
A Framework to Evaluate and Compare
Decision-Mining Techniques

Toon Jouck1(B), Massimiliano de Leoni2, and Benôıt Depaire1

1 UHasselt - Hasselt University, Hasselt, Belgium
{toon.jouck,benoit.depaire}@uhasselt.be

2 Eindhoven University of Technology, Eindhoven, The Netherlands
m.d.leoni@tue.nl

Abstract. During the last decade several decision mining techniques
have been developed to discover the decision perspective of a process
from an event log. The increasing number of decision mining techniques
raises the importance of evaluating the quality of the discovered deci-
sion models and/or decision logic. Currently, the evaluations are limited
because of the small amount of available event logs with decision infor-
mation. To alleviate this limitation, this paper introduces the ‘DataEx-
tend’ technique that allows evaluating and comparing decision-mining
techniques with each other, using a sufficient number of event logs and
process models to generate evaluation results that are statistically signif-
icant. This paper also reports on an initial evaluation using ‘DataExtend’
that involves two techniques to discover decisions, whose results illustrate
that the approach can serve the purpose.

Keywords: Decision mining · Evaluation · Log generation

1 Introduction

Automated process discovery from event logs has mainly focused on the control-
flow perspective of processes. The control-flow perspective can be considered as the
process backbone; however, many other perspectives should also be considered to
ensure that the model is sufficiently accurate. The decision perspective (a.k.a. the
data or case perspective) focuses on how the routing of process-instance executions
is affected by the characteristics of the specific process instance, such as the amount
requested for a loan, and by the outcomes of previous execution steps, e.g. the ver-
ification result. The representation of this decision perspective on a process in an
integrated model or as separate tables is nowadays gaining momentum due to the
introduction of the Decision Model and Notation (DMN) standard [1]. Decision
mining focuses on discovering the decision perspective of a process from an event
log. Some techniques (e.g. [2,3]) augment the routing decisions of a control-flow
model with the decision logic induced from the data attributes in the event log.
Other techniques (e.g. [4,5]) have focused on discovering a decision model in the
form of a Decision Requirements Diagram.

c© Springer Nature Switzerland AG 2019
F. Daniel et al. (Eds.): BPM 2018 Workshops, LNBIP 342, pp. 482–493, 2019.
https://doi.org/10.1007/978-3-030-11641-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11641-5_38&domain=pdf
https://doi.org/10.1007/978-3-030-11641-5_38

A Framework to Evaluate and Compare Decision-Mining Techniques 483

The increasing number of decision mining techniques raises the importance
of evaluating the quality of the discovered decision models and/or decision logic.
Currently, no standard evaluation framework has been proposed in literature.
The techniques presented in [2,4,5] have been evaluated informally: by showing
it can rediscover some example routing decision logic [2], an example decision
model [4] or by demonstrating it on a real-life data set [5]. In contrast, the
techniques of [3,6] have been formally evaluated, yet they have applied their
techniques on a small number of data sets. Due to their small scale, no statistical
tests can be applied to determine the significance of the results.

Current decision mining evaluations have used only 5 of the publicly available
repository of event logs1. Moreover, the repository does not contain a reference
process and decision model and thus the characteristics of the real underlying
process are unknown. As a consequence, the evaluations cannot generalize the
results to conclude that technique A on average outperforms technique B when
confronted with certain process and decision characteristics. However, this is
necessary to gain insights in the strengths and weaknesses of the existing decision
mining techniques.

This paper introduces a framework to evaluate and compare decision mining
techniques with some guarantee that the results are statistically significant, and,
hence, generally valid. The framework, which is presented in Sect. 2, extends the
existing method in [7] to generate random artificial control-flow models with a
decision dimension and simulates those into event logs. It allows users to control
for the process and decision characteristics of the generated event logs as needed
during evaluation. An initial validation was conducted on two techniques in
Sect. 3. Related work is discussed in Sects. 4 and 5 summarizes the paper with
conclusions and future work.

