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Abstract. Stroke is an important neuro-vascular disease, for which dis-
tinguishing necrotic from salvageable brain tissue is a useful, albeit chal-
lenging task. In light of the Ischemic Stroke Lesion Segmentation chal-
lenge (ISLES) of 2018 we propose a deep learning-based method to auto-
matically segment necrotic brain tissue at the time of acute imaging
based on CT perfusion (CTP) imaging. The proposed convolutional neu-
ral network (CNN) makes a voxelwise segmentation of the core lesion. In
order to predict the tissue status in one voxel it processes CTP informa-
tion from the surrounding spatial context from both this voxel and from
a corresponding voxel at the contra-lateral side of the brain. The contra-
lateral CTP information is obtained by registering the reflection w.r.t. a
sagittal plane through the geometric center. Preprocessed training data
was augmented during training and a five-fold cross-validation was used
to experiment for the optimal hyperparameters. We used weighted binary
cross-entropy and re-calibrated the probabilities upon prediction. The
final segmentations were obtained by thresholding the probabilities at
0.50 from the model that performed best w.r.t. the Dice score during
training. The proposed method achieves an average validation Dice score
of 0.45. Our method slightly underperformed on the ISLES 2018 chal-
lenge test dataset with the average Dice score dropping to 0.38.
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1 Introduction

Stroke is the main cause of neurological disability in older adults [2]. Up to four
out of five acute stroke cases is ischemic. In these cases, the ischemia is the result
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of a sudden occlusion of a cerebral artery. If a large artery is occluded, there is a
possibility that mechanical thrombectomy (i.e. the intra-arterial removal of the
cloth) can improve patient outcome [4]. Important biomarkers for the correct
selection of patients are the volumes of necrotic and salvageable tissue, respec-
tively the core and penumbra. In that light, this year’s Ischemic Stroke Lesion
Segmentation (ISLES) challenge [1] asked for methods that can automatically
segment core tissue based on CT (perfusion) imaging.

With respect to the detection of core tissue, a standard CT is unable to
capture early necrotic changes and will therefor result in underestimation [5].
A more sensitive approach is to acquire a perfusion scan and extract certain
perfusion parameters of the parenchymal tissue via deconvolution analysis [3].

Fig. 1. Both the training data (blue) and test data (red) are heterogeneous w.r.t.
certain image properties. The y-axis shows the number of data samples (i.e. slabs).
Top left : The in-plane resolution ranges from 0.785 to 1.086 mm. Top right : The slice
thickness ranges from 4.0 to 12.0 mm. Bottom left : The number of slices ranges from 2
to 22. Bottom right : The number of time points (at the initial resolution of 1 image/1 s)
ranges from 28 to 64. (Color figure online)
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As such, core tissue is characterized with an increase in Tmax and MTT, and
a decrease in CBF and CBV. During last year’s ISLES challenge it was shown
that convolutional neural networks (CNNs) can be used to predict the final
infarction based on these parameter maps (and additional patient and treatment
information). In parallel, it has been found that CNNs can be used to estimate
the perfusion parameters directly, hence bypassing the mathematically ill-posed
deconvolution problem [7]. Nonetheless, these CNN-based methods still require
an arterial input function (AIF) to do the deconvolution.

This work makes a contribution on two levels. First, we are the first to strictly
limit the CNN to use only CT perfusion (CTP) data as input in the prediction
of core tissue. This holds both during training and testing. Second, we explore
the alternative use of contra-lateral information instead of the explicit manual or
(semi-)automatic selection of the AIF. We identify the ISLES 2018 challenge as
the perfect setup to compare the performance directly with other state-of-the-art
methods. In the next section we briefly introduce the dataset and some initial
preprocessing. In Sect. 3, we highlight the extraction of contra-lateral information
and the experimental setup, including the architecture of our CNN. In Sect. 4,
we show the validation results on the ISLES 2018 training set as well as the
results on the test set.

2 Data

The ISLES 2018 dataset consists of acute CT and CTP images, and the derived
Tmax, CBF and CBV perfusion maps, from 125 patients. The ground truth cores
were delineated on the MR DWI images, which were acquired soon thereafter.
The participants only have access to the training dataset. For some patients
there are two slabs to cover the lesion. We consider each slab independently,
resulting in 94 slabs present in the training dataset and 62 in the test dataset.

