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Abstract. Ischemic stroke is one of the most common and yet deadly
cerebrovascular diseases. Identifying lesion area is an essential step
for stroke management and outcome assessment. Currently, manual
delineation is the gold standard for clinical diagnosis. However, inter-
annotator variances and labor-intensive nature of manual labeling can
lead to observer bias or potential disagreement of between annotators.
While incorporating a computer-aided diagnosis system may alleviate
these issues, other challenges such as highly varying shapes and difficult
boundaries in the lesion area make the designing of such system non-
trivial. To address these issues, we propose a novel adversarial training
paradigm for segmenting ischemic stroke lesion. The training procedure
involves the main segmentation network and an auxiliary critique net-
work. The segmentation network is a 3D residual U-net that produces
a segmentation mask in each training iteration while critique network
enforces high-level constraints on the segmentation network to produce
predictions that mimic the ground truth distribution. We applied the
proposed model on the 2018 ISLES stroke lesion segmentation challenge
dataset and achieved competitive results on the training dataset.

Keywords: 3D convolution neural networks · Adversarial training ·
Ischemic Stroke Lesion Segmentation

1 Introduction

Stroke is one of the leading cause of death in developed countries. The disease is
caused by either blockage (ischemic stroke) or rupture of a blood vessel (hemor-
rhagic stroke). Among the two types of stroke, ischemic stroke takes up roughly
80% [1]. The prevailing imaging modalities for diagnosing brain strokes are mag-
netic resonance imaging (MRI) and computed tomography (CT). Different MRI
sequences such as T1 weighted, T2 weighted, Diffusion Weighted Imaging (DWI)
and Fluid Attenuated Inversion Recovery (FLAIR) are utilized for specialized
applications. DWIs are especially suitable for ischemic strokes since it is highly
sensitive to lesion changes [8].

Segmentation of brain area affected by ischemic stroke lesion plays a crucial
role in treatment assessment and prognosis. Producing accurate predictions is
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challenging due to the variability in the shapes and sizes of the targets. Recent
studies [2] have shown that perfusion Computed Tomography (CT) shows poten-
tial improvement in speed, availability and lack of contraindications compared
to MRI. Computer-aided diagnosis (CAD) system using perfusion CT may help
clinicians with faster and more accurate diagnosis. In previous works, models
such as random forests, support vector machines and autoencoders [9] have been
employed to segment ischemic stroke lesion and have shown successful results.

Computer vision tasks such as image recognition, detection, and segmenta-
tion have had significant advances in the past few years due to the rise of deep
learning, specifically in Convolution Neural Networks (CNN). Medical applica-
tions of deep learning have also seen profound successes. As neural networks tend
to get deeper as we harness more computational power, the problem of vanish-
ing gradients problem ensues. Vanishing gradients occur when gradients become
too small to change the weights of the neuron in back-propagation-trained neu-
ral networks. The residual learning networks [4] (ResNet) solves this problem
by introducing stacked identity mappings in the form of residual blocks. These
residual connections allow the neural network to collapse into a few layers during
initialization and gradually expand in the feature space as training takes place.
Recently, generative adversarial networks (GAN) [3] have been utilized exten-
sively throughout image generation tasks. Recent studies [6,10] have shown that
GANs can also be used in a critique framework for semantic segmentation tasks.
The benefits of using such networks include comparing the higher level of incon-
sistencies between ground truth and predictions and enforcing spatial continuity.
In this framework, generating pixel-wise segmentation masks are modeled as a
generative procedure and the discriminator of the model attempts to distinguish
between real and fake segmentation masks.

In this paper, we’ve developed a neural-network with adversarial training to
segment irreversibly damaged brain area caused by ischemic stroke. The pro-
posed model is trained and validated on the Ischemic Stroke Lesion Segmen-
tation(ISLES) challenge dataset [7]. The ISLES challenge aims at providing a
unified platform and high-quality data for training and evaluating models for
automatic stroke lesion segmentation. In order to model the variability in the
true distribution and improve prediction accuracy, adversarial training. For pre-
processing, each modality is normalized and stacked as multi-channel inputs.
The overall loss function consists of three terms: negative dice coefficient and
binary cross-entropy between the ground truth mask and prediction plus the
discriminator loss between real and generated segmentation masks. Our method
produced promising results and achieved an average DICE coefficient of 0.87 on
the ISLES training dataset.