2 Evaluation Framework

Decision mining algorithms discover the decision perspective of a process based
on an event log that contains both control-flow and decision perspectives. Arti-
ficially generating such event logs is challenging. It requires to generate an arti-
ficial sound process model and a decision model with decision rules (i.e. data
dependencies) first and then simulate the process model and rules into a mul-
tiperspective event log. Soundness is a necessary condition for the generated
models with rules as otherwise runtime errors can occur during simulation [8]:

– Deadlock: a case gets stuck in the middle of the process where it is not possible
to execute any activities.

– Dead activity: an activity part of the process can never be executed for any
case.

1 https://data.4tu.nl/repository/collection:event logs real.

https://data.4tu.nl/repository/collection:event_logs_real

484 T. Jouck et al.

Simply adding decision rules to random process models generated by existing
control-flow based techniques, e.g. [7], would not guarantee soundness. On the
other hand, the only existing method for generating multiperspective models and
logs [9] is not tailored for adding decision information to the control-flow model
(see Sect. 4). Therefore, this paper introduces the ‘DataExtend’ approach for
generating artificial event logs with both control-flow and decision perspectives.
In the next part of this Sect. 2.1 we will present the idea behind the ‘DataExtend’
using an example. The final part of this Sect. 2.2 formally describes the steps of
‘DataExtend’.

2.1 Illustration of Generating Multiperspective Logs

The make-to-order process as illustrated in Fig. 1 will be used as an example
throughout the rest of the paper. The process handles the production of a
customer order: it starts with issuing the customer order, then materials are
prepared, the products are produced, possibly followed by an inspection, then
products are packaged, and finally, the products are delivered or the order is
canceled when something went wrong. It contains three XOR-splits (indicated
in the figure as ‘choice x’) where choices between multiple activities need to be
made:

– the first choice is whether to use new materials or mixed (recycled and new)
materials,

– the second choice is about the inspection of the produced products: no inspec-
tion, a normal inspection or a thorough inspection,

– the third choice is whether the products will be delivered or canceled.

Fig. 1. Make-to-order process

The process model in Fig. 1, without the tasks in grey and the data object,
presents the control-flow perspective of the process, i.e. it does not contain infor-
mation on the decision perspective of the process. In this paper we assume that
the decision perspective consists of a decision model and rules that explain the
choices in the process. From DMN [1] we adopt the DRD as a decision model
that visualizes the dependencies between decisions and the inputs (here case
attributes). This paper assumes that each exclusive choice (XOR-split) in the
process is preceded by a decision that is modelled in Fig. 1 using a business
rule task: ‘Determine materials’ (choice 1), ‘Decide inspection’ (choice 2), and

A Framework to Evaluate and Compare Decision-Mining Techniques 485

‘Decide delivery’ (choice 3). Each decision in the DRD corresponds to one busi-
ness rule task in the process model. For each of the decisions in the DRD we can
specify the logic as rules in a decision table.

In the example, the ‘Determine materials’ (see Fig. 1) decision cannot depend
on an earlier made decisions in the process as it is the first decision in the
process. It can depend on case attributes, but it is not necessary. Suppose that
in this process the decision between new and mixed materials relies upon some
contextual information not embedded in the underlying information system. In
that case we do not generate decision rules but rather represent the decision
stochastically by assigning a probability of choosing each decision output: on
average for 50% of the orders the activity ‘prepare new materials’ is executed
and for 50% of the orders the activity ‘prepare mixed materials’ is performed.

The ‘Decide inspection’ decision (see Fig. 1) can depend on the decision about
the used materials and case attributes. In this example the inspection decision
depends on the outcome of the first decision and a case attribute ‘premium’
which is related to the type of the customer placing the order. This results in
the DRD in Fig. 2 where the ‘Determine matrials’ decision and the customer
type are inputs of the inspection decision. The policy is that products produced
with mixed materials always need to be inspected thoroughly regardless of what
the customer type is. Products consisting of new materials are only inspected
for premium customers, otherwise the inspection is skipped to save costs. Such
decision logic can be represented as rules as illustrated in Table 1.

Table 1. Decision tables for ‘Decide inspection’ (left) and ‘Decide delivery’ (right)

Finally, the ‘Decide delivery’ decision could depend on the outcome of the
first and second decision and some case attribute(s). Suppose that the inspection
results in an inspection report (the data object in Fig. 1) based on which the
quality of the products is labeled as acceptable or non-acceptable. If an inspec-
tion was skipped, acceptable quality of the products is assumed. A delivery will
only be executed if the quality of the products are acceptable, otherwise the
order is cancelled. These decision dependencies can be illustrated in the DRD in
Fig. 2 and the decision logic as shown in Table 1.

