D slices), the question amounts to how to prepare appropriate inputs given
that a brain MR image is a 3D volume. Our second step is therefore to stack
successive 2D slices: for each nth slice of the volume to segment, we consider
three images corresponding to the (n − 1)th, nth, and (n + 1)th slices of the
original volume. These three gray-level 2D images are assembled to form a 2D
color-like image (one image per channel). Each 2D color-like image thus forms a
representation of a part (a small volume) of the MR volume. This image is the
input of the FCN to obtain a 2D segmentation of the nth slice. This process is
depicted in Fig. 2 (left).

To combine information from different modalities, we complete this process.
The nth slice is taken from one modality and its (n − 1)th and (n + 1)th from
another one. This combination brings not only 3D information but also multi-
modality information. Figure 3 illustrates this variant.
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Fig. 2. Architecture of the proposed network. We fine tune it and combine linearly
fine to coarse feature maps of the pre-trained VGG network [18]. Note that each input
color image is built from the slice n and its neighboring slices n− 1 and n + 1. (Color
figure online)

Deep FCN for Tumor Segmentation. Fully convolutional network (FCN)
and transfer learning has proved their efficiency for natural image segmenta-
tion [12]. In a previous work, Xu et al. [22] proposed to rely on a FCN and
transfer learning to segment 3D brain MR images, although those images are
very different from natural images. As it was a success, we adapted it to glioma
segmentation. We rely on the 16-layer VGG network [18], which was pre-trained
on millions of natural images from ImageNet for image classification [11]. For
our application, we keep only the 4 stages of convolutional parts called “base
network”, and we discard the fully connected layers at the end of VGG network.
This base network is mainly composed of convolutional layers, Rectified Linear
Unit (ReLU) layers for non-linear activation function, and max-pooling layers
between two successive stages. The three max-pooling layers divide the base
network into four stages of fine to coarse feature maps. Inspired by the works
in [12,14], we add specialized convolutional layers (with a 3×3 kernel size) with
K (e.g. K = 16) feature maps after the convolutional layers at the end of each
stage. All the specialized layers are then rescaled to the original image size, and
concatenated together. We add a last convolutional layer with kernel size 1 × 1
at the end. This last layer combine linearly the fine to coarse feature maps in
the concatenated specialized layers, and provide the final segmentation result.
The proposed network architecture is illustrated in Fig. 2. This architecture is
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(a) Slice n − 1 of
T1CE → red

(b) Slice n of T2 →
green

(c) Slice n + 1 of
T1CE → blue

(d) 2D color-like
image for the nth

slice

Fig. 3. Three successive slices (a–c) are used to build a 2D color-like image (d) from
for example T1CE and T2 images. (Color figure online)

also very similar with the one used in [14] for retinal image analysis, where the
retinal images are already 2D color-like images. Using such a 2D representation
avoids the expensive computational and memory requirements of fully 3D FCN.

For the training phase, we use the multinomial logistic loss function for a one-
of-many classification task, passing real-valued predictions through a softmax to
get a probability distribution over classes. During training, we use the classical
data augmentation strategy by scaling and rotating. We rely on the ADAM
optimization procedure [10] (AMSGrad variant [17]) to minimize the loss of the
network. The relevant parameters of the methods are the following: the learning
rate is set to 0.002 (we did not use learning rate decay), the beta 1 and beta 2
are respectively set to 0.9 and 0.999, and we use a fuzz factor (epsilon) of 0.001.

At test time, after having pre-processed the 3D volume, we prepare the set
of 2D color-like images and pass every image through the network. We run the
train and test phase on an NVIDIA GPU. The testing one lasts less than 10 s
for a complete volume.

Post-processing. The output of the network for one slice during the inference
phase is a 2D segmented slice. After treating all the slices of the volume, all the
segmented slices are stacked to recover a 3D volume with the same shape as the
initial volume, and containing only the segmented lesions.

This segmentation procedure is repeated three times as we slice the initial
volume three times (along the three axis). We get three different segmentations
and we merge them to get the final segmentation by a majority voting procedure.

Then, as a final step, we regularize the segmented volumes using a morpho-
logical closing to fill small holes lying within tumor regions.

