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Abstract. In this paper, we thoroughly investigate the power of Deep
Convolutional Neural Networks (ConvNets) for classification of brain
tumors using multi-sequence MR images. First we propose three Con-
vNets, which are trained from scratch, on MRI patches, slices, and multi-
planar volumetric slices. The suitability of transfer learning for the task is
next studied by applying two existing ConvNets models (VGGNet and
ResNet) pre-trained on ImageNet dataset, through fine-tuning of the
last few layers. Leave-one-patient-out (LOPO) testing scheme is used
to evaluate the performance of the ConvNets. Results demonstrate that
ConvNet achieves better accuracy in all cases where the model is trained
on the multi-planar volumetric dataset. Unlike conventional models, it
obtains a testing accuracy of 97% without any additional effort towards
extraction and selection of features. We also study the properties of self-
learned kernels/filters in different layers, through visualization of the
intermediate layer outputs.
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1 Introduction

Glioblastoma Multiforme constitute 80% of all malignant brain tumors originat-
ing from the glial cells in the central nervous system. Based on the aggressiveness
and infiltrative nature of the gliomas the World Health Organization (WHO)
broadly classified them into two categories, viz. Low-grade gliomas (LGG), con-
sisting of low-grade and intermediate-grade gliomas (WHO grades II and III),
and high-grade gliomas (HGG) or glioblastoma multiforme (GBM) (WHO grade
IV) [1]. Although most of the LGG tumors have slower growth rate compared
to HGG and are responsive to treatment, there is a subgroup of LGG tumors
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which (if not diagnosed earlier and left untreated) can lead to GBM. Histological
grading, based on stereotactic biopsy test, is the gold standard for detecting the
grade of brain tumors. The biopsy procedure requires the neurosurgeon to drill
a small hole into the skull guided by MRI, from which a sample of the tissue is
collected. There are many risk factors involving the biopsy test, including bleed-
ing from the tumor and brain due to the biopsy needle, which can cause severe
migraine, stroke, coma and even death. Other risks involve infection or seizures
[2] and misleading histological grading [3]. In this context multi-sequence MRI
plays a major role in the detection, diagnosis, and management of brain can-
cers in a non-invasive manner. Decoding of tumor phenotype using noninvasive
imaging is a recent field of research, known as Radiomics [4], and involves the
extraction of a large number of quantitative imaging features that may not be
apparent to the human eye. Quantitative imaging features, extracted from MR
images, have been investigated in literature for the assessment of brain tumors
[5]. Ref. [6] presents an adaptive neuro-fuzzy classifier, based on linguistic hedges
(ANFC-LH), for predicting the brain tumor grade using 56 3D quantitative MRI
features extracted from the corresponding segmented tumor volume(s).

Although the techniques demonstrate good disease classification, their depen-
dence on hand-crafted features requires extensive domain knowledge, involves
human bias, and is problem-specific. Subsequently manual or semi-automatic
localization and segmentation of the region of interest (ROI) or volume of inter-
est (VOI) is also needed to extract the quantitative imaging features [7]. Con-
vNets offer state-of-the-art framework for image recognition or classification [8].
These networks automatically learn mid-level and high-level representations or
abstractions from the input training data, in the form of convolution filters that
are updated during the training process. It works directly on raw input (image)
data, and learn the underlying representative features of the input which are
hierarchically complex, thereby ruling out the need for specialized hand-crafted
image features. However training a ConvNet from scratch is generally difficult
because it essentially requires large training data. In medical applications data
is typically scarce, and expert annotation is expensive. Transfer learning offers
a promising alternative, in case of inadequate data, to fine tune a ConvNet pre-
trained on a large set of available labeled images from some other category [9].

In this paper we exhaustively investigate the performance of ConvNets,
with and without transfer learning, for non-invasive brain tumor detection and
grade prediction from multi-sequence MRI. Tumors are typically heterogeneous,
depending on cancer subtypes, and contain a mixture of structural and patch-
level variability. Prediction of the grade of a tumor may thus be based on either
the image patch containing the tumor, or the 2D MRI slice containing the image
of the whole brain including the tumor, or the 3D MRI volume encompassing
the full image of the head enclosing the tumor. While in the first case only the
tumor patch is necessary as input, the other two cases require the ConvNet to
learn to localize the ROI (or VOI) followed by its classification. Therefore, the
first case needs only classification while the other two cases additionally require
detection or localization. Since the performance and complexity of ConvNets
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depend on the difficulty level of the problem and the type of input data rep-
resentation, we prepare here three kinds viz. (i) Patch-based, (ii) Slice-based,
and (iii) Volume-based data, from the original MRI dataset. Three ConvNet
models are developed corresponding to each case, and trained from scratch. We
also compare two state-of-the-art ConvNet architectures, viz. VGGNet [10] and
ResNet [8], with parameters pre-trained on ImageNet using transfer learning
(via fine-tuning).

