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Abstract. Reliably modeling normality and differentiating abnormal
appearances from normal cases is a very appealing approach for detect-
ing pathologies in medical images. A plethora of such unsupervised
anomaly detection approaches has been made in the medical domain,
based on statistical methods, content-based retrieval, clustering and
recently also deep learning. Previous approaches towards deep unsuper-
vised anomaly detection model local patches of normal anatomy with
variants of Autoencoders or GANs, and detect anomalies either as out-
liers in the learned feature space or from large reconstruction errors.
In contrast to these patch-based approaches, we show that deep spatial
autoencoding models can be efficiently used to capture normal anatomi-
cal variability of entire 2D brain MR slices. A variety of experiments on
real MR data containing MS lesions corroborates our hypothesis that we
can detect and even delineate anomalies in brain MR images by simply
comparing input images to their reconstruction. Results show that con-
straints on the latent space and adversarial training can further improve
the segmentation performance over standard deep representation
learning.

1 Introduction

Brain MR images are frequently acquired for detecting and diagnosing patholo-
gies, monitoring disease progression and treatment planning. The manual iden-
tification and segmentation of pathologies in brain MR data is a tedious and
time-consuming task. In an attempt to aid the detection and delineation of brain
lesions arising from Multiple Sclerosis (MS), tumors or ischemias, the medical
image analysis community has proposed a great variety of methods. Outstanding
levels of performance have been achieved with recent supervised deep learning
methods. However, their training requires vast amounts of labeled data which
often is not available. Further, these approaches suffer from limited generaliza-
tion since in general, training data rarely comprises the gamut of all possible
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Fig. 1. The proposed anomaly detection concept at a glance. A simple subtraction of
the reconstructed image from the input reveals lesions in the brain.

pathological appearances [17]. Given the constrained anatomical variability of
the healthy brain, an alternative approach is to model the distribution of healthy
brains, and both detect and delineate pathologies as deviations from the norm.
Here, we formulate the problem of brain lesion detection and delineation as
an unsupervised anomaly detection (UAD) task based on state-of-the-art deep
representation learning, requiring only a set of normal data and no segmentation-
labels at all. The detection and delineation of pathologies are thereby obtained
from a pixel-wise reconstruction error (Fig. 1). To the best of our knowledge, this
is the first application of deep convolutional representation learning for UAD in
brain MR images which operates on entire MR slices at full resolution.

Related Work. In the medical field, many efforts have been made towards
UAD, which can be grouped into methods based on statistical modeling, content-
based retrieval or clustering and outlier detection [17]. Weiss et al. [19] employed
Dictionary Learning and Sparse Coding to learn a representation of normal brain
patches in order to detect MS lesions. Other unsupervised MS lesion segmen-
tation methods rely on thresholding and 3D connected component analysis [6]
or fuzzy c-means clustering with topology constraints [16]. Notably, only few
approaches have been made towards deep learning based UAD. Vaidhya et al.
[18] utilized unsupervised 3D Stacked Denoising Autoencoders for patch-based
glioma detection and segmentation in brain MR images, however only as a pre-
training step for a supervised model. Recently, Schlegl et al. [13] presented the
AnoGAN framework, in which they create a rich generative model of normal reti-
nal Optical Coherence Tomography (OCT) patches using a Generative Adver-
sarial Network (GAN). Assuming that the model cannot properly reconstruct
abnormal samples, they classify query patches as either anomalous or normal by
trying to optimize the latent code of the GAN based on a novel mapping score,
effectively also leading to a delineation of the anomalous region in the input
data. In earlier work, Seeböck et al. [14] trained an Autoencoder and utilized
a one-class SVM on the compressed latent space to distinguish between normal
and anomalous OCT patches. A plethora of work in the field of deep learn-
ing based UAD has been devoted to videos primarily based on Autoencoders
(AEs) due to their ability to express non-linear transformations and the ability
to detect anomalies directly from poor reconstructions of input data [2,4,12].
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Fig. 2. An overview of our VAE-GAN for anomaly segmentation

Very recently, first attempts have also been made with deep generative models
such as Variational Autoencoders [1,7] (VAEs), however limited to dense neural
networks and 1D data. Noteworthy, most of this work focused on the detection
rather than the delineation of anomalies.