2.2 Patient Survival Prediction

The second task of the MICCAI 2018 BraTS challenge is concerned with the
prediction of patient overall survival from pre-operative scans (only for subjects
with gross total resection (GTR) status). Note that, to comply with the evalu-
ation framework, the classification procedure is conducted by labeling subjects
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(a)

/ left/right frontal lobe
/ left/rightpartietal lobe
/ left/right temporal lobe
/ left/right occipital lobe
/ left/right cerebellum

(b) (c)

Fig. 4. (a) Sagittal and (c) axial slices from the T2 modality of a brain and (b) corre-
sponding rescaled brain atlas.

necrosis

edema

active tumor

Fig. 5. T2 slice (left) and corresponding atlas slice (right) with segmented tumor
overlaid. (Color figure online)

into three classes: short-survivors (less than 10 months), mid-survivors (between
10 and 15 months) and long-survivors (greater than 15 months).

Definition and Extraction of Relevant Features. The first step of the
prediction task is the definition and extraction of relevant features impacting the
survival of patients. Beside the patient age, we decided to focus on the tumor
size and its localization within the brain. More specifically, we denote by Si

the segmented volume predicted by our Deep FCN architecture, as described in
Sect. 2.1 for the ith patient. Voxels in Si are labeled by 1, 2 and 4 (corresponding
to , and in Fig. 5, respectively), depending whether they were classified
as necrosis, edema or active tumor, respectively.

Thus, we define the relative size of each class in Si with respect to the total
brain size (the number of non-zero voxels in the patient T2 modality) as the
features related to the tumor size.

In order to describe the tumor position, we created a crude brain atlas divided
in 10 regions accounting for the frontal, parietal, temporal and occipital lobes
and the cerebellum for each hemisphere, as displayed by Fig. 4(b). The 3D atlas
was first shaped to the average bounding box dimensions of all patients with
GTR status, i.e. 170 × 140 × 140 pixels. It is then adjusted to each patient
bounding box dimensions by nearest-neighbors interpolation, and finally masked
by all non-zero voxels in the patient T2 modality. Finally, we retrieve the centroid
coordinates of the region within the atlas that is affected the most by the necrosis
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Fig. 6. (a) Training and (b) test procedures. The stored information after the training
phase is encircled in dashed red in the training workflow (a). (Color figure online)

(i.e., the region that has the most voxels labeled as necrosis in Si with respect to
its own size) relatively to the brain bounding box as well as the relative centroid
coordinates of the necrosis + active tumor and defined those as the relevant
features accounting for the tumor position.

In summary, each patient is defined by the following 6 criteria:

1. the patient age.
2. the relative size of necrosis with respect to brain size.
3. the relative size of edema with respect to brain size.
4. the relative size of active tumor with respect to brain size.
5. the relative centroid coordinates of the region in the atlas that is the most

affected by necrosis with respect to the brain bounding box.
6. the relative centroid coordinates of the binarized tumor (only considering

necrosis and active tumor) with respect to the brain bounding box.

This leads to a total of 10 features per patient (since both centroids coordi-
nates are 3-dimensional).

Training Phase. For the training phase, we first extract the feature vector
xi ∈ R

10 of each of the N patients in the training set (with N = 59), as described
in Sect. 2.2 above. All those feature vectors are stacked in a N × 10 feature
matrix Xtrain on which a principal component analysis (PCA) is performed.
The feature-wise mean mPCA and standard deviation σPCA vectors computed
during the scaling phase of the PCA, as well as the projection matrix VPCA are
stored for further use. Finally, the PCA output is normalized again, yielding the
N × 10 matrix Ytrain. Finally, we train NRF random forest (RF) classifiers [20]
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on all rows of Ytrain, using the true label vector ylabel as target values, and store
those RFs. The whole training phase is depicted by the workflow in Fig. 6(a).
Each RF is composed of 10 decision trees, for which splits are performed using
3 features randomly selected among the 10 available, and based on the Gini
impurity criterion [19]. Here, we arbitrary fixed NRF = 50 in order to account
for the stochastic behavior of RF classifiers.

Test Phase. The test phase is summarized by the workflow in Fig. 6(b). Fea-
tures are computed in a similar manner for a patient belonging to the test data
set as they are for the training set. The feature vector xtest is then normal-
ized using mPCA and σPCA and further projected in the PC space with VPCA,
learned during the PCA step of the training stage. The resulting vector ytest

is then fed to the NRF RF classifiers, leading to NRF independent class label
predictions. The final label prediction ypred (1, 2 and 3 for short-, mid- and
long-survivors, respectively) is eventually obtained by majority voting.

