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Abstract. Glioblastoma is the most aggressive malignant primary brain
tumor with a poor prognosis. Glioblastoma heterogeneous neuroimaging,
pathologic, and molecular features provide opportunities for subclassifi-
cation, prognostication, and the development of targeted therapies. Mag-
netic resonance imaging has the capability of quantifying specific pheno-
typic imaging features of these tumors. Additional insight into disease
mechanism can be gained by exploring genetics foundations. Here, we use
the gene expressions to evaluate the associations with various quantita-
tive imaging phenomic features extracted from magnetic resonance imag-
ing. We highlight a novel correlation by carrying out multi-stage genome-
wide association tests at the gene-level through a non-parametric corre-
lation framework that allows testing multiple hypotheses about the inte-
grated relationship of imaging phenotype-genotype more efficiently and
less expensive computationally. Our result showed several novel genes
previously associated with glioblastoma and other types of cancers, as
the LRRC46 (chromosome 17), EPGN (chromosome 4) and TUBA1C
(chromosome 12), all associated with our radiographic tumor features.
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1 Introduction

Gliomas are the most common type of primary adult brain tumors that arise
from glial cells. Gliomas have a very heterogeneous landscape, and they can
be classified according to their grade into low-grade glioma, anaplastic glioma,
and glioblastoma. The most common and aggressive type of glioma in adults is
glioblastoma (GBM), which gives to the affected patient average survival time of
only 10 to 18 months. The known molecular classification of GBM into classical,
mesenchymal, neural and proneural subtypes is relatively accepted to be related
to the expression of EGFR, NF1 and PDGFRA/IDH1 genes [1].

Imaging, specifically magnetic resonance imaging (MRI), can offer data
towards promising biomarkers reflecting underlying tumor pathology and bio-
logical function. If imaging phenotypes of GBM obtained from routine clinical
MRI studies can be associated with specific gene expression signatures, quantita-
tive imaging phenotypes will serve as non-invasive surrogates for cancer genomic
events and provide valuable information as to the diagnosis, prognosis, and opti-
mal treatment.

Several radiogenomic studies have been carried out for many diseases [8–16].
For instance for schizophrenia pairs of SNP/Gene and MRI features have been
mapped by using PLINK [8], and Parallel-ICA showed promising results [9].
Batmanghelich et al. [10] proposed a Bayesian framework to relate imaging and
genetic data to phenotypes exploiting connection among these data modalities
simultaneously in Alzheimer. Recently, correlations of connectomic features have
been related to genes which are known to be related to Alzheimer progression
[11]. In contrast to Alzheimer’s disease and schizophrenia, glioma lesions are gen-
erally not spread all over the brain, and local features from MRI can be used.
An imaging-genomic analysis study [12], performed by using the tumor volume
in T2-weighted FLuid-Attenuated Inversion Recovery (T2-FLAIR) images and
large-scale genetic and micro-RNA expression probes demonstrated the poten-
tial for molecular subtyping and showed that the high median expression of
POSTN gene results in a significant decrease in survival, and for that they
used ANOVA and Tukey-Kramer test. Other studies [13,14] showed correlations
between image feature annotations and expression of genes with glioma molec-
ular subtypes [1]. Specifically, Gutman et al. [13] found a significant associa-
tion between contrast-enhanced tumor and these molecular subtypes [1], where
proneural type expressed by PDGFRA/IDH1 gene showed low levels of contrast
enhancement, and the classical type (i.e., primarily described by EGFR ampli-
fication) correlates with the increased percentage of contrast enhancement. The
study used sher exact statistics.

Recent population-based studies have assessed the anatomical location of
GBM in relation to distinct clinically-relevant molecular characteristics, and have
identified the spatial distribution of the tumors being descriptive of their molecu-
lar status [14,17–22]. Furthermore, the emerging research direction of radiomics
has shown promise that texture analysis of the various tumor sub-regions in
radiographic imaging can also be informative of the tumor’s molecular charac-
terization [23–25]. Furthermore, using MRI features for GBM lesions, includ-
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ing texture and shape features, Haruka et al. proposed a classification imaging
method and found three clusters of GBM patients [35]. In their method, they
integrate copy number and gene expression data to estimate the molecular path-
way activity and show that the three clusters reveal not only different molecular
characteristics but also different survival probabilities.

The purpose of this paper is to identify significant associations between gene
expressions, across the whole genome, and quantitative imaging phenomic fea-
tures extracted from multi-modal MRI brain scans of patients diagnosed with
de novo primary GBM. In line with the pre-mentioned studies, here we focus
on evaluating the spatial location and texture features of GBM and investigate
their associations with gene expressions.