A major advantage of AEs is their ability to reconstruct images with fairly
high resolution thanks to a supervised training signal coming from the recon-
struction objective. Unfortunately, they suffer from memorization and tend to
produce blurry images. Unconditional GANs [3] have shown to produce very
sharp images from random noise thanks to adversarial training, however the
training is very unstable and the generative process is prone to mode collapse.
VAEs have also shown that AEs can be turned into generative models, and
both concepts have also been combined into the VAE-GAN [8] and α-GAN [11],
yielding frameworks with the best of both worlds.

Contribution. Inarguably, AnoGAN is a great concept for UAD in patch-
based and small resolution scenarios, but as our experiments show, uncondi-
tional GANs lack the capability to reliably synthesize complex, high resolution
brain MR images. Further, the approach requires a time-consuming iterative
optimization of the latent code. To overcome these issues, we propose to utilize
deep convolutional autoencoders to build models that capture “global” normal
anatomical appearance rather than a variety of local patches. In order to deter-
mine the benefits of mapping healthy anatomy to a well-structured, latent man-
ifold, we also employ the VAE. In our experiments, we first compare dense and
spatial variants of AEs and VAEs in the task of unsupervised MS lesion delin-
eation and report significant improvements of spatial autoencoding models over
traditional ones. In addition, we further augment the spatial variants with an
adversarial network to improve realism of the reconstructed samples, ultimately
turning the models into an AE-GAN [9] and a novel spatial VAE-GAN [8]. With
the help of adversarial training, we notice additional minor, but insignificant
improvements.

2 Methodology

As a novelty in this work, we employ deep generative representation learning to
model the distribution of the healthy brain, which should enable the model to
fully reconstruct healthy brain anatomy while failing to reconstruct anomalous
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lesions in images of a diseased brain. Therefore, we utilize an adaptation of the
VAE-GAN [8] to establish a parametric mapping from input images x ∈ R

H×W

to a lower dimensional representation z ∈ R
d and back to high quality image

reconstructions x̂ ∈ R
H×W using an encoder Enc(·; θ) and a decoder Dec(·;φ),

with model parameters θ and φ, respectively:

z ∼ Enc(x; θ), x̂ = Dec(z;φ), s.t. z ∼ N (0, I) (1)

Like in [8], the latent space z is constrained to follow a multivariate normal
distribution (MVN) N (0, I), which we leverage for encoding images of normal
brain anatomy. Further, we employ a discriminator network Dis(·;ψ) with model
parameters ψ which classifies its input as either real or reconstructed.

Training. We optimize the framework using two loss functions in an alternating
fashion. The parameters of the VAE component of the model are optimized using:

LV AE = λ1Lrec + λ2Lprior + λ3Ladv

= λ1‖x − x̂‖1 + λ2DKL(z||N (0, I)) − λ3 log(Dis(x̂)) (2)

The discriminator parameters are trained as commonly seen in the GAN frame-
work [3]:

LDis = − log(Dis(x)) − log(1 − Dis(x̂)), (3)

Originally, VAE-GAN used an abstract reconstruction loss on the latent space
of the discriminator Dis rather than a pixelwise reconstruction objective Lrec,
which was not helpful for our purpose. For Lrec, we thus used the pixelwise �1-
distance between input image and reconstruction. Lprior is the KL-Divergence
between the distribution of generated z and a MVN, which is only used to reg-
ularize the weights θ of the encoder. The third part Ladv is the adversarial loss
which forces the decoder to generate images that are likely to fool the discrimina-
tor in its task to distinguish between real and reconstructed images. Both LV AE

and LDis are used for optimization in an alternating manner, i.e. for every train-
ing batch, first the discriminator is trained, then the encoder-decoder is updated
to produce more realistic reconstructions.

A peculiarity of our approach is the fully convolutional encoder-decoder archi-
tecture which we use in order to preserve spatial information in the latent space,
i.e. z ∈ R

h×w×c is a multidimensional tensor. Figure 2 shows our VAE-GAN,
and a depiction of different AE architectures which we also compare is given in
Fig. 3.

