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Abstract. Deep learning based techniques have shown to be beneficial
for automating various medical image tasks like segmentation of lesions
and automation of disease diagnosis. In this work, we demonstrate the
utility of deep learning and radiomics features for classification of low
grade gliomas (LGG) into astrocytoma and oligodendroglioma. In this
study the objective is to use whole-slide H&E stained images and Mag-
netic Resonance (MR) images of the brain to make a prediction about the
class of the glioma. We treat both the pathology and radiology datasets
separately for in-depth analysis and then combine the predictions made
by the individual models to get the final class label for a patient. The pre-
processing of the whole slide images involved region of interest detection,
stain normalization and patch extraction. An autoencoder was trained
to extract features from each patch and these features are then used to
find anomaly patches among the entire set of patches for a single Whole
Slide Image. These anomaly patches from all the training slides form
the dataset for training the classification model. A deep neural network
based classification model was used to classify individual patches among
the two classes. For the radiology dataset based analysis, each MRI scan
was fed into a pre-processing pipeline which involved skull-stripping, co-
registration of MR sequences to T1c, re-sampling of MR volumes to
isotropic voxels and segmentation of brain lesion. The lesions in the MR
volumes were automatically segmented using a fully convolutional Neural
Network (CNN) trained on BraTS-2018 segmentation challenge dataset.
From the segmentation maps 64× 64× 64 cube patches centered around
the tumor were extracted from the T1 MR images for extraction of high
level radiomic features. These features were then used to train a logistic
regression classifier. After developing the two models, we used a con-
fidence based prediction methodology to get the final class labels for
each patient. This combined approach achieved a classification accuracy
of 90% on the challenge test set (n = 20). These results showcase the
emerging role of deep learning and radiomics in analyzing whole-slide
images and MR scans for lesion characterization.
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1 Introduction

1.1 Medical Image Analysis for LGG Classification

Medical imaging techniques like Magnetic Resonance Imaging (MRI) is used for
detection and assessment of the abnormalities inside the body. The non-invasive
and non-ionizing property of the MRI make them suitable for oncology imaging
studies such as brain tumors. In addition to MR images, the gold standard
for tumor assessment and grading usually employ whole-slide imaging of tissue
biopsy under a microscope for assessing at cellular level. The assessment of these
medical images are mostly done by visual inspection of trained radiologist or
a pathologist. However, manual inspection of vast amounts of data is usually
error prone, time consuming and introduces inter-rater variability. Hence, several
research communities in medical image analysis are continuously working on
developing methods to automate tasks such as segmentation and quantification
of medical images.

Gliomas are one of the leading cause of brain cancer and usually associated
with poor prognosis and lesser survival rates. The gold standard for grading of
gliomas is mostly based on the pathology reports got from tissue biopsies. In,
this work we propose a methodology of classification of Gliomas into Astrocy-
tomas and Oligodendrogliomas based on MR images of the brain using radiomic
features localized to segmented tumor from the T1 MR image. We also propose
a methodology of refining the lower-confidence predictions from model based
on MR images by combining the model’s predictions with whole-slide image
analysis.

2 Datasets Used

The dataset comprised of Radiology and Histopathology slides from 30 different
patients. The dataset was equally distributed for the two classes of tumor-namely
Astrocytoma and Oligodendroglioma. The Radiology data for each patient con-
sisted of FLAIR, T1, T1C, T2 MR sequences. FLAIR and T2 sequences were
missing in four cases provided, hence they were not included in the training set
as our segmentation model required all the 4 MR sequences. The pathology data
consisted of single whole-slide images for each of the 30 patients.

3 Histopathology Approach

3.1 Preprocessing

The pathology dataset contained 30 wholeslide images each for a single patient.
Each pathology slide for a given patient was a large scale image typically span-
ning across 10–50k pixels across each of the 2 dimensions. A single pathology
slide was acquired in multiple scales of resolution. The whole slide image (WSI)
contained large areas of white space irrelevant for the training process. The first
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step in our pathology analysis was finding the Regions of Interest (RoI) in a
WSI. The WSI was converted from RGB colorspace to HSV colorspace for bet-
ter contrast enhancement. The lower and upper thresholds were applied on the
pixel values to get binary masks from the WSI (Fig. 1).