The rest of the paper is organized as follows. Section 2 provides details
about the data, its preparation in patch, slice and volumetric modes, along with
some preliminaries of ConvNets and transfer learning. Section 3 introduces the
proposed ConvNet architectures. Section 4 describes the experimental results,
demonstrating the effectiveness in terms of both qualitative and quantitative.
Finally conclusions are provided in Sect. 5.

2 Materials and Methods

In this section we provide a brief description of the data preparation at three
levels of resolution, followed by an introduction to convolutional neural networks
and transfer learning.

2.1 Brain Tumor Data

All experiments are performed on the TCGA-GBM [11] and TCGA-LGG [12]
datasets, downloaded from The Cancer Imaging Archive (TCIA) [13]. The
TCGA GBM and LGG dataset consists of 262 and 199 cases. We consider
four MRI sequences for a patient MRI scan, encompassing native (T1) and
post-contrast enhanced T1-weighted (T1C), T2-weighted (T2), and T2 Fluid-
Attenuated Inversion Recovery (FLAIR). Since the available data is inadequate
to train a 3D ConvNet model, here we formulate 2D ConvNet models based
on the MRI patches (encompassing the tumor region) and slices, followed by a
multi-planar slice-based ConvNet model that incorporates the volumetric infor-
mation as well.

Patch-Based Dataset: The slice with the largest tumor region is first identi-
fied. Keeping this slice in the middle, a set of slices before and after it are consid-
ered for extracting 2D patches containing the tumor regions using a bounding-
box. This bounding-box is marked, corresponding to each slice, based on the
ground truth image. The enclosed image region is then extracted. We use a
set of 20 slices for extracting the patches. In case of MRI volumes from HGG
(LGG) patients, four (ten) 2D patches [with a skip over 5 (4) slices] are extracted
for each of the MR sequences. Therefore a total of 262 × 4 = 1048 HGG and
199 × 5 = 995 LGG patches, with four channels each, constitute this dataset.

Slice-Based Dataset: Complete 2D slices, with visible tumor region, are
extracted from the MRI volume. The slice with the largest tumor region, along
with a set of 20 slices before and after it, are extracted from the MRI volume in
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a sequence similar to that of the patch-based approach. While for HGG patients
4 (with a skip over 5) slices are extracted, in the case of LGG patients 10 (with
a skip of 2) slices are used.

Multi-planar Volumetric Dataset: Here 2D MRI slices are extracted along
all three anatomical planes, viz. axial (X-Z axes), coronal (Y -X axes), and
sagittal (Y -Z axes), in a manner similar to that described above.

2.2 Convolutional Neural Networks

The fundamental constituents of a ConvNet consist of the input, convolution,
activation, pooling and fully-connected layers. Some additional layers include
the dropout, and batch-normalization layers.

Input Layer: This serves as the entry point of the ConvNet, accepting the raw
pixel value of the input image. Here input is a 4-channel brain MRI patch/slice
denoted by I ∈ R

4×w×h, where w and h represent the resolution of the image.

Convolution Layer: It is the core building block of a ConvNet. Each convo-
lution layer is composed of a filter bank (set of convolutional filters/kernels of
same width and height). A convolutional layer takes an image or feature maps
as input, and performs the convolution operation between the input and each of
these filters by sliding (as stride) the filter over the image to generate a set of
(same as the number of filters) activation maps or the feature map.

Activation Layer: Output responses of the convolution and fully connected lay-
ers pass through some nonlinear activation function, such as a Rectified Linear
Unit (ReLU), for transforming the data. ReLU, is a popular activation func-
tion for deep neural networks due to its computational efficiency and reduced
likelihood of vanishing gradient.

Pooling Layer: This follows each convolution layer to typically reduce compu-
tational complexity by downsampling of the convoluted response maps. It com-
bines spatially close, possibly redundant, features in the feature maps; thereby,
making the representation more compact and invariant to small changes in an
image like the insignificant details.

Fully-Connected Layer: The features learned through a series of convolu-
tional and pooling layers are eventually fed to a fully-connected layer, typically
a Multilayer Perceptron. The term “fully-connected” implies that every neuron
in a layer is connected to every neuron of the following layer. The purpose of
the fully-connected layer is to use these features for categorizing the input image
into different classes, based on the training dataset.