Distinction from Other Autoencoding Models. Setting λ3 = 0 in Eq. 2
ultimately turns the framework into a VAE. Further, setting λ2 = 0 and replac-
ing the stochastic bottleneck z ∼ Enc(x; θ) with a deterministic z = Enc(x; θ)
directly regressed by the encoder yields a normal AE. Note that for both the AE
and VAE, no discriminator network is required.
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(a) Dense Autoencoder dAE (b) Spatial Autoencoder sAE

(c) Dense Variational Autoencoder dVAE (d) Spatial Variational Autoencoder sVAE

Fig. 3. An overview of different Autoencoder frameworks

Anomaly Detection. Once a model is trained, anomalies are delineated by
(1) computing the pixelwise �1-distance between an input image and its recon-
struction, (2) applying a median filter to the resulting residual image to remove
tiny structures and (3) thresholding the filtered image to obtain a binary seg-
mentation.

3 Experiments and Results

Given the variants of AE and our proposed framework, we investigate (i) whether
autoencoding deep networks can be utilized in general to learn to reconstruct
complex brain MR images, (ii) how the dimensionality of z affects the reconstruc-
tion capabilities of a model, (iii) the effect of constraining z to be well structured
and (iv) if adversarial training enhances the quality of reconstructed images. In
the following paragraphs we first introduce the dataset, provide implementa-
tional details and then describe the experiments.

Datasets. For our experiments, we use an inhouse dataset which provides a rich
variety of images of healthy brain anatomy - a necessity for our approach. The
dataset consists of FLAIR images from 83 subjects with healthy brains (training)
and 49 subjects with MS lesions (testing) acquired with a Philips Achieva 3T
scanner. All images have been co-registered to the SRI24 ATLAS [10] to reduce
appearance variability and skull-stripped with ROBEX [5]. The resulting images
have been denoised using CurvatureFlow [15] and normalized into the range [0,1].
In order to obtain sufficient reconstruction quality when training the models, it
was necessary to narrow the view on a region of the brain and thus, per subject,
we focused on 20 consecutive axial slices (256 × 256px) around the midline.

Implementation. We build upon the basic architecture proposed in [8] and per-
form only minor modifications affecting the latent space (see Table 1). Across
different architectures we keep the model complexity of the encoder-decoder
part the same to allow for a valid comparison. All models have been trained for
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Fig. 4. 1st Column: a selected axial slice and its ground-truth segmentation; Succeeding
columns show the filtered difference images (top row) and the resulting segmentation
augmented to the input image (bottom row) for the following models defined in Table 1
(in order): dAE, sAE3, sAE-GAN, sVAE and sVAE-GAN.

150 epochs in minibatches of size 8, using a learning rate of 0.001 for the recon-
struction objective and 0.0001 for the adversarial training on a single nVidia
1080Ti GPU with 8 GB of memory. Thanks to the reconstruction objective, the
training of both the AE-GAN and VAE-GAN was very stable and none of the
models collapsed.

Evaluation Metrics. We measure the performance of the different models by the
mean and standard deviation of the Dice-Score/F1-Score across different testing
patients, the Area under the Precision-Recall Curve (AUPRC) as well as the
average segmentation time per slice.

3.1 Anomaly Detection

Fig. 5. Realistic (left) and
unrealistic (right) samples
generated with AnoGAN.

We first trained normal convolutional AE & VAE
with a dense latent space of dimensionality 512
and found that, besides not being capable of recon-
structing brain lesions, they also lack the capability
to reconstruct fine details such as the brain convo-
lutions (Fig. 4). Similar to [2,4], we then make the
architecture fully convolutional to ensure that spa-
tial information is not lost in the bottleneck of the
model. Notably, this heavily increases the dimen-
sionality of z. We thus vary the number of feature

maps of the spatial AE to investigate the impact on reconstruction quality of
normal and anomalous samples. We identify z = 16× 16× 64 as a good parame-
terization and use it in further experiments on a spatial VAE, a spatial AE-GAN
[9] and a spatial VAE-GAN. Further, we also trained an AnoGAN which we had
to stop and evaluate after 82 epochs of training due to occuring instabilities (see
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Fig. 5 for unrealistic samples produced by AnoGAN after further epochs). The
required iterative reconstruction of testing samples was computed in 100 steps.