Fig. 1. Finding the region of interest (RoI) from the Whole Slide Image

On the generated binary mask, morphological closing and opening operations
were applied to fill small holes and remove scattered foreground pixels (of size
less than 3× 3) from the foreground pixels. From the processed binary masks,
bounding boxes around all the discrete contours (each contour encompasses a
connected region of tissue in the RoI) were obtained. The generated bounding
boxes served as a blueprint for the patch extraction process.

From each of the WSIs, patches of size 224× 224 were extracted from the
entire RoI with a stride of (224, 224) in both dimensions. To limit the number
of patches from a slide, the maximum number of patches from a bounding box
were limited to 2k.

We observed that the color intensity variation of WSI across different cases
in the dataset was huge and hence stain normalization technique proposed by
Reinhard et al. (2001) was employed to obtain uniform patches across multiple
whole-slides. This method works by transferring an image from RGB space to
a lαβ color space where the correlation between the different color axes is mini-
mal, hence transformation in color channels can be applied independently, with-
out having any undesirable cross channel artifacts. The normalization technique
ensured that the extracted patches from different WSIs had minimal variation
in intensity (Figs. 2 and 3).

Fig. 2. Stain normalization for getting uniform colour intensity patterns across different
slides
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Fig. 3. Patch extraction from the Whole Slide Image followed by stain normalization

3.2 Feature Extraction and Anomaly Detection

Due to the presence of similar normal regions in the WSIs of the two classes,
it was important to remove such patches which potentially came from regions
that were non-tumour. To find out potential tumor patches, it was essential to
obtain a good feature representation for each patch. Autoencoders are employed
for extracting features from unlabelled data. We use an autoencoder based app-
roach to extract features from each patch. We train an autoencoder using all
the patches extracted from each of the slides. The autoencoder has five convo-
lutional layers to downsample a patch followed by a single fully connected layer
in the middle and again five convolutional layers to upsample the patch back to
its original size. The central fully connected layer has 128 nodes giving a feature
vector of size 128× 1 for each patch. We use pixel wise reconstruction loss to
train this autoencoder (Table 1).

After obtaining the feature vectors for each patch in a given Whole Slide
Image, it was required to find a subset of these patches which can contain poten-
tial tumor regions. We treated the task of finding this subset as the problem of
anomaly detection, where the tumor (anomaly) patches were required to be fil-
tered out from the entire set of patches. We used the Isolation Forest Liu et al.
(2008) technique to perform the task of anomaly detection. Isolation forest uses
the feature vector representation of all patches from a WSI image and isolates
anomaly patches based on the these features in a two stage process. The first
stage builds isolation trees (random decision trees) and in the second stage,
test instances are passed through the trees to obtain an anomaly score for each
instance based on the path length required to isolate an observation.

After extracting patches exhaustively from a WSI, we selected anomaly
patches and used only the selected patches for further training. All these fil-
tered patches from a WSI were assigned the same label as of the WSI. A total
of 60k patches combined for both the classes were obtained after selecting these
anomaly patches. We further used these patches for training a classification
model for the two classes, Astrocytoma and Oligodendroglioma (Fig. 4).
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Table 1. The table below describes the architecture used for the auto-encoder
to extract features from each patch. Note: Op - Operation, MP - Max-pooling,
US - Up-sampling.