2 Materials and Methods

2.1 Data

For the quantitative association analysis conducted here, we utilized a retro-
spective cohort of 135 de novo primary GBM patients from the TCGA-GBM
collection [6], with available pre-operative multi-modal MRI scans in The Can-
cer Imaging Archive (TCIA) [7] and corresponding molecular characterization
in The Cancer Genome Atlas (TGCA). The multi-modal MRI data we utilized
comprise native (T1) and post-contrast T1-weighted (T1Gd), T2-weighted (T2),
and T2-FLAIR modalities. The TCGA-GBM subset of 135 patients were iden-
tified by Bakas et al. [4] as brain scans without any surgically-imposed cavity,
and their co-registered and skull-stripped imaging were provided in the TCIA
Analysis Results together with expert manually annotated segmentation labels
for the various histologically-distinct tumor sub-regions, i.e. enhancing tumor
(ET), non-enhancing tumor (NET), peritumoral edematous/invaded tissue (ED)
(Fig. 1) [4,5]. The total sample size of GBM patients reduced to 88 after evaluat-
ing patients that had available imaging [6] and corresponding gene expressions.
In total, we assessed expression energies for 17815 genes, 11 distinct descriptors
of tumor spatial location (Fig. 2), and 517 radiomic/texture features (Fig. 2) for
each patient’s brain tumor scan [2,4,5].

2.2 Quantitative Imaging Phenomic Features

Radiomic/Texture Features. We extracted an extensive panel of quantita-
tive texture features, volumetrically (in 3D), for each tumor sub-region as pro-
vided by the expert annotations, across all available modalities. Specifically, the
texture features we evaluated (i) capture global characteristics (i.e., variance,
skewness, kurtosis) of each sub-region’s intensity distribution on each modality,
and (ii) include features based on Gray-Level Co-occurrence Matrix (GLCM)
[26] (Fig. 2), Gray-Level Run-Length Matrix (GLRLM) [27–30], Gray-Level Size
Zone Matrix (GLSZM) [28–30], and Neighborhood Gray-Tone Difference Matrix
(NGTDM) [31].
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Fig. 1. Example of a multi-modal MRI brain scan and its corresponding expert seg-
mentation labels.

Spatial Distribution Patterns. Beyond texture features, we collected discrete
spatial information about the anatomical location of each tumor on each brain
scan (Fig. 2). To obtain these spatial distribution patterns we registered all brain
tumor scans in a standardized healthy atlas space using an iterative Expectation-
Maximization framework [3], while incorporating a biophysical tumor growth
model (based on a reaction-diffusion-advection model [32–34]) to account for
tumor mass effects in the brain parenchyma. We then retrieved the spatial dis-
tribution of each tumor according to the discretized anatomical locations of
the (i) specific lobes (i.e., frontal, temporal, parietal, occipital), (ii) insula, (iii)
basal ganglia, (iv) fornix, (v) cerebellum, and (vi) brain stem. In addition, we
also included as distinct features the distances of (i) the tumor core (defined as
the union of ET and NET), and (ii) the ED, from the ventricles.

To produce these quantitative features we have utilized GLISTRboost.
Specifically, in the process to produce segmentations of the various tumor sub-
regions, the generative part [37] of GLISTRboost, following an Expectation-
Maximization framework registers a healthy population probabilistic atlas to
glioma patients’ brain scans while incorporating a biophysical glioma growth
model to account for mass effects. Then, after converting the predicted seg-
mentation in the healthy atlas space, the percentage of the tumor core (i.e.,
enhancing and non-enhancing tumor) is calculated on each of the brain lobes in
this healthy atlas.

2.3 Data Analysis

Initially, we combined the two types of data (imaging - genetics) using the patient
ID as a primary column. As a first stage, we used the gene expressions and the
spatial distribution patterns to perform a non-parametric test of association.
To assess the associations, we computed the Spearman correlation coefficient
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Fig. 2. Illustrative examples of spatial distribution (left) and texture (right) patterns.

(rs) between the gene expressions, individually, as a with each of the spatial
distribution patterns described in Sect. 2.2. We then assessed the significant of
the correlation coefficient by calculating the p-values as described below.

