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Abstract. Ischemic stroke is the top cerebral vascular disease leading
to disability and death worldwide. Accurate and automatic segmenta-
tion of lesions of stroke can assist diagnosis and treatment planning.
However, manual segmentation is a time-consuming and subjective for
neurologists. In this study, we propose a novel deep convolutional neural
network, which is developed for the segmentation of stroke lesions from
CT perfusion images. The main structure of network bases on U-shape.
We embed the dense blocks into U-shape network, which can alleviate
the over-fitting problem. In order to acquire more receptive fields, we use
multi-kernel to divide the network into two paths, and use the dropout
regularization method to achieve effective feature mapping. In addition,
we use multi-scale features to obtain more spatial features, which will
help improve segmentation performance. In the post-processing stage
of soft segmentation, we use image median filtering to eliminate the
specific noises and make the segmentation edge smoother. We evaluate
our method in Ischemic Stroke Lesion Segmentations Challenge (ISLES)
2018. The results of our approach on the testing data places hight
ranking.

Keywords: Stroke - CT perfusion images + Dropout - Multi-scale -
U-shape network

1 Introduction

The stroke, one of the leading causes of death and disability worldwide, is trig-
gered by an obstruction in the cerebrovascular system preventing the blood to
reach the brain regions supplied by the blocked blood vessel directly. Ischemic
stroke is the commonest subtype of stroke, which is a disease with sudden onset
and high mortality. It prevents blood flow in small vessels. When the blood flow
interruption is too long, cell will undergo necrosis and irreversibly injured infarct
core is formed [7]. Defining location and extend of the infarct core is a critical
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part of the decision making process in acute stroke. In clinical diagnosis, CT
image is a speed, availability, and lack of contraindications manner to triage
stroke patients. If we can locate the location and size of the lesion quickly, it is
the key to save some viable brain tissue [24]. In traditional medical diagnosis, the
lesion tissue is accomplished by manual segmentation on medical images. How-
ever, manual delineation of stroke lesions a time-consuming and very tedious
task [8]. Automatic and accurate quantification of stroke lesions is an important
metric for planning treatment strategies, monitoring disease progression.

Over the past decades, Unsupervised methods and shallow machine learning
methods are traditional methods of image analysis, such as: multi-modal genera-
tive based mixture-model [1], image cross-saliency approach [3], spatial decision
forests approach [5] and multi-atlas segmentation method [19], and so on, those
methods had been successful. However, there are also some limitations in these
methods. For example, some of those methods are designed specifically require
and heavily dependent on handcrafted lesions segmentation [11,12] or improve
the accuracy of segmentation depend on multi-atlas label [23].

Recent years, deep convolution neural networks (DCNNs) are one of the
most competitive approach used for medical image semantic segmentation. The
DCNN models are capable of learning features from raw images and extract-
ing context information. The feature sets filtered by DCNN often outperform
pre-defined and hand-crafted feature sets. For example, Ronneberger et al. pro-
posed a novel U-net model based on DCNN architecture [25]. U-net combined
the down-sampling layers and up-sampling layers with skip connections, this
architecture can reuse the context information of the down-sampling layers and
greatly improve the performance of the segmentation. Long et al. proposed a
novel framework to automatically segment stroke lesions. This framework con-
sists of two deep convolutional neural networks, and it achieved state-of-the-art
performance on an acute ischemic stroke dataset [21]. Zhang et al. used a custom
DCNN to automatic segmentation acute ischemic stroke from DWI modality, in
the network, they used dense connectivity to relieve the problems of deep net-
work, and the network outperforms other state-of-the-art methods by a large
margin [28]. Li et al. developed an automatic intervertebral discs (IVDs) seg-
mentation method based on fully convolution networks [20], they used multi-scale
and feature dropout learning technology to segment region of interest (ROI) from
multi-modality MRI images, this method achieved the 1st place in the MICCAI
challenge in 2016. Others methods based on DCNN which are applied in medical
images of various diseases, such as: stroke image segmentation [22], brain tumor
image segmentation [17], WMH segmentation [9], and optic disc segmentation
[4], and so on. Most these methods are based on magnetic resonance imaging
(MRI). Especially, the segmentation methods of stroke lesions is seldom used in
CT images.