The control-flow model together with the above decision model and rules can
then be simulated into an event log. The simulator evaluates the rules tied to
each decision in the process in order to decide which outcome, i.e. choice branch,
to activate. An example case is shown in Table 2. Notice that we only displayed
the inputs of each decision as case attributes to save space.

486 T. Jouck et al.

Fig. 2. Decision require-
ments diagram of example
process

Table 2. Example case of the produce order process

Event ID Activity Materials OK quality? Premium?

1 issue True

2 prep. mixed mater. mixed material True

3 produce mixed material True

4 inspect thoroughly mixed material True True

5 package mixed material True True

6 deliver mixed material True True

2.2 Formal Method for Generating Multiperspective Logs

This subsection formalizes the steps of the ‘DataExtend’ method we propose
to generate an event log containing both control-flow and decision perspectives.
‘DataExtend’ involves the following five steps:

1. Generate a random control-flow model from a population of models
2. Randomly build a decision model
3. Randomly generate decision logic for decisions in the decision model
4. Simulate control-flow model with decision model and logic into event log

Step 1: Generating Random Control-Flow Models. For this step we rely
on the existing method in [7] to generate a random control-flow model from a pro-
cess model population. This method always generates block-structured models
that are guaranteed to be sound. A block-structured model can be decomposed
in properly nested subprocesses such that each subprocess has a single entry and
singly exit point, e.g. the model in Fig. 1. The population definition describes the
behavioral characteristics of the models: the size and the control-flow patterns
of the models. The user defines a population of models by setting the following
parameters:

– Model Size Parameters = {mode, min, max}.
– Control-flow Characteristic Probabilities = {sequence (WCP-1), parallelism

(WCP-2/3), exclusive choice (WCP-4/5), multi-choice loop (WCP-6/7), loop
(WCP-21), silent activity, reoccurring activity, infrequent path}.

The model size parameters define a triangular distribution that will be used
to determine the number of activities that will be present in the model. The
WCP-x between brackets refers to the standard control-flow workflow patterns
as defined by Russell [10]. A silent activity is used for modelling a skip (e.g.
the third branch of the second choice in Fig. 1). Reoccurring activities allow
the same activity to appear in different parts of the process. Infrequent paths
make some outgoing branches of an exclusive choice more likely to occur than
others. The control-flow characteristic probabilities influence the probability for
each characteristic to be included in the resulting model. For example, if the
probability of an exclusive choice is 0.2, then on average 20% of the nested
subprocesses will be exclusive choices.

A Framework to Evaluate and Compare Decision-Mining Techniques 487

Step 2: Randomly Build Decision Model. This step will initiate the deci-
sion perspective that is added on top of the generated control-flow model. This
paper assumes that the routing of the cases throughout the process depends on
decision outcomes. This corresponds to adding the business rule tasks before
each exclusive choice in the model of the example in Fig. 1, e.g., the outcome
for ‘Determine materials’ influences whether activity ‘prepare new materials’ or
‘prepare mixed materials’ is executed for a particular case. Adding these deci-
sions initiates the Decision Requirement Diagram that will contain a decision
for each exclusive choice in the model. As such, we will not add decisions before
multi-choice and loop constructs in this paper. In a next step, we randomly deter-
mine the inputs of the decisions in the DRD. Here we assume that a decision
can depend on a case attribute or a previously made decision.

‘DataExtend’ generates a decision di ∈ D for each exclusive choice in the gener-
ated control-flow model. Then, it assigns zero or more attributes as inputs, either a
case attribute or a previous decision, to eachdecision.Adecisionwithout attributes
means that it is based on some information not embedded in the information sys-
tem (e.g. the ‘Determine materials’ decision in the above example).

Definition 1 (Assign). Given a set D of decisions and a set V of case
attributes (including previous decisions), Assign: D �→ P(V) is a function that
labels each decision di with a set V ′ ⊆ V of attributes which di is based upon.