2 Method

The detailed model architecture and training procedure of the proposed methods
are described in this section. First, we address the necessary steps for preprocess-
ing the data. Then we introduce the architecture of the segmentation network.
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Finally, we illustrate two adversarial paradigms proposed for training the seg-
mentation model.

2.1 Data

We performed training and validation on the 2018 ISLES challenge dataset. The
training dataset contained a total of 63 patients each with 5 different perfu-
sion maps: cerebral blood flow (CBF), Mean transit time (MTT), cerebral blood
volume (CBV), time to peak of residue function (TMAX) and computed tomog-
raphy angiography (CTP). An example of the training data can be found in
Fig. 1. The training data also included gold standard diffusion-weighted imaging
(DWI) maps that are not available in testing data. The ground truth segmenta-
tion masks were derived from the DWI. The data provided are in Neuroimaging
Informatics Technology Initiative (NIfTI) format. We used Insight Segmentation
and Registration Toolkit (ITK) [12] for data inspection and visualization.

MTT with annotation 3D annotation

MTT with annotation 3D annotation

Fig. 1. Example of training data and corresponding 3-D annotation

2.2 Preprocess

Preprocessing is necessary due to the significant cross-modality variance. There
are also substantial deviation in the spatial resolution as dimension of the z-axis
ranges from 2 to 16 for different subjects. First, we conducted bicubic spline
interpolation [5] to resize each volume to the same dimension. During training
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and testing, each modality is then normalized respectively by subtracting the
mean intensity and divide by the standard deviation as shown in the following
equation:

x′
m(i, j, k) =

xm(i, j, k) − μm

σm
(1)

Where m denotes the modality, μm denotes mean intensity and σm denotes
the standard deviation. i, j, k is the coordinates of the pixel to be normalized.
Finally, the normalized whole volume are stacked as multi-channel inputs for the
segmentation network.

2.3 3D Residual U-Net

The backbone of the segmentation network is a 3D U-net with residual connec-
tion [11]. Network structure and details of the residual block of the can be found
in Fig. 2 The U-net consists of both down-sampling and up-sampling pathways.
The down-sampling pathway is made up 4 residual blocks and the upsampling
path contained 4 transposed convolution blocks. Each residual block contains
three 3 × 3 × 3 convolution layer, batch normalization and activation function
with leaky reciftied liner unit in between. The up-sampling pathway contained 4
transpose convolution operation and concatenation with corresponding feature
maps from the down-sampling pathway.

2.4 Adversarial Training

The adversarial pipeline is a two-player mini-max game between the segmenta-
tion network and the discriminator network. Figure 3 shows the high-level view
of the training procedure. In each training iteration, the segmentation network
will generate a pixel-wise probability map which is then fed to the discriminator
network as inputs. The objective of the discriminator is to distinguish between
ground truth segmentation mask and predicted mask. The discriminator is a
7-block network containing 3 residual blocks similar to the 3D U-net. Maxpool-
ing was conducted after every residual block. The discriminator network is solely
for auxiliary purposes and therefore removed during testing phase. The discrim-
inator network enforces spatial continuity that is otherwise not obtainable by
using only pixel-wise classification loss.

We denote the ground truth mask as y, image data as x, U-net as U and
discriminator as D, the solution to the mini-max game can, therefore, be written
as:

min
U

max
D

Ey∼p(y)[log D(y)] + Ex∼p(x)[log(1 − D(U(x))] (2)

There are different ways that the adversarial training can be carried out. We
proposed two training paradigm for the adversarial pipeline, namely:

– Integrated loss
– Second back propagation
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Fig. 2. Top figure shows the architecture of the 3-D residual U-net. Bottom figure
shows a single residual block

Integrated Loss. The integrated loss paradigm adds the adversarial loss to
the traditional segmentation losses and forms a integrated loss term. Back-
propagation are carried out based on the gradients of the integrated loss term.
The discriminator network are back-propagated by the errors of not recognizing
true label and misclassifying synthetic label as true. The integrated loss func-
tion for the segmentation network contained a total of three terms: binary cross
entropy loss, negative dice score and adversarial loss as seen in the following
equation:

Ltotal = αLadver + βLBCE + γLdice (3)