The in-plane resolutions are isotropic and we notice resolutions ranging from
0.796 to 1.039 mm in the training set and from 0.785 to 1.086 mm in the test set
(Fig. 1). We consider these spatial resolutions similar enough and avoid resam-
pling the images. The spatial resolution in the axial direction ranges from 4 to
12 mm and the number of slices from 2 to 22. We therefore opt to work in 2D. We
further notice the discrepancy in the available number of time points, ranging
from 43 to 64 and from 28 to 64, both at a temporal resolution of 1 image/1 s,
for training and test sets respectively. We first resample the signal along the
time axis to a temporal resolution of 1 image/2 s by using a smoothing kernel of
[1/4, 2/4, 1/4] with a stride of 2. We then pad the signal by repeating the final
value until we have 32 time points (i.e. 64 s). The resulting volumes have lower
temporal noise and identical shape.

3 Method

As we hypothesised in Sect. 1, we will investigate whether CTP information only,
but complemented with contra-lateral information, can be used to predict the
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Fig. 2. In order to complement each voxel with contra-lateral information, we perform
the following operations. Left : We flip the entire original volume (blue) w.r.t. a sagittal
axis through the geometrical center (yellow) to obtain the contra-lateral volume (red).
Middle: We rotate the clipped (in [0, 100] HU) contra-lateral volume for the lowest
mean squared error (MSE). Right : We apply this angle (here 0.28 radians for case 4
of the training dataset) to the contra-lateral, unclipped volume and concatenate with
the original to obtain 64 features for each voxel. (Color figure online)

core lesion. We will use DeepVoxNet [6] as a framework for doing segment-based
training and extensive parallel data augmentation on the CPU. First, we explain
how to construct the input for our CNN. Then, the architecture of our CNN will
be discussed. Finally, we detail some further training methodologies.

3.1 Contra-Lateral Information

Because an ischemic stroke typically occurs uni-laterally, we want to enrich the
information in one voxel (i.e. currently a time series of 32 points depicting the
passage of contrast) with the information present in a corresponding voxel at the
contra-lateral side of the brain (Fig. 2). This way each voxel contains information
from at least one healthy voxel, thus how the perfusion or contrast passage could
look like in similar but healthy parenchyma. For this purpose, we average each
CTP over time and clip values in the range of [0, 100] HU. We then flip the image
laterally (i.e. w.r.t. a sagittal plane) across its geometrical center and rotate the
flipped image back to minimize the mean squared error (MSE). This rotation is
applied to the unclipped, flipped volume and the result is concatenated to the
original CTP volume. Each voxel now has 64 features. Before we let the network
crunch this data, we make sure to suppress the influence of extreme outliers
(e.g. streak artifacts) via clipping in the range of [0, 150] HU. We furthermore
normalize the data to zero mean and unit variance.
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3.2 Data Augmentation

To artificially increase the number of training samples and regularize the net-
work as such we augment input images on the level of the image and on the level
of the segments, which are extracted from the image. At the image level, the
image is rotated with 0.5 probability according to N (0, 10◦) and Gaussian noise
N (0, 0.03) is added to the original and flipped part independently. At the seg-
ment level, the segments can be flipped laterally with 0.5 probability, the inten-
sities can be shifted N (0, 0.01) and scaled N (1, 0.01), and the time series can be
shifted forward or backward in time U(−6, 6). We also perform contrast scaling
of the segments, where we scale the intensity differences of a certain time point
w.r.t. the first time point according to a Lognormal distribution with zero mean
and a standard deviation of 0.3 [5].

3.3 Class Balancing

Based on the images obtained before normalization we construct a binary head
mask from where the intensities lie in the range [0, 150] HU. This head mask
is used to mask the output of the network both during training and testing.
Network input segment centers are sampled uniformly from within this region.
In order to further balance the class observations we use a weighted binary cross-
entropy with weights calculated to equalize the prior class probabilities across
the training data. Upon prediction we re-calibrate the probabilities.

Fig. 3. The CNN takes as input a 97× 97 2D segment with 64 features, sampled from
the concatenated original and contra-lateral volumes (see Fig. 2) and outputs lesion
probabilities for the corresponding 29 × 29 segment. Our U-Net-like architecture con-
sists of two pooling (green arrows) and two up-sampling layers (red arrows). Together
with all the 3× 3 convolution layers (blue layers; each of which has 64 filters) involved,
this results in a receptive field of 69× 69 voxels. The final three convolution layers are
fully-convolutional with 128 filters. (Color figure online)
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3.4 CNN Architecture

We use a U-Net-like [8] architecture with two pooling and two up-sampling layers,
which respectively downsample or upsample by a factor of three (Fig. 3). Before
each pooling or up-sampling layer (and after the final one), we perform two con-
secutive convolutions with 64 filters of size 3× 3. Two fully-convolutional layers
precede the final layer, each with 128 filters. The parametric ReLU (pReLU)
is used as the non-linear activation function. We use batch normalization and
local skip connections to improve learning. The CNN is characterized with valid
padding, an in-plane receptive field size of 69× 69 voxels and a total number of
470,657 trainable parameters. Both during training and testing we use input seg-
ments with a fixed size of 97× 97 with 64 features to predict an output segment
of size 29 × 29.