For each quantitative feature and each gene, We obtained the p-value asso-
ciated with Spearman correlation coefficient test statistic. That is, the p-value
of the correlation between a single gene expression with a single feature of the
tumor’s location in the brain. The Spearman correlation coefficient model for a
given feature (y) and given gene expression (x) is;

rs = 1 − 6
∑i=N

i=1 d2i
N(N2 − 1)

(1)

Where di is the difference between the ranks of xi and yi, and N is 88; repre-
senting the number of GBM patients [38]. rs can take any real value between +1
and −1; +1 represents a strong positive association, −1 means a perfect negative
association and 0 indicates no association between the ranks of x and y. Our
hypothesis of interest is:

H0: There is no association between the gene expression and the tumor’s feature
under study

vs

Ha: There is an association between the gene expression and the tumor’s feature
under study, alternatively:
H0: rs = 0 vs H0: rs �= 0

To determine the significance of rs, one can use the t test statistic defined as

tc = rs

√
n − 2
1 − r2s

, (2)
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Fig. 3. Schematic representation of the study’s analysis workflow.

tc follows approximately the Student’s t distribution with a N − 2 degrees of
freedom under the null hypothesis [38]. At a certain significance level, the calcu-
lated value of tc can be compared to the table value obtained from the Student’s
t distribution (as described previously). The significance of rs can also be deter-
mined using the p-value, which is simply the integration, or the area under the
curve from tc to infinity.

Briefly, in this first stage, the association test was initially conducted to six
features of the tumor location (Sect. 2.2). More specifically, for each gene, we
computed six p-values, then considered only the minimum p-value at each gene
(see Fig. 3 for the analysis workflow). The latter is referred to as meta-analysis
in Fig. 3 (step(c)). All results reported in Sect. 3 use the summary statistics of
the meta-analysis. Moreover, out of the all the association results, we excluded
all the genes with p-values greater than or equal 0.05. Here we meant to exclude
the genes that have very low (and not significant) association with the spatial
pattern, which we believe is an important phenotype. This step is referred to as
(d) in Fig. 3. In the second stage, we proceeded with all the genes with p-value
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less than 0.05, excluding the least significant genes, and we carried the same
analysis as in the first stage but using the radiomic features (Sect. 2.2. Table 1
shows the thresholds at both 5% and 10% significance level), along with the
number of genes used and remained in each stage.

Table 1. Number of genes, 5% and 10% thresholds used at each stage of the analysis.

Feature No. genes used 5% threshold 10% threshold Genes after trim

Location 15009 0.000003331 (3.3e−6) 0.000006663 (6.7e−6) 5401

Texture 5401 0.000009258 (9.3e−6) 0.000018515 (1.9e−5) 5370

It is worth mentioning that, out of the total number of genes, we were able to
annotate 15009 genes and assign them to their defined physical locations in the
DNA. We carried on the first stage of the analysis using those genes (Table 1).

3 Results

The incidence of tumors specific for region is summarized in Table 2. The Man-
hattan plot for the p-values obtained from the meta-analysis is illustrated in
Fig. 4. The plot shows two horizontal lines which associate with the thresholds
of 5% significance level (top line), and 10% significance level (bottom line), after
correcting for multiple comparisons. The x-axis is the physical position of genes
in the DNA, and the y-axis is the negative log10 of the p-values. Figure 4 also
shows the qq-plot of all the genes used in the association analysis. Likewise, each
dot corresponds to a p-value of a single gene and −log10 of the p-value is used
instead. The qq-plot reported with each Manhattan plot, and it compares the
observed distribution of p-values (y-axis) to the expected distribution (x-axis),
for each gene tested, where the diagonal line is the null distribution.

Table 2. Number and percentage of patients with tumor per brain region

Loc Vent TC Vent ED Frontal Temporal Parietal Basal Insula Fornix Occipital Cerebellum Brainstem

No 88 88 63 70 62 55 43 26 35 8 24

% 100.00 100.00 71.59 79.55 70.45 62.50 48.86 29.55 39.77 9.09 27.27

Table 3 shows (only) the highest ten p-values and the corresponding genes of
the first stage of the analysis. In this stage, non of the p-values was less than
3.3e−6 or 6.7e−6 (see Table 1); therefore, no gene was significantly associated
with any of the features. Table 3 reports the gene symbol, its start and end
position, the associated p-value and feature, and the chromosome.

We then pruned the genes used in the previous stage to a smaller set, by
removing the genes that have p-values less than 0.05. With the 5401 genes
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Fig. 4. A Manhattan (left) and qq-plot (right) of the associations between the tumor
spatial distribution patterns, and gene expressions. The plot is showing the meta-
analysis results.

Table 3. Top 10 genes: non-parametric association between genes and brain tumor
location features in glioblastoma ordered according to the absolute value of rs.