Where the α, β, γ are coefficients for each loss terms. We initialized all three
coefficients as 1. The coefficients are adjusted by weight decay mechanism which
we describe in implementation details section. Detailed algorithm can be found
in Algorithm 1.
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Fig. 3. Overview of the adversarial training paradigm

Second Back-Propagation. In the second back-propagation pardigram, the
segmentation network is back-propagated twice. First, the weights are adjusted
according to the gradients of the traditional segmentation loss. At the adversar-
ial training phases of each iteration, gradients from the adversarial loss are then
passed onto the segmentation network for a second back-propagation. The dis-
crimination network is back-propagated only once. Detailed training algorithm
can be found in Algorithm2.

Algorithm 1. Training procedure with integrated loss function
Require: Initialize parameters of U-net θU , Discriminator θD
Data: Sample images x1 . . . xn and corresponding masks y1 . . . yn from data
Initialize parameters of U-net θU , Discriminator θD
while While θ not converged do

for Each xi and yi in mini-batch do
Compute mask ŷi by U(ŷi|xi)
Compute LDice(ŷi, yi), LBCE(ŷi, yi)
Compute Ladver by log(1 − D(ŷi))
Compute Ltotal by Ladver + λLBCE + Ldice

θD ← ∇[log D(yi) + log(1 − D(ŷi)]
θU ← ∇Ltotal

end

end
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Algorithm 2. Training procedure with second back-propagation
Require: Initialize parameters of U-net θU , Discriminator θD
Data: Sample images x1 . . . xn and corresponding masks y1 . . . ynfrom data
while While θ not converged do

for Each xi and yi in mini-batch do
Compute mask ŷi by U(ŷi|xi)
Compute LDice(ŷi, yi)
θU ← ∇LDice

end
for Each xi and yi in mini-batch do

Compute mask ŷi by U(ŷi|xi)
θD ← ∇[log D(yi) + log(1 − D(ŷi)]
θU ← ∇ log(1 − D(ŷi))

end

end

2.5 Implementation Detail

The proposed model was established with python under the pytorch deep learn-
ing framework. The learning rate was set differently for the segmentation net-
work and the critique network to avoid collapsing in early epochs, which is a
common phenomenon in GANs. Learning rates were initialized at 0.001 for the
segmentation model and 0.0005 for the discriminator network. Learning rate
decay will take place if there were no improvements of the loss function 5 con-
secutive epochs. Each learning rate decay reduces the learning rate to 80% of
the previous iteration. Early termination will take place if no improvements were
seen for 20 consecutive epochs. The mini-batch size was set at 8. GPU training
was conducted on 4 NVIDIA Tesla V100. The total training time for the entire
pipeline that included segmentation network and discrimination network was
approximately 24 h.

3 Results

In this section, we present quantitative results of the proposed model and qual-
itative comparison of the adversarial training effects. Several matrices including
the mean of Dice score, the standard deviation of Dice score, mean of Hausdorff
distance and standard deviation of Hausdorff distance were used for model eval-
uation. Figure 4 is a visualization of the adversarial training effects. As shown
in the figure, models with adversarial training are able to capture subtle differ-
ences between ground truth and predictions. Table 1 shows that by incorporating
adversarial training, dice score increased and Hausdorff distance reduced.
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Ground truth No adversarial With adversarial

Ground truth No adversarial With adversarial

Ground truth No adversarial With adversarial

Fig. 4. Effects of adversarial training

Table 1. Dice and Hausdorff distance comparison between three training paradigm

DICE mean DICE std Hausdorff mean Hausdorff std

Without adversarial 0.78 0.19 27.45 31.23

With second back-propagation 0.85 0.16 20.78 33.81

With integrated adversarial loss 0.87 0.21 18.89 37.32

4 Discussion

In this paper, we’ve presented an automatic ischemic stroke lesion segmentation
model using multiple CT perfusion maps with varying dimensions as inputs.
We proposed two adversarial training paradigm, namely integrated loss func-
tion and second back-propagation. We’ve demonstrated that by incorporating
a discriminator network in the training procedure, the segmentation model is
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able to mimic subtle inconsistencies between ground truth and prediction that
cannot be corrected using only pixel-wise loss functions such as binary cross
entropy and dice score. Quantitatively, employing adversarial training increases
dice score and reduces Hausdorff distance.
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