3.5 Experiments

We train the CNN using five-fold cross validation on the ISLES 2018 training
set. The predictions of each model will be evaluated and averaged during test
time. We use the ADAM optimizer for 4000 epochs with an initial learning rate
of 10−4 and decrease the learning rate with a factor of 10 after each 1000 epochs.
Both decay rate parameters for ADAM were fixed at 0.9. Here, one epoch iterates
through 1280 segments, extracted from 16 subjects and processed in batches of
64 segments. We use L1 and L2 weight regularization with weights of 10−4 and
10−2, respectively. Every 20 epochs we run the model on the (left-out) validation
set. The model that optimizes the validation cross-entropy and the model that
optimizes the validation Dice score, both at a threshold of 0.50, were stored,
CE0.50 and D0.50 respectively.

Table 1. The results of our models w.r.t. different metrics. Rows: The evaluated met-
rics: Dice score, Hausdorff distance (in voxels), average distance (in voxels), precision,
recall, average volume difference (in voxels; except for the value for D0.50 @ test, which
is in ml). Columns: The models with the best binary cross-entropy measures on the
validation set during training thresholded at 0.50 (CE0.50) or at 0.11 (the optimal Dice
threshold; CE0.11). The models with the best Dice scores on the validation set during
training thresholded at 0.50 (D0.50) or at 0.30 (the optimal Dice threshold; D0.30). The
results of model D0.50 on the test set (D0.50 @ test).

CE0.50 CE0.11 D0.50 D0.30 D0.50 @ test

Dice score 0.32 ± 0.25 0.50± 0.24 0.46 ± 0.25 0.49 ± 0.24 0.38 ± 0.30

Hausdorff dst. (vxls.) 32.2± 21.6 44.1 ± 30.1 35.8 ± 26.8 44.9 ± 29.1 /

Average dst. (vxls.) 9.0 ± 9.1 7.6 ± 8.4 7.2± 11.6 9.0 ± 11.8 /

Precision 0.55± 0.35 0.43 ± 0.24 0.51 ± 0.29 0.44 ± 0.25 0.47 ± 0.35

Recall 0.24 ± 0.23 0.58± 0.30 0.40 ± 0.26 0.54 ± 0.29 0.44 ± 0.34

Avg. vol. dff. (vxls.) −1546 ± 2858 −1546 ± 2858 296± 2830 296± 2830 17.2± 16.9
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Fig. 4. An example output of model D0.50 for slab number 5 from the validation data. In
each of the eight slices we visualize the expert delineations in blue and the thresholded
segmentations of our model in red. This is a rather good segmentation with a Dice
score of 0.68. (Color figure online)

4 Results and Conclusion

We will compare the results of the models that were found optimal during train-
ing w.r.t. binary cross-entropy (CE0.50) and Dice score (D0.50), and of their opti-
mal threshold derivatives w.r.t. the Dice score, CE0.11 and D0.30 respectively, by
varying the segmentation threshold. In Table 1 these results are listed, as well as
the result of model D0.50 on the test set (D0.50 @ test). Without post Dice score
threshold optimization we notice the better results for the D0.50 model com-
pared to the CE0.50 model. Especially the Dice score and the average volume
difference stand out. Optimizing the thresholds for each of those models w.r.t.
the Dice score could further improve the performance on this metric. Especially
the CE0.50 model benefits from this, explained by the discrepancy between its
precision and recall. Although other methods performed better w.r.t. Dice score,
we opted for model D0.50 for participating the challenge because of lower surface
distances and the lower average volume difference. In Fig. 4 one example seg-
mentation with a Dice score of 0.68 on the validation dataset for our submitted
model is depicted.

Although results are promising, further research is needed. For example, the
registration of the contra-lateral information is far from ideal. The immediate
concatenation could hinder the network to learn the correct use of this contra-
lateral information.
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