Layer Op Kernel Stride # Kernels NonLin

1 Conv+ MP 3× 3 (1, 1) 8 ReLU

2 Conv+ MP 3× 3 (1, 1) 16 ReLU

3 Conv+ MP 3× 3 (1, 1) 32 ReLU

4 Conv+ MP 3× 3 (1, 1) 64 ReLU

5 Conv+ MP 3× 3 (1, 1) 128 ReLU

6 FC - - 128 ReLU

7 US + Conv 3× 3 (1, 1) 64 ReLU

8 US + Conv 3× 3 (1, 1) 32 ReLU

9 US + Conv 3× 3 (1, 1) 16 ReLU

10 US + Conv 3× 3 (1, 1) 8 ReLU

11 US + Conv 3× 3 (1, 1) 3 ReLU

Fig. 4. Features were extracted using an autoencoder based approach and Isolation
Forest was used to find anomaly patches from the entire set of patches for a single
Whole Slide Image

3.3 Two-Class Classification

DenseNet-161 (Huang et al. (2017)) network was chosen to distinguish patches
from Astrocytoma and Oligodendroglioma. The network was trained using
binary cross entropy loss function (Fig. 5).

Testing: During testing, a stride based patch extraction was used to obtain all
the patches in the region of interest, using a stride of (224, 224). From these
patches, anomaly patches were found using Isolation Forest, in a way similar to
the training phase. All the filtered patches from a particular whole-slide were
fed to the densenet. After obtaining the prediction scores for all the patches
from a WSI, a majority class voting was performed among all the predictions to
obtain the class label for the slide. The class which had a higher frequency in
the predictions was assigned as the class label for the slide.
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Fig. 5. A Densenet based network was used for the two-class classification task

4 Radiology

4.1 Understanding MR Images

Different pulse sequences of MR imaging system are used to enhance different
parts of the tumor. For assessment of brain tumor the following pulse sequences
are generally used (Fig. 6):

Fig. 6. From left to right: T1, T1c, T2, FLAIR, segmented tumor

1. T1 weighted: T1 image of tissues affected by brain tumors are of low signal
intensity.

2. T2 weighted: T2 image of tissues affected by brain tumors are typically of
high signal intensity. Calcifications due to tumor are mostly dark on T2.

3. Fluid Attenuated Inversion Recovery (Flair): Uses attenuation of
intensity in Cerebro-spinal fluids (CSF) to differentiate between CSF and
abnormalities. Generally gives the whole tumor region.

4. T1-weighted post contrast imaging (T1c): Gadolinium is used to
enhance images and is useful in identifying vascular structures and break-
down in the blood-brain barrier typically found in the Necrotic region of the
brain.

4.2 Pre Processing of MR Images

Magnetic resonance images were pre-processed to remove structures that could
interfere with image segmentation (Fig. 7).
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Fig. 7. MR image sequence pre-processing pipeline

1. Skull Stripping
It is necessary to remove the skull from the MRI as the enhancement arising
due to its presence can be wrongly interpreted as tumor. Most segmentation
networks are trained using skull stripped images as input and hence it is
important to maintain this while providing new data. This was done using
the ITK library Ibanez et al. (2005).

2. Co-registration and re-sampling to isotropic voxel spacing
Followed by skull stripping is the step of co-registering the MRI sequences to
a reference sequence. Generally, there can be movement between scans if the
patient does not remain still or if the scan is being done on a different day or
while using a different machine. As a standard, we registered sequences T1,
FLAIR and T2 with respect to T1c scan for all patients. After co-registration
the MR volumes were re-sampled to 1 mm isotropic voxels across all dimen-
sions.

4.3 Segmentation of MR Images

Segmentation of the tumor in Magnetic resonance imaging (MRI) is the first step
towards diagnosis. Features like the size, location of the tumor can dictate the
stage of the tumor and the appropriate treatment. We trained a segmentation
network with the following properties:

1. Network architecture: 3-D CNN as shown in the Fig. 8 was used for the
task of semantic segmentation.

2. Data: Our network architecture was inspired from Kamnitsas et al. (2017)
and was trained using the data provided by BraTS Menze et al. (2015) 2018
challenge. 253 and 513 (re-sized to 193) sized patches were extracted from all
the four sequences (T1, T2, Flair and T1c) and the network was trained to
predict center 93.