Fig. 6. The histogram of
residuals for normal (blue)
and anomalous (red) pixels
using our VAE-GAN. (Color
figure online)

Postprocessing. After reconstruction of all the
slices, we apply some postprocessing steps to reduce
the number of False Positives. For every patient,
we apply a 5 × 5 × 5 median filter to the recon-
structed subvolumes to filter out small residuals,
usually belonging to brain convolutions. Further,
we multiply the residuals with slightly eroded brain
masks to remove skull stripping artifacts, threshold
the resulting volumes to obtain a binary segmenta-
tion mask and remove tiny 3D connected compo-
nents with an area less than 6 voxels as they are
unlikely to be lesions. The threshold is model spe-
cific and determined as the 98th percentile of the

models reconstruction errors on the training dataset. We chose this percentile
empirically from the histogram of residuals obtained from both normal and
abnormal data (Fig. 6). The performance of each model is reported in Table 1.
A comparison of processed residual images and final segmentations of various
models can be seen in Fig. 4.

3.2 Results

The highest AUPRC has been obtained with the VAE-GAN, closely followed
by the AE-GAN. The spatial VAEs and AEs which do not leverage adversarial
training produce only slightly inferior scores, however. All spatial autoencoding
models significantly outperform the ones with a dense bottleneck and, except for
sAE1, also the AnoGAN, though. Expectedly, the DICE-score is not necessarily

Table 1. Results of our experiments on unsupervised MS lesion segmentation. We
report the Dice-Score (mean and std. deviation across patients) as well as the avg.
reconstruction time per sample in seconds. Prefixes d or s stand for dense or spatial.

Modeltype z DICE (μ ± σ) AUPRC Avg. Reco.-time [s]

dAE 512 0.1276 ± 0.1461 0.3575 0.0128

sAE1 8 × 8 × 64 0.1973 ± 0.1906 0.3227 0.0121

sAE3 16 × 16 × 64 0.5855 ± 0.1984 0.6813 0.0118

sAE-GAN [9] 16 × 16 × 64 0.5263 ± 0.1978 0.6988 0.0144

dVAE 512 0.1661 ± 0.1779 0.3229 0.0108

sVAE 16 × 16 × 64 0.5922 ± 0.1958 0.6890 0.0129

sVAE-GAN 16 × 16 × 64 0.6050± 0.1927 0.6906 0.0154

AnoGAN [13] 64 0.3748 ± 0.2192 0.4178 19.8547
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in line with the reported AUPRCs since the 98th percentile is not guaranteed to
be a good threshold for every model.

4 Discussion and Conclusion

Our experiments show that AE & VAE models with dense bottlenecks cannot
reconstruct anomalies, but at the same time lack the capability to reconstruct
important fine details in brain MR images such as brain convolutions. By utiliz-
ing spatial AEs with sufficient bottleneck resolution, i.e. 16 × 16px sized feature
maps, we can mitigate this problem. Noteworthy, a smaller bottleneck resolution
of 8×8px seems to lead to a severe information loss and thus to large reconstruc-
tion errors in general. By further constraining the latent space to follow a MVN
distribution and introducing adversarial training, we notice marginal improve-
ments over the non-generative models, leaving us with the impression that adver-
sarial training is not required in this particular setting. As expected, spatial
autoencoding clearly outperforms the AnoGAN and is considerably faster. While
AnoGAN requires an iterative optimization, which consumes ∼19 s for a single
reconstruction, all of the AE models require only a fraction of a second. Inter-
estingly, even though the models operate on 2D data, the segmentations seem
very consistent among neighboring axial slices.

In summary, we presented a comparison of deep autoencoding models for fast
UAD as well as a novel spatial VAE-GAN which encode the full context of brain
MR slices. We believe that the approach does not only open up opportunities
for unsupervised brain lesion segmentation, but can also act as prior information
for supervised deep learning.
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