The attribues Assign(di) used in decision di can take on values on the basis
of decisions that ‘precede’ di:

Definition 2 (Precedence). Precedence: D �→ P(D) is a function that labels
each decision with a set of preceding decisions. The precedence is based on the
control-flow semantics of the model.

Consider again the example in Sect. 2.1. The ‘Decide inspection’ decision (d2)
is preceded by the ‘Determine materials’ decision (d1): Precedence(d2)�→ {d1}.
Then, in the example, the ‘Decide inspection’ decision is assigned the ‘Determine
materials’ decision and ‘premium’ as attributes: Assign(d2) �→ {d1, premium}.
The assigned attributes of each decision are visualized in the DRD as shown in
Fig. 1 where ‘Determine materials’ and ‘Customer type’ are inputs of the ‘Decide
inspection’ decision.

Step 3: Randomly Generate Decision Logic. This step will specify the
decision logic for each decision in the decision model generated in the previous
step. More specifically, each decision influences a choice between multiple alter-
native branches in the process model. The values of the assigned attributes of
each decision restrict the possible branches that can be activated. These restric-
tions, also called decision dependencies, can be expressed as decision rules. A
decision rule is defined as a mapping:

Definition 3 (Decision Rule). A decision rule is a mapping

V1 �� q1, . . . , Vw �� qw �→ ×jk

488 T. Jouck et al.

where Vi ∈ V is the set of attributes, �� is a relational operator ∈ {<,≤, >,≥,
=, �=}, q1, . . . , qw are constants, ×jk denotes outgoing branch k of choice ×j after
decision j.

The set of all decision rules related to a routing decision can be represented as
a decision table such as Table 1, where rule 1 of the left table expresses the deci-
sion rule: materials = ‘new materials’, premium? = ‘True’ �→ ‘inspect normally’
(i.e. the second outgoing branch of the second decision ‘Decide inspection’).

‘DataExtend’ initially generates all possible decision rules, i.e. each possi-
ble combination of attribute values can lead to any of the outgoing branches.2

For example, consider Table 3 that shows the initial set of decision rules for
decision ‘Decide inspection’ in the make-to-order example process. When a case
has the following attribute values: materials = ‘new materials’ and premium?
= ‘True’, then the three outgoing choice branches containing activities ‘inspect
thoroughly’, ‘inspect normally’, and skip inspection are all possible according to
rules 1, 2 and 3.
Table 3. Example complete decision table for
the ‘Decide inspection’ decision in the make-
to-order example process.

Rule Materials Premium? Inspection

1 new material True inspect thorougly

2 new material True (skip inspection)

3 new material True inspect normally

4 new material False inspect thorougly

5 new material False (skip inspection)

6 new material False inspect normally

7 mixed material True inspect thorougly

8 mixed material True (skip inspection)

9 mixed material True inspect normally

10 mixed material False inspect thorougly

11 mixed material False (skip inspection)

12 mixed material False inspect normally

Randomly removing rules from
the initial set of decision rules
restricts the decision outcomes,
i.e. the possible outgoing branches
at the choice impacted by each
decision. In this way, ‘DataEx-
tend’ creates decision dependen-
cies. However, it cannot restrict the
behavior too much as this could
create unsound behavior in the
form of deadlocks and dead parts
which break the simulator in the
next step. Therefore, the following
soundness constraints are imposed
on the rule removal step:

– each decision table has at least one rule for each possible outgoing choice
branch to prevent dead activities

– each decision table has at least one rule for each value combination of the
attributes values to prevent deadlocks.

Additionally, the user can set a stopping criterion for the removal of random
decision rules. Without such a stopping criterion, ‘DataExtend’ will remove rules
until no removal can happen without violating the soundness constraints. This
results in fully deterministic decisions, i.e. for any combination of attribute val-
ues there is only one outgoing branch possible. However, business rules are often
non-deterministic and this ‘cannot be solved until the business rule is instanti-
ated in a particular situation’ [11]. This ambiguity can occur due to conflicting
2 Impossible combinations happen when a decision depends on two other decisions

that are mutually exclusive. Such combinations are removed from the decision table.