3. Training: The weights of the network were initialized using Xavier initializer
Glorot and Bengio (2010), and training was done using the weighted combi-
nation of weighted cross entropy and dice loss. Adam optimizer was used with
initial learning rate of 0.001 and with the decay factor of 0.1.

4. CNN based brain tumor segmentation: The segmentation of the whole
tumor region was done using a in-house fully convolution neural network
trained on BraTS-2018 dataset (Menze et al. (2015)).
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4.4 Radiomic Feature Extraction

The segmentations generated via the above-mentioned model were post pro-
cessed to ensure to remove noise or any false positive region segmented. By
applying connected component analysis, only the biggest tumor predication was
kept. As low grade gliomas are small in size, a patch of size 64 * 64 * 64 of the seg-
mentation and the corresponding T1 sequence image per case, centered around
the predicted tumor region were extracted (Fig. 9).

Fig. 8. Semantic segmentation network for segmentation of gliomas from MR volumes.
(a) The top portion of the network accepts high-resolution patches (253) while the
bottom pathway accepts low-resolution input (513 patches resized to 193) as input.
Both the high and low-resolution pathway is composed of inception modules so as to
learn multi-resolution features. TC in the network stands for transposed convolution
and is used to match the features of the spatial dimension of the low-resolution pathway
with those learned in the high-resolution path. The BL and BH refer to building blocks
for low and high resolution pathway. (b) The building block of the network. In the block,
the dimension of the feature map in an inception module is maintained by setting the
padding to 0, 1, 2 for 3× 3, 5× 5 and 7× 7 respectively.

As 3D images contain a lot of spatial and physical information, the 3D T1
image patches and the segmentation patches were used to extract features such
as shape, texture, first order, second order and other higher order features using
radiomics. The approach to extract high-through quantitative features relies on
the radiomics platform provided by pyradiomics Griethuysen et al. (2017).
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Fig. 9. 3D patch extraction from generated segmentation

Fig. 10. Extracting radiomic features from the 3D T1 image patches
www.radiomics.world (2018)

In total 105 radiomic features were extracted from the images which included
3 major kinds of radiomic features namely, Shape Features (13), First Order
Features (18) and Texture Features (74). The complete list of extracted radiomic
features are detailed below (Fig. 10).

1. Shape Features (13):
Elongation, Flatness, Least Axis, Major Axis, Maximum 2D Diameter Col-
umn, Maximum 2D Diameter Row, Maximum 2D Diameter Slice, Maximum
3D Diameter, Minor Axis, Sphericity, Surface Area, Surface Volume Ratio,
Volume

2. First order statistics (18):
10 Percentile, 90 Percentile, Energy, Entropy, Interquartile Range, Kurto-
sis, Maximum,Mean, Mean Absolute Deviation, Median, Minimum, Range,
Robust Mean Absolute Deviation,Root Mean Squared, Skewness, Standard
Deviation, Total Energy, Uniformity, Variance

3. GLCM (Gray Level Co-occurrence Matrix) (23):
Auto-correlation, Cluster Prominence, Cluster Shade, Cluster Tendency,
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Contrast, Correlation, Difference Average, Difference Entropy, Difference
Variance, ID, IDM, IDMN, IDN, IMC1, IMC2, Inverse Variance, Joint Aver-
age, Joint Energy, Joint Entropy, Maximum Probability, Sum Average, Sum
Entropy, Sum Squares