Additional layers like Batch-Normalization reduce initial covariate shift. The
cost function for the ConvNets is chosen as binary cross-entropy (for a two-class
problem).
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2.3 Transfer Learning

Typically the early layers of a ConvNet learn low-level image features, which are
applicable to most vision tasks. The later layers, on the other hand, learn high-
level features which are more application-specific. Therefore, shallow fine-tuning
of the last few layers is usually sufficient for transfer learning. A common practice
is to replace the last fully-connected layer of the pre-trained ConvNet with a
new fully-connected layer, having as many neurons as the number of classes in
the new target application. The rest of the weights, in the remaining layers, of
the pre-trained network are retained. However, when the distance between the
source and target applications is significant than one may need to induce deeper
fine-tuning. This is equivalent to training a shallow neural network with one or
more hidden layers. An effective strategy is to initiate fine-tuning from the last
layer, and then incrementally include deeper layers in the tuning process until
the desired performance is achieved.

3 ConvNets for Brain Tumor Grading

The ConvNet architectures are illustrated in Fig. 1. PatchNet is trained on the
patch-based dataset, and provides the probability of a patch belong to HGG or
LGG. SliceNet gets trained on the slice-based dataset, and predicts the proba-
bility of a slice being from HGG or LGG. Finally VolumeNet is trained on the
multi-planar volumetric dataset, and predicts the grade of a tumor from its 3D
representation using the multi-planar 3D MRI data. We use filters of size (3×3)
for our ConvNet architectures. A greater number of filters, involving deeper con-
volution layers, allows for more feature maps to be generated. This compensates
for the decrease in size of each feature map caused by “valid” convolution and
pooling layers. Due to the complexity of the problem and bigger size of the input
image, the SliceNet and VolumeNet architectures are deeper as compared to the
PatchNet.

Pre-trained VGGNet (16 layers), and ResNet (50 layers) architectures,
trained on the ImageNet dataset, are employed for transfer learning. Even though
ResNet is deeper than VGGNet, the model size of ResNet is substantially smaller
due to the usage of global average pooling rather than fully-connected layers.
Transferring from the non-medical to the medical image domain is achieved
through fine-tuning of the last convolutional block of each model, along with the
fully-connected layer (top-level classifier) of each model. Fine-tuning of a trained
network is achieved by retraining on the new dataset, while involving very small
weight updates.

Since the base models were trained on RGB images, and accept single input
with three channels, we train and test them on the slice-based dataset involv-
ing three MR sequences (T1C, T2, FLAIR). The T1C sequence was found to
perform better than T1, when used in conjunction with T2 and FLAIR. The
following section presents the results for the proposed three level ConvNet archi-
tectures, along with that of the fine-tuned models involving transfer learning.
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Fig. 1. Three level ConvNet architectures (a) PatchNet, (b) SliceNet, and (c) Vol-
umeNet.

4 Experimental Results

The ConvNets were developed using TensorFlow, with Keras in Python. The
experiments were performed on a desktop machine with Intel i7 CPU (clock
speed 3.40 GHz), having 4 cores, 32 GB RAM, and NVIDIA GeForce GTX 1080
GPU with 8 GB VRAM. The operating system was Ubuntu 16.04. The quanti-
tative and qualitative evaluation of the resuls are elaborated below.

We used leave-one-patient-out (LOPO) test scheme for quantitative evalua-
tion. Although LOPO test scheme is computationally expensive, it allows avail-
ability of more data as required for ConvNets training. LOPO testing is robust
and well-suited to our application, with results being generated for each indi-
vidual patient. Therefore, in cases of misclassification, a patient sample may
be further investigated. The ConvNet models PatchNet, SliceNet, VolumeNet,
were trained on the corresponding datasets using Stochastic Gradient Descent
(SGD) optimization algorithm with learning rate = 0.001 and momentum = 0.9,
using mini-batches of size 32 samples generated from the corresponding training
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dataset. A small part of the training set (20%) was used for validating the Con-
vNet model after each training epoch, for parameter selection and detection of
overfitting.