Gene Start End rs p-value Spatial pattern Chromosome

TCN1 59620272 59634048 0.454 8.814e−06 DIST Vent TC chr11

OR2AE1 99473609 99474680 −0.438 2.010e−05 Basal G chr7

KIF13A 17759413 17987854 −0.435 2.271e−05 Basal G chr6

NCBP2 196662272 196669468 0.432 2.619e−05 Occipital chr3

RLN2 5299867 5304969 0.426 3.527e−05 Basal G chr9

KCNK9 140613080 140715299 0.426 3.533e−05 Parietal chr8

B3GALT6 1167628 1170421 −0.423 3.938e−05 Brain stem chr1

FOXD3 63788729 63790797 0.414 6.0483e−05 Parietal chr1

KISS1R 917286 921015 0.414 6.078e−05 Brain stem chr19

PLEKHA8 30067019 30170096 −0.413 6.362−05 Insula chr7

remaining, we took over the second stage and repeated the same analysis with
the texture characteristics of the tumor. The Manhattan and qq-plot for the
texture features are shown in Fig. 5, and Table 4 shows the top 10 significant
genes. Total of significant genes in this stage is 37 (at 5% significance level).

4 Discussion

GBM is a fatal malignant disease that so far is incurable. The identification
of genetic risk factors that affect the tumor characteristics improves our under-
standing of the underlying biological processes for GBM, and contribute to thera-
peutic discovery. In this study, we proposed a framework that allows quantifying
the non-parametric correlations to test associations between gene expressions
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Fig. 5. A Manhattan (left) and qq-plot (right) of the associations between the tumor
texture features, and gene expressions. The plot is showing the meta-analysis results.

Table 4. Top 10 significant genes associated with texture features of specific GBM
sub-regions from specific modalities ordered according to the absolute value of rs.

Gene Start End rs p-value Feature Sub-region (MRI) Chromosome

LRRC46 45908992 45915079 0.537 7.102e−08 GLCM Variance ED (T2) chr17

USP38 144106069 144144983 −0.511 3.648e−07 GLSZM SZLGE ED (T1Gd) chr4

EPGN 75174189 75181024 0.501 6.542e−07 GLSZM LGZE ED (T1Gd) chr4

TUBA1C 49582518 49667114 0.4999 7.096e−07 GLRLM RLV NET (T1) chr12

ZNF284 44576296 44593766 −0.498 7.907e−07 GLRLM LGRE NET (T1Gd) chr19

IPO8 30781921 30848920 −0.490 1.243e−06 GLRLM GLV ET (T2) chr12

MMP7 102391238 102401484 0.490 1.260e−06 GLCM Auto Corr ET (T1Gd) chr11

TLL2 98124362 98273675 0.489 1.342e−06 GLSZM LGZE NET (T1Gd) chr10

TRIM55 67039130 67087720 0.488 1.408e−06 GLSZM LGZE ED (T1Gd) chr8

UBAP1 34179002 34252521 −0.486 1.582e−06 GLSZM SZLGE ET (T2) chr9

and different quantitative imaging phenomic characteristics of GBM. Our result
has shown a high genetic enrichment through the Manhattan and qq-plots, espe-
cially for the texture features (Fig. 5).

Our results highlighted several genes that significantly associated with the
tumor texture features, including LRRC46, USP38, EPGN, TUBA1C, ZNF284,
IPO8, MMP7, TLL2, TRIM55 and UBAP1, as the top ten significant genes
(Table 4). However, there are, in total, 37 genes are significantly associated
with the texture features (Fig. 5). EPGN expression associates significantly
(rs = 0.501, p-value = 6.542e−07) with GLSZM LGZE in the T1Gd modality
(Table 4). EPGN previously reported to be one of the top ten upregulated genes
after EBLN1 silencing in oligodendroglia cells [39]. Moreover, the emergence of
EPGN was marked in another study by Duhem-Tonnelle et al. in EGF ligands
expression profile, between glioblastoma cell lines and biopsies [40]. Located at
chromosome 4, USP38 (rs = −0.511, p-value = 3.648e−07) [41]. Moreover, as it
is illustrated in the Manhattan plot of the spatial features of the tumor (Fig. 4
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and Table 3), no gene shows significant association with any of the location fea-
tures. In addition to the latter, the number of GBM lesions in the cerebellum in
clinical settings are quite rare [36], as also shown in our summary Table 2. Our
study can give some insight into this rare type of GBM lesion. Nevertheless, the
investigation excluding the patients having those lesions have to be repeated as
a future work.

5 Conclusion

As the understanding of gliomagenesis grows, several medical imaging biomark-
ers and genetic variations can be identified, and new hypotheses can be formed.
The hereby proposed genome-wide association framework aims at identifying
differentially expressed genes that significantly correlate with various aspects of
GBM. The identification of such genes may contribute to the development of tar-
geted therapies that focus on the resistance mechanisms of individual patients.

Through the systematic testing of associations and shrinking of the num-
ber of genes at every stage, this pipeline facilitates the evaluation of various
hypotheses and reduces the computational complexity. In future work, we plan
to extend the study by integrating more quantitative imaging phenomic tumor
characteristics, inclusive of morphological, intensity, and volumetric descriptors,
as well as parameters derived by biophysical tumor growth modeling.
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