In this paper, we propose a novel multi-scale features deep convolution neural
network (MS-DCNN) for stroke lesions segmentation on CT images. The whole
neural network consists of a series of convolution layers, dense blocks [13], tran-
sition blocks and upsampling blocks. We use the dropout regularization method
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to alleviate neural network from over-fitting. We use random rotated and dis-
tortion to increase the number of training samples. He network with the main
contributions as follows:

1. We propose an end-to-end deep convolution neural network base on two
symmetrical U-shape networks [25], and embedded dense blocks into the U-shape
[13]. This strategy can improve the information on the sampling and improve
the feature reuse.

2. We use the dropout regularization method in dense blocks and transition
blocks. It’s a simple method to prevent neural network from over-fitting and
improve the neural network efficiency. Proper use of dropout can help improve
the accuracy of segmentation.

3. We employ dual parallel kernel pathways in our framework to process input
CT images. This design can help extract the image features fully, and finally
combine the two pathways before output, it helps to improve the performance
of the segmentation [27]. We evaluate our method on ISLES 2018 challenge.

2 Material and Method

2.1 Data

Ischemic Stroke Lesion Segmentations Challenge (ISLES) 2018 offers a platform
for participants to compare their methods directly and fair. ISLES 2018 challenge
offers 103 stroke patients, which is based on acute CT perfusion data. Fach
patient has 5 CT sequences (CBV, CBF, MTT, TMAX, CTP). Imaging data
from acute stroke patients in two centers who presented within 8 h of stroke
onset and underwent an Magnetic Resonance Imaging (MRI) DWI within 3h
after CTP were included. The challenge’s training data set consists of 63 patients,
some patient cases have two slabs to cover the stroke lesion, finally, we got 94
samples in the training dataset. The testing dataset consists of 40 patients.
Some patient cases have two slabs to cover the stroke lesion. We got 62 testing
samples. In this challenges, the training data set and the ground truth are opened
to all participants. The testing data set only open the CT images which is to be
predicted, without the ground truth is distributed on the challenge web pages.
Participants should submitted their final segmentation results to the organizers,
who scored the segmentation results.

2.2 MS-DCNN

A traditional image-processing CNN is composed of one input layer, many con-
volution layers and one output layer. Features are transmitted by single line
between layers, which leads to inadequate extraction features. We propose the
MK-DCNN framework is based on the U-net architecture [25] and we embed
dense structure as a block into the U-shape framework [13], both two methods
include jump layer which can help to improve feature reuse.

Figure 1 illustrates the pipeline of our proposed segmentation network. Our
network is based on two symmetric U-shape structures, and we use dense block
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to implement the down-sampling operation in contracting path of U-shape, and
after completes up-sampling operation in expansive path, we concatenate two
symmetric networks and output the predicted result. We use multi-scale features
strategy to enhance the feature extraction sufficiently. In the first layer, we use
dual parallel kernels in two symmetric pathway to extract different features.
To handle the problem of over-fitting of DCNNs, we not only use dense block
to resist over-fitting, but also use dropout regularization method to alleviate
over-fitting and improve the efficiency of neural network.
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Fig. 1. Architecture of the MS-DCNN.