4. GLRLM (Gray Level Run Length Matrix) (30):
Dependence Entropy, Dependence Non-Uniformity, Dependence Non-
Uniformity Normalized, Dependence Variance, Gray Level Non-Uniformity,
Gray Level Variance, High Gray Level Emphasis, Large Dependence Empha-
sis, Large Dependence High Gray Level Emphasis, Large Dependence
Low Gray Level Emphasis, Low Gray Level Emphasis, Small Dependence
Emphasis, Small Dependence High Gray Level Emphasis, Small Dependence
Low Gray Level Emphasis, Gray Level Non-Uniformity, Gray Level Non-
Uniformity Normalized, Gray Level Variance, High Gray Level Run Empha-
sis, Long Run Emphasis, Long Run High Gray Level Emphasis, Long Run
Low Gray Level Emphasis, Low Gray Level Run Emphasis, Run Entropy,
Run Length Non-Uniformity, Run Length Non-Uniformity Normalized, Run
Percentage, Run Variance, Short Run Emphasis, Short Run High Gray Level
Emphasis, Short Run Low Gray Level Emphasis

5. GLSZM (Gray Level Size Zero Matrix) (16):
Gray Level Non-Uniformity, Gray Level Non-Uniformity Normalized, Gray
Level Variance, High Gray Level Zone Emphasis, Large Area Emphasis, Large
Area High Gray Level Emphasis, Large Area Low Gray Level Emphasis,
Low Gray Level Zone Emphasis, Size Zone Non-Uniformity, Size Zone Non-
Uniformity Normalized, Small Area Emphasis, Small Area High Gray Level
Emphasis, Small Area Low Gray Level Emphasis, Zone Entropy, Zone Per-
centage, Zone Variance

6. NGTDM (Neighbouring Gray Tone Difference Matrix) (5):
Busyness, Coarseness, Complexity, Contrast, Strength

4.5 Training Methodology

MR Image based training methodology:

1. For a given MRI sequence, the 105-length deep feature vectors extracted from
radiomics were reduced using Principal Component Analysis to a 16-length
deep feature vector. This 16-length feature vector is then trained against the
classification status present in the training data.

2. We took 27 training samples and generated (27, 16) shaped feature vectors
and trained a logistic regression classifier with LIBLINEAR as the optimiza-
tion algorithm on a 5-fold cross validation basis.

3. Prior to testing on the 20 test samples, the logistic regression model was
fitted on the entire training data of 27 train samples. The features for the
test set were extracted from the radiomic feature extraction system, normal-
ized using the mean and standard deviation obtained during training and
probabilistic classification predictions were obtained from the fitted logistic
regression model.
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5 Combining the Pathology and Radiology Predictions

For combining the predictions obtained by the pathology and radiology model,
we use a simple higher confidence based voting criteria. Given the predictions
from both the pathology based model and the radiology based model, we com-
pare the probability values given by each of the model for a particular class and
assign the final prediction based on the model which outputs the class label with
a higher probability (Fig. 11).

Fig. 11. Pipeline for combining the predictions from both the pathology and radiology
model.

6 Results

Performance on Challenge Test Dataset
On testing the algorithms on a dataset containing 20 radiology and pathology
images, an accuracy of 80% individually was observed both by the radiology
and pathology models. The combined radiology and pathology model boosted
the accuracy by 10% resulting in an accuracy of 90% on the entire dataset.

7 Conclusions

The results of our study show the feasibility of deep-learning based models for
analyzing MR and whole-slide images. Our algorithm treats the histopathology
and MR dataset separately and combines the individual predictions from both
the models to output a single classification label. We demonstrated that anomaly
detection based patch extraction can improve the classification results in Whole
Slide Image based analysis. We also showed that radiomics based features aid in
accurate classification of low-grade gliomas. One limitation of our work is that
the MR based model requires all the 4 MR sequences of the patient for detecting
the tumor region and even if a single sequence is missing the MR model fails
to correctly narrow down on the tumor region. Another limitation could be the
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high processing time required to generate predictions during inference stage due
to the heavy preprocessing and postprocessing required for both the models.

Additional work needs to be done to explore potential ways to combine the
two models on a feature level earlier in the classification pipeline. Another area of
future work involves further investigation of anomaly detection based approaches
for extracting relevant patches where the pixel wise annotations are not available.
The model also needs to be tested on a large cohort for establishing generaliza-
tion.
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