A Framework to Evaluate and Compare Decision-Mining Techniques 489

rules or missing contextual information. Therefore, the approach allows users to
set a determinism level as stopping criterion. The determinism level is defined
as the number of decision rules removed relative to the maximum amount of
decision rules that could possibly be removed (without violating the soundness
constraints). The maximum determinism level of 1 results in a fully deterministic
decisions. The minimum value of 0 denotes the initial state, i.e. any combination
of attribute values can lead to all possible decision outcomes. The user specifies
the target determinism level, which is the average determinism level over all
decisions with input attributes after the removal of rules. We explicitly leave out
decisions without assigned attributes, e.g. ‘Determine materials’ decision in the
make-to-order example, because these decisions always have a determinism level
of 0, i.e. no rules can be removed, which makes it impossible to reach an average
determinism level of 1.

Definition 4 (Determinism level). Let di be a decision and #rule(di) be the
number of rules in di. Let d̄i be a decision obtained from di after removing a
number of rules, then:

DeterminismLevel(di, d̄i) =
#rule(di) − #rule(d̄i)

#rule(di) − #minimum(di)

where #minimum(di) is the minimum number of rules to ensure soundness and
is determined by taking the maximum of the number of possible decision outcomes
for di and the number of attribute value combinations of Assign(di).

In the make-to-order example (see Sect. 2.1) the desired determinism level is
set to 1. This means that as much rules as possible have to be removed from
the decision table of the ‘Decide inspection’ and ‘Decide delivery’ decisions.
The initial decision table for ‘Decide inspection’ (see Table 3) contains 12 rules.
The soundness constraints imply that at least one rule for each of the three
possible decision outcomes should remain to avoid dead activities. Additionally,
the soundness constraints require that the decision table should contain at least
one rule for unique combination of case attribute values: {‘prepare new’, ‘prepare
mix’} × {‘True’, ‘False’} = 4 thus #minimum = max(3, 4) = 4. Removing rules
1, 2, 4, 6, 8, 9, 11 and 12 from Table 3 results in the decision Table 1 with a
maximum determinism level: 12−4

12−4 = 1. Similarly, decision rules are removed
for ‘Decide quality’ which ends in the decision Table 1 with determinism level
1. This makes the average determinism level equal to 1 as all routing decisions
with assigned attributes are fully deterministic.

Algorithm 1 summarizes the steps 2 and 3 of ‘DataExtend’.

Step 4: Simulate Control-Flow Model with Decision Perspective into
Event Log. ‘DataExtend’ will simulate the models with decision rules into an
event log. It takes a user specified number of cases to be generated, the process
model, and the set of decision rules as input. Then, each attribute, except the
ones that correspond to a previous decision3, are initialized with a random value.
3 These attributes are initialized with the decision outcome when it is executed.

490 T. Jouck et al.

Algorithm 1. Extend process model with decision perspective
1: Input:

2: M : process model

3: dl : target determinism level

4: Output:

5: M : process model

6: R : set of decision rules

7: Start ExtendModel(M,dl)

8: for each exclusive choice in M do

9: Assign(di) �→ Vrandom

10: Rdi
← initial decision table di

11: R ← R ∪ Rdi

12: end for

13: while AverageDeterminismLevel(PT) < dl do

14: Remove random rule from Rwithout violating soundness constraints

15: end while

16: return R

For example, in the make-to-order process the ‘premium’ case attribute gets
value ‘True’.

The simulation algorithm will execute each activity in the model according
to the control-flow semantics and include this in the resulting event log. When it
encounters a decision di (business rule task) it will execute the decision using the
generated decision rules Rdi

∈ R. Therefore, ‘DataExtend’ will collect the values
of each of the assigned attributes {V1, . . . , Vw} to make a state of the current
case. Then it will iterate over all the decision rules to collect the possible decision
outcomes. A decision outcome is possible if a rule condition matches with the
state. Finally, the decision outcome leads to a particular outgoing choice branch
to be executed after the decision.

The simulation of a process model with the decision perspective yields an
event log with both control-flow and case information as needed for decision
mining evaluation.