As shown in Fig. 1. Our network consists of 3 separate convolution layers,
1 pooling layer, 4 dense blocks, 3 transition blocks and 4 up-sampling blocks.
We extend the deep of DenseNet-121 to 123 layers in dense blocks. Each dense
block contains several micro-dense units, each dense unit is composed of a batch
normalization (BN) [16] layer, a rectified linear units (ReLU) [6] layer and a
convolution (Conv) layer, the concatenation operation is required before result
output. A n-layer dense block consists of a dense unit or several continuous dense
units. Figures2 and 3 illustrate the basic implementation of a dense unit and
a n-layer dense block, respectively. In dense block, each dense unit is regarded
as one layer, all layers inside the block are directly connected. The transition
block consists of a BN layer, a ReLU layer and an average pooling layer [18].
We embed the dropout regularization method into the both dense block and
transition block. The up-sampling block consists of a concatenate layer, a BN
layer, a ReLU layer and a Conv layer, we use bilinear interpolation technology
to realize image zooming. Then, we concatenate the two un-sampling results
which come from different paths. Finally, after two convolution layers, we use
the sigmoid function to complete segmentation task and output the final lesion
information.

In our network, we only use 4 CT modality sequences (CBV, CBF, TMAX
and MTT). According to the clinical prior knowledge, 4 modalities play dif-
ferent roles in stroke diagnosis, we divide the 4 modalities into two groups
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Fig. 2. A dense unit. Fig. 3. Architecture of the n-layer
dense block.

(TMAX+CBF+CBV and MTT). First, We set different dropout rates for the
two groups in our network. Then, we concatenate the 2 unsampling results which
come from 2 pathways of MS-DCNN. Finally, after two convolution operations,
we use the sigmoid function to complete segmentation task and out the final
lesion information.

2.3 Dropout Regularization Method for Effective Learning

The regularization is a popular method to prevent over-fitting and filter impor-
tant features. It is a very important and effective technology to reduce gener-
alization error in machine learning. Regularization can automatically weak the
unimportant feature variables. Dropout is one of a general and concise regular-
ization methods which performs well in many tasks [10,26]. In our study, we
use dropout to reduce redundant features produced by multi-scale method and
to alleviate the problem of duplicate feature acquisition from the same area of
the image. We use dropout regularization method in dense block and transition
block. The application of dropout on a generic i-th neuron in the n layer is shown

below:
d;

Qi = zia(Y_wyry +b;)(0 < i < h), (1)
k=1

where Q; is the retained probability of the i-th neuron, x; is the i-th neuron, a()
is an activation function, k € [1,4] is unit number, wy and by are the k-th unit
weight and bias. d denotes dimensional, x4; denotes x; is a Bernoulli variables
with d dimensional. 2211 wg Ty is the sum of the product of all neurons weights
wy, and x before i-th neuron.

In our network, we need to dropout a set of neurons of a layer. Let the
j-th layer has n neurons, in a cycle, the neural network can be regarded as
the integration n times of Bernoulli’s experiments, and the probability of each
neuron being retained is ¢ and the dropout probability is p. Thus, the number
of neurons retained in layer j-th is as follows:
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d;
Y = Z.’Ei, (2)
=1

where z; is a retained neuron (a Bernoulli random variable). In the n experi-
ments, the probability of retaining k neurons was:

flkin,p) = (k)p'“q(" ", (3)

where ¢ = 1—p, g represents the probability of a retained neuron and p represents
the probability of a neuron turn off, p¥¢("=*) is the probability of obtaining k
neurons successful sequence in the n test and (n — k) failures, while (%) is the
binomial coefficient used to calculate the number of possible successful sequences.

In our lesion segmentation network, we use fixed dropout ratio to han-
dle the feature filtering in each training iteration. The dropout ratio of group

TMAX+CBF+CBYV is set to 0.01, the dropout ratio of MTT is set to 0.5.

2.4 Loss Function

In image segmentation tasks, Dice coefficient (DC) is one of the classic indexes
for evaluating the segmentation effect, and it can also be used as a loss function
to measure the gap between the result of the segmentation and the ground truth.
In binary image segmentation, we use the continuous softmax function outputs to
replace the predicted binary labels, we Combine DC with cross entropy function,
a pseudo DC loss function proposed in this paper is defined as:

< 22 (p(0)°q(x,)°)
L—1-2 n= , 4
E S alen)e+ N 1p<xn>) W

where C' is the class number, ¢ € C is the pixel class, N is the pixel number,
Zp is the n-th pixel. p(x,)¢ is a binary value (label) of pixel x,, belongs class c,
and ¢(z,)¢ represents the probability of pixel z,, predicted by softmax function
belongs class c. In order to measure the loss contribution of each class, aggre-
gating DC from different classes C' as an average. In the traditional single type
lesion segmentation task, C' is usually set to 1.