3 Setup and Results

This section presents the setup of the experiments and results obtained during
the development of our method (using the training dataset), and the final ranking
during the challenge.

3.1 Setup and Experiments for Tumor Segmentation

In this part, we used only the training scans provided during the challenge.

Modalities. Instead of using only one modality to form the pseudo-3D color
images (the input of the network), we formed multi-modality pseudo-3D images
using T1ce and T2 modalities: for each slice n, we combined the slice n of T2
with the slices n − 1 and n + 1 from T1ce.

Axis and Combination. Our method deals with 2D color-like images that are
pseudo-3D. To take advantage of the entire volume, we associated three networks,
each network being trained on a particular axis (axial, sagittal and coronal), and
combined their results to obtain the final segmentation. We trained 3 networks,
one for each axis. The inference was done according to the axis, so for one volume
we obtained 3 segmentation. These segmentations are then combined: for each
voxel, the final segmentation is the result of the majority voting procedure.

Training and Testing. To train our model we select randomly 90% of scans
from Brats challenge training dataset. The model was trained using the param-
eters described in the Sect. 2.1. We tested on the 10% remaining scans.
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3.2 Results

Tumor Segmentation. The results on the training dataset evaluate to a dice
of 0.82 for the whole tumor segmentation (evaluation on 10% of the training set).
More precisely, we obtained for the 3 classes: 0.6 for the GD-enhancing tumor,
0.63 for the peritumoral edema, and 0.56 for the necrotic and non-enhancing
tumor core. We did not achieved a good ranking during the challenge for this
task. Precise results can be found in [5].

Survival Time Prediction. For the survival prediction task we obtained an
accuracy of 0.54 on the training dataset. During the challenge, we obtained an
accuracy of 0.61. This allowed us to reach the 2nd place of the challenge for
the survival prediction task.

3.3 Discussion

The prediction task is the final aim of the entire pipeline. The segmentation task
is a basis for the prediction task but is not a finality. We developed the prediction
procedure using the ground truth segmentations, so that our prediction method
is independent from our segmentation method. We can notice that the prediction
procedure can deal with precise segmentations (i.e. ground truth segmentations)
and coarser ones (such as our segmentation results).

This is the main advantage of our prediction method as it does not require a
lot of data: it relies on a coarse segmentation and a brain atlas. Simple descriptors
are extracted to perform the prediction. A strong point which differentiates our
method from others is that our method does not rely on a specific modality to
work: the method relies on a segmentation result, regardless of how it has been
obtained, and not directly on a modality. It can be used without the constraints
of working on one modality or an other. Furthermore the segmentation does not
need to be precise to permits the prediction as illustrated by our results during
the challenge.

4 Conclusion

We proposed in this article a method to first segment glioma in few seconds based
on transfer learning from VGG-16, a pre-trained network used to classify natural
images, and then to predict the survival time of the patients. This segmentation
method takes the advantage of keeping 3D information of the MRI volume and
the speed of processing only 2D images, thanks to the pseudo-3D concept while
the prediction method uses only a segmentation result and a homemade brain
atlas.

This method can also deal with multi-modality, and can be applied to other
segmentation problems, such as in [24], where a similar method is proposed to
segment white matter hyperintensities, but pseudo-3D has been replaced by an
association of multimodality and mathematical morphology pre-processing to
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improve the detection of small lesions. Hence, we might also try to modify our
inputs thanks to some highly non-linear filtering to help the network segment
tumors, precisely some mathematical morphology operators [23].

The strength of this method is its modularity and its simplicity. It is easy to
implement, fast, and does not need a huge amount of annotated data for training
(in the work on brain segmentation [22], there is only 2 images for training for
some cases).

From a segmentation result, we introduced a simple and efficient method
to predict the patient overall survival, based on Random Forests. This method
only needs as input a segmentation, a brain atlas and a brain volume for atlas
registration. This method is not only fast; it is also easy to train with few samples
and can be used after any tumor segmentation module.

Finally, we made a Docker image of the overall method publicly available at
https://www.lrde.epita.fr/wiki/NeoBrainSeg.
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