3 Demonstration

This section presents an empirical analysis of two decision mining algorithms
to validate ‘DataExtend’. ‘DataExtend’ has been implemented in the ProM
framework as part of the ‘PTandLogGenerator’ package.4 It enables the eval-
uation of decision mining techniques that discover a decision model from an
event log (e.g. [4,5]) or techniques that discover the decision logic from an event
log (e.g. [3,6]). Due to a lack of space, the experiments will focus on the latter
type of techniques.

4 See https://svn.win.tue.nl/repos/prom/Packages/PTAndLogGenerator/.

https://svn.win.tue.nl/repos/prom/Packages/PTAndLogGenerator/

A Framework to Evaluate and Compare Decision-Mining Techniques 491

Experiment Setup. The experiment will evaluate the mutually-exclusive tech-
nique [3] that discovers fully-deterministic decision rules based on case attributes
in the input event log, and the overlapping technique [6] that allows to discover
non-deterministic decision rules. The goal is to determine the effect of differ-
ent determinism levels of the generated decision rules by ‘DataExtend’ on the
quality of the discovered decision rules. We have generated a random sample of
129 process models for each miner from six model populations shown in Table 4,
i.e. one population for each value combination for the determinism level {0.5,
0.75, 1} and infrequent paths {0 (False), 1 (True)} parameters. The other pro-
cess characteristics are fixed for each model population. The probability of the
sequence, exclusive choice and parallelism patterns is fixed at values 46%, 35%
and 19%, respectively based on the analysis of a large collection of models by
Kunze et al. [12]. The size of the models varies between 6 and 10 activities, with
a mode of 8 activities. Furthermore, we have specified that the case attributes
introduced by ‘DataExtend’ are of three different types: boolean, string and
numerical. Each numerical attribute is discretized to a random number of inter-
vals, between 1 and 4, following a uniform distribution to make a finite number
of decision rules for each decision. Secondly, the number of case attributes that
are assigned to a decision varies between 0 and 3 following a discrete uniform
distribution. Each model with rules is simulated into an event log containing
between 200 and 1000 cases.
Table 4. Model population parameters for
the experiments, where X and Y are assigned
all 6 combinations of values in {0, 5.75, 1} and
{0 (False), 1 (True)} respectively.

Parameter MPdata

No visible activities (6,8,10)

Sequence (Π→) 0.46

Parallel (Π∧) 0.19

Choice (Π×) 0.35

Infrequent paths (ΠIn) Y

Sample size (# models) 129

Logs per model 1

Number of cases [200,1000]

Determinism level X

Attribute type ∈ {bool, string, numerical}
intervals ∼ uniform(1, 4)

assigned attributes ∼ uniform(0, 3)

For each generated control-flow
model, ‘DataExtend’ will first gen-
erate decision rules and an event
log. Each generated log is split into
a training log (90% of the cases)
and a test log (10% of the cases).
The generated control-flow model
and the training log are used as
input of the decision mining tech-
niques to discover decision rules.
Then, we evaluate the discovered
rules using a classification app-
roach. We first alter the attributes
of half of the cases in the test log
such that they do not comply with
the generated decision rules. Next,
the discovered rules are used to

classify the cases in the test log as fitting or non-fitting (violating the discovered
rules). This enables us to quantify the quality of the discovered rules using the
quality metrics recall (how much fitting cases are classified as fitting), precision
(how much cases classified as fitting are actually fitting) and their harmonic
average the F1 score.

492 T. Jouck et al.

Fig. 3. F1 scores for decision mining tech-
niques for different levels of determinism

Analysis of Results. The graph
in Fig. 3 illustrates the average F1

scores for the two decision mining
techniques over different determin-
ism levels. The bars indicate the
95% confidence interval for the aver-
ages. The graph indicates a posi-
tive trend, i.e. increasing the deter-
minism level has a positive effect
on F1 scores. The Kruskall-Wallis
test [13] shows that the differences in
F1 scores between fully-deterministic (determinism of 1) and non-deterministic
decision rules (determinism of 0.5 or 0.75) are statistically significant for the
mutually-exclusive technique. For the overlapping technique only the differences
in F1 score between the largest and the smallest determinism levels are statis-
tically significant. Therefore we can conclude that the determinism level has an
effect on the quality of the two decision mining techniques. This effect is smaller
for the overlapping technique than the mutually-exclusive technique. This result
is not surprising given the fact that the overlapping technique specifically focuses
on discovering non-deterministic decision rules as included in the experiments.