3 Experiments and Result

3.1 Experiments

We apply MS-DCNN in the ISLES 2018 challenge. The network architecture
has shown in Fig.1, i.e. a dual-pathway DCNN. For ISLES challenge, all CT
sequences are resized to 160 x 160. We use images slices flipped and randomly
rotated methods to augment the training images. In training process, the hyper-
parameter kept constant: batch size is set to 4, epoch is set to 70, and learning
rate is set to 0.001. In our experiment, when the dropout ratio was set as 0.01,
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the segmentation results are close to optimal on training dataset. In testing
process, network inherits the weight of the training model and realizes the auto-
matic lesions segmentation. After testing, we use the affine transform method
to restore the size of all prediction images to the original size. A post-processing
step to refine the networks output, we use image median filtering algorithm [14]
to alleviate noises and preserve the edge details of images. Finally, we synthesize
the 2D slice images into 3D images.

3.2 Results

In this challenge, online evaluation is provided with the Dice coefficient (DC) [2],
Hausdorff distance (HD) [15], Precision, Recall and AVD as quality metrics. We
won’t able to see the Ground Truth of the testing dataset. After uploading the
segmentation results for the testing dataset, results of each participating team
and their ranking be revealed on the challenge websites in a frozen table. We
have obtained the scores presented in Table 1.

Table 1. The results of our network on ISLES 2018 challenge. Values correspond to
the mean (and standard deviation)

Team DC [0,1] HD [mm] Precision [0,1] | Recall [0,1] | AVD [mm]

songtl |0.51 (0.31)]19354856.39 (39507890.41) |0.55 (0.36) 0.55 (0.34) |10.24 (9.94)
pengll |0.49 (0.31) |19354856.66 (39507890.28) | 0.56 (0.37) 0.53 (0.33) |10.08 (10.58)
cheny11|0.47 (0.31) | 19384856.55 (39507890.34) | 0.56 (0.37) 0.49 (0.33) |11.14 (12.74)
pengll |0.47 (0.32) |16129055.93 (36779842.04) | 0.53 (0.36) 0.47 (0.32) |10.37 (14.42)
Ours 0.44 (0.30) | 19354857.71 (39507889.77) | 0.54 (0.36) 0.44 (0.32) |10.99 (12.70)

Among the 38 submissions on ISLES 2018, our submission have a superior
performance, and ranks fifth. This task is simply too complex and variable for
our algorithms to solve. In our training process, our model performs well in
segmentation of large lesions. However, smaller and less pronounced lesions are
the challenges for our model. As Table 1 shown, compared with DC, Precision
and Recall, the values of Hausdorff distance is too hight, this may be due to the
fact that some lesions are not detected, or there are many outlier points in the
our segmentation result. Further work to improve the segment result will consist
in optimizing, the particularity of CT image segmentation and incorporating
other post-processing to improve the Hausdorff distance.

4 Conclusion

In this paper, we proposed the MS-DCNN is an automatic medical image seg-
ment network, it surpasses mostly state-of-the-art on ISLES 2018 challenge.
Our network inherits previous work and integrates dense blocks. The architec-
ture of U-shape is used to improve the feature locate accurately and semantics
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capture. The dense block is used to reuse previous features and alleviate over-
fitting. In addition, two different dropout rate pathways are used to reduce the
number of features between layers and retain important features. Different CT
modal sequences play different roles in diagnosis. We will assign different dropout
rates to each CT sequence to improve the performance of the current model. At
present, our model does not provide precise segmentation for physicians and
clinical researchers in this challenge, but it can be used as a support tool.
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