Since deep ConvNets entail a large number of free trainable parameters, the
effective number of training samples were artificially enhanced using real-time
data augmentation – through some linear transformation. Training and valida-
tion performance of the three ConvNets were measured using Accuracy and
F1Score. In the presence of imbalanced data one typically prefers F1Score over
Accuracy because the former considers both false positives and false negatives
during computation. Training and validation Accuracy and loss, and F1Score
on the validation dataset, are presented in Fig. 2 for the three proposed Con-
vNets, trained from scratch, along with that for the two pre-trained ConvNets
(VGGNet, and ResNet). The plots demonstrate that VolumeNet gives the high-
est classification performance during training, reaching maximum accuracy on
the training set (100%) and the validation set (98%) within just 20 epochs.
Although the performance of PatchNet and SliceNet is quite similar on the vali-
dation set (PatchNet - 90%, SliceNet - 92%), it is observed that SliceNet achieves
better accuracy (95%) on the training set (perhaps due to overfitting after 50
epochs). The performance of two the pre-trained models (VGGNet and ResNet)
exhibit similar results, with both achieving around 85% accuracy on the valida-
tion set. All the networks reached a plateau after the 50th epoch. This establishes
the superiority of the 3D volumetric level processing of VolumeNet.

Fig. 2. Comparative performance of the networks.

After training, the networks were evaluated on the hold-out test set employ-
ing majority voting. Each patch or slice from the test dataset was from a single
test patient in the LOPO framework, and was categorized as HGG or LGG. The
class with maximum number of slices or patches correctly classified was indica-
tive of the grade of the tumor. In case of equal votes the patient was marked as
“ambiguous”. The LOPO testing scores are displayed in Table 1. VolumeNet is
observed to achieve the best LOPO test accuracy (97.19%), with zero “ambigu-
ous” cases as compared to the other four networks. SliceNet is also found to
provide good LOPO test accuracy (90.18%). Both the pre-trained models show
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Table 1. Comparative LOPO test performance

ConvNets Classified Misclassified Ambiguous Accuracy

PatchNet 242 39 4 84.91%

SliceNet 257 26 2 90.18%

VolumeNet 277 8 0 97.19%

VGGNet 239 40 6 83.86%

ResNet 242 42 1 84.91%

(a)

(b)

(c)

(d)

and shape components of the tumor
(e)

Fig. 3. (a) Four sequences of an MRI slice from a sample HGG patient. Intermediate
layer outputs/feature maps, generated by SliceNet, at different levels by (b) Conv1, (c)
Conv2, (d) Conv3 and (e) Conv4.

similar LOPO test accuracy as PatchNet. This is interesting because it demon-
strates that with a little fine-tuning one can achieve a test accuracy similar to
that by the patch-level ConvNet trained from scratch on a specific dataset.

The ConvNets were next investigated through visual analysis of their interme-
diate layers. Visualizing the output of any convolution layer can help determine
the description of the learned kernels. Figure 3 illustrates the intermediate convo-
lution layer outputs (after ReLU activation) of the proposed SliceNet (Fig. 1(b))
architecture on sample MRI slices from an HGG patient.

The visualization of the first convolution layer activations (or feature maps)
(Fig. 3(b)) indicates that the ConvNet has learned a variety of filters to detect
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edges and distinguish between different brain tissues like white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF), skull and background. Most impor-
tantly, some of the filters could isolate the ROI (or the tumor); on the basis of
which the whole MRI slice may be classified. Most of the feature maps generated
by the second convolution layer (Fig. 3(c)) mainly highlight the tumor region
and its subregions; like enhancing tumor structures, surrounding cystic/necrotic
components and the edema region of the tumor. Thus the filters in the second
convolution layer learn to extract deeper features from the tumor by focusing on
the ROI (or tumor). The texture and shape of the tumor get enhanced in the fea-
ture maps generated from the third convolution layer (Fig. 3(d)). For example,
small, distributed, irregular tumor cells get enhanced (one of the most impor-
tant tumor grading criteria called “CE-Heterogeneity”). Finally the last layer
(Fig. 3(e)) extracts detailed information about more discriminating features, by
combining these to produce a clear distinction between images of different types
of tumors.

5 Conclusion

An exhaustive study was made to demonstrate the effectiveness of ConvNets
for non-invasive, automated detection and grading of brain tumors from multi-
sequence MR images. Three novel ConvNet architectures were developed for
distinguishing between HGG and LGG. Three level ConvNet architectures were
designed to handle images at patch, slice and multi-planar modes. This was fol-
lowed by exploring transfer learning for the same task, by fine-tuning two existing
ConvNet models. The scheme for incorporating volumetric tumor information,
using multi-planar MRI slices, achieved the best test accuracy of 97.19%. Visual-
ization of the intermediate layer outputs/feature maps demonstrated the role of
kernels/filters in the convolution layers in automatically learning to detect tumor
features closely resembling different tumor grading criteria. It was also observed
that existing ConvNets, trained on natural images, performed adequately just
by fine-tuning their final convolution layer on the MRI dataset. This investiga-
tion allows us to conclude that deep ConvNets could be a feasible alternative to
surgical biopsy for brain tumors.
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