4 Related Work

PLG2 [9] allows for extending control-flow models with data attributes, but
in a more general sense. It can add case attributes to activities such that an
activity can either generate a case attribute or require a case attribute. The latter
is implemented by automatically generating the required case attribute before
the execution of that activity. The user cannot control that this case attribute
requirement happens to activities after a decision in the process.5 Nevertheless,
this is necessary for the evaluation of decision mining techniques as they focus
on discovering the decision model and rules.

5 Conclusion and Future Work

This paper has introduced the ‘DataExtend’ framework that allows evaluating
and comparing decision-mining techniques using a sufficient amount of event
logs and process models to detect statistically significant quality differences.
For the generation of event logs enriched with data attributes we developed a
novel approach, because the only technique to generate such event logs, namely
PLG2 [9] does not allow to control the generation of attributes values to influence
the decision perspective. A demonstration of ‘DataExtend’ involved two decision

5 This is for the random model generator. PLG2 allows users to add the requirements
also manually, however, that would not lead to random samples and thus obstruct
the generalization of evaluation results.

A Framework to Evaluate and Compare Decision-Mining Techniques 493

mining techniques and its results illustrated that the novel approach can serve
the evaluation purpose. Future work needs to provide a more extensive evaluation
that includes more techniques, such as [4,5]. Furthermore, we want to extend the
framework so as to incorporate the loop and multi-choice patterns that involve
decisions. The initial evaluation is also based on an implementation that requires
a lot of tedious and manual repetition of the application of the techniques for
each of the generated event logs. As future work, we aim to integrate it in a
scientific-workflow tool, which would automate the currently-tedious work.

References

1. Object Management Group: Decision Model And Notation 1.1, June 2016
2. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S.,

Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425.
Springer, Heidelberg (2006). https://doi.org/10.1007/11841760 33

3. de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining: discovering deci-
sions in processes using alignments. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pp. 1454–1461. ACM (2013)

4. Bazhenova, E., Buelow, S., Weske, M.: Discovering decision models from event logs.
In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp.
237–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39426-8 19

5. De Smedt, J., Hasić, F., vanden Broucke, S.K.L.M., Vanthienen, J.: Towards a
holistic discovery of decisions in process-aware information systems. In: Carmona,
J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 183–199.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5 11

6. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision min-
ing revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M.,
Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39696-5 23

7. Jouck, T., Depaire, B.: Generating artificial data for empirical analysis of control-
flow discovery algorithms: a process tree and log generator. Bus. Inf. Syst. Eng. 18
(2018)

8. Van Der Aalst, W.M.P., Ter Hofstede, A.H.: Verification of workflow task struc-
tures: a petri-net-baset approach. Inf. Syst. 25(1), 43–69 (2000)

9. Burattin, A.: PLG2: multiperspective process randomization with online and offline
simulations. In: BPM (Demos), pp. 1–6 (2016)

10. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow
controlflow patterns: a revised view. Technical report 06-22 (2006)

11. Rosca, D., Wild, C.: Towards a flexible deployment of business rules. Expert Syst.
Appl. 23(4), 385–394 (2002)

12. Kunze, M., Luebbe, A., Weidlich, M., Weske, M.: Towards understanding process
modeling – the case of the BPM academic initiative. In: Dijkman, R., Hofstetter,
J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 44–58. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25160-3 4

13. Siegel, S., Castellan Jr., N.J.: Nonparametric Statistics for the Behavioral Sciences,
2nd edn. Mcgraw-Hill Book Company, New York (1988)

https://doi.org/10.1007/11841760_33
https://doi.org/10.1007/978-3-319-39426-8_19
https://doi.org/10.1007/978-3-319-65000-5_11
https://doi.org/10.1007/978-3-319-39696-5_23
https://doi.org/10.1007/978-3-642-25160-3_4

	A Framework to Evaluate and Compare Decision-Mining Techniques
	1 Introduction
	2 Evaluation Framework
	2.1 Illustration of Generating Multiperspective Logs
	2.2 Formal Method for Generating Multiperspective Logs

	3 Demonstration
	4 Related Work
	5 Conclusion and Future Work
	References

