
A Lean Architecture for Blockchain
Based Decentralized Process Execution

Christian Sturm(B), Jonas Szalanczi, Stefan Schönig, and Stefan Jablonski

Universität Bayreuth, Bayreuth, Germany
{christian.sturm,jonas.szalanczi,stefan.schonig,

stefan.jablonski}@uni-bayreuth.de

Abstract. Interorganizational process management bears an enormous
potential for improving the collaboration among associated business
partners. A major restriction is the need for a trusted third party imple-
menting the process across the participating actors. Blockchain technol-
ogy can dissolve this lack of trust due to consensus mechanisms. After
the rise of cryptocurrencies, the launch of Smart Contracts enables the
Ethereum Blockchain to act beyond monetary transactions due to the
execution of these small programs. We propose a novel lean architecture
of a Blockchain based process execution system with Smart Contracts to
dispense with a trusted third party in the context of interorganizational
collaborations.

Keywords: Business Process Management · Blockchain ·
Collaborative process management · Choreography processes ·
Process execution

1 Introduction

Blockchain technology currently triggers a revolution in the way we store our
data: data move from centralized (cloud) storage towards decentralized data
management and information systems. The technology has proven to bear a
great potential for disruptive change in many domains. Our aim is to exploit
and leverage on this technology when organizational processes in context of
Business Process Management has to be enacted.

Blockchain technology became famous as backbone behind the cryptocur-
rency Bitcoin [11], followed by a vast number of alternative cryptocurrencies.
While these 1st-generation Blockchains were originally focused on monetary
transactions, next-generation Blockchains like Ethereum were established further
on [3]. The latter provides the turing-complete programming language Solidity
on top for executing small programs, called Smart Contracts directly on the
Blockchain. The idea of Smart Contracts was first described 1997 in [15] and
was resurged with the Ethereum Blockchain where Smart Contracts are account
holding objects following several principals: They provide code functions, they

c© Springer Nature Switzerland AG 2019
F. Daniel et al. (Eds.): BPM 2018 Workshops, LNBIP 342, pp. 361–373, 2019.
https://doi.org/10.1007/978-3-030-11641-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11641-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-11641-5_29

362 C. Sturm et al.

can interact with other contracts or users and they are able to make decisions
based on stored data.

The key fundamental concept of using a Blockchain instead of legacy systems
is the tamper-proof character of the underlying database (distributed ledger)
without the need of having a trusted third party included. Different applications
had proven the feasibility of Smart Contracts ranging from government reg-
ulations regarding manufacturing of pharmaceuticals [12] to organizing rescue
packages in crisis areas [14].

With respect to Business Process Management, especially the collaboration
between companies through choreography processes seems a suitable and prof-
itable application domain. Unlike orchestration processes in inter-organizational
process management, where the participants are also owner of the processes,
we assume an adversarial setting where participants may blame each other as
pointed out in [9]. The consensus mechanism in Blockchain technology is said
to annul the need for a trusted third party as an arbitrator, because the nodes
in the network will reach accordance by their selves and thus are impervious to
potential attackers.

Our contribution composes of a novel architecture using Blockchain technol-
ogy as a backbone for inter-organizational process execution. The lean archi-
tecture enables a lightweight full-featured on-chain implementation of a decen-
tralized process execution system. We exploited the latest advanced concepts of
the Solidity programming language for our Smart Contract. Compared to exist-
ing approaches, the omission of additional software artefacts in our architecture
leads to an entire on-chain execution. For large process models comprising a big
number of tasks, we believe that our approach scales best. With our solution,
we state that most of the execution steps should be secured on the Blockchain.
We further critically analyse our approach, compare it with existing alternatives,
and discuss advantages and disadvantages.

The remainder of the paper is structured as follows. In Sect. 2 we provide
a comprehensive overview of the principles, how Blockchain technology works
internally. Then we summarize Related Work of using Blockchain technology in
Business Process Management in Sect. 3. Our approach is the main constituent
of Sect. 4 and after a qualitative Evaluation in Sect. 6, we conclude the paper in
Sect. 7.

2 Background

This section provides an overview on the most important concepts of Blockchain
technology. We describe, how transactions are validated and how consensus can
be reached and point out differences between a public Blockchain and a Consor-
tium Blockchain. The main reason that different branches in industry investi-
gate Blockchain technology is the non-necessity of a trusted third party. In con-
trast, traditional execution of financial transactions between two parties always
requires the bank of the sender as well as the bank of the receiver as intermediary
players. We refer to [1] for more detailed information.

A Lean Architecture for Blockchain Based Decentralized Process Execution 363

The backbone of the Blockchain, a linked list of blocks comprising trans-
actions, is a Peer-to-Peer network of participants, so-called (full) nodes. Each
of them holds the entire Blockchain locally including all transactions ever pro-
cessed. A new transaction is propagated within the whole network and each node
includes it into its pool of unconfirmed transactions. Always, nodes try to mine
a new block by solving a cryptographic puzzle. All unconfirmed transactions in
the pool as well as additional information (ID of the latest block, the times-
tamp, an adjustable nonce) serves as input for a hashing algorithm. The nonce
is generated at random, until the output of the hashing algorithm falls below
a certain limit. If such a nonce is found, the node wins this laborious mining
game and informs the network. The unconfirmed transactions that were affect-
ing the hash output are confirmed, and all nodes remove them from their pools.
As a reward, the miner receives the fees associated with the transactions. The
confirmation of transactions relies on the principle, that every node can double-
check a new propagated block against a set of specific rules. Hence, if invalid
transactions, e.g. fraudulent double spends of monetary units, are included in
the new block, the network rejects it and miners would waste a vast amount of
computations for finding an expedient nonce and thus waste electricity and thus
money. Additionally, also the mining fees are lost.

The term Blockchain is often referred to the public Blockchain, which is open
and free to access to anyone willing to participate in the P2P network. This may
cause trouble regarding privacy especially when storing data payload on-chain.
As an alternative, private or Consortium Blockchains are isolated from the global
network and thus read/write accesses can be permissioned and adjusted. Con-
sortium Blockchains are often confused with private Blockchains, but the latter
denies the participation of external actors whereas the former just restricts the
permission to mine and verify. In private Blockchains, mining and so consensus
power is much more concentrated than in public Blockchains. Therefore, one
has to pay attention that a participant of the consortium does not gain too
much power. Janne Hansen, IT-architect and developer from Microsoft, states
that at least four parties should form a Consortium Blockchain for reasons of
trust1. Some more differences to public Blockchains and the reasons why we rely
rather on private or Consortium Blockchains in our context are discussed further
in Sect. 6. However, the proposed architecture is not limited in the type of the
underlying Blockchain.

3 Related Work

In [10], the authors emphasize the chances of using Blockchain Technology in the
context of Business Process Management. They provide a broad overview of open
research challenges w.r.t. the process life cycle. They also discuss critical issues
of applying this technology in the area of Business Process Management, for
instance network performance, security and usability. They further stated that
inter-organizational processes are affected by a lack of mutual trust, which can be
1 https://jannehansen.com/where-consortium-blockchains-fit/.

https://jannehansen.com/where-consortium-blockchains-fit/

364 C. Sturm et al.

solved by providing a trustworthy environment through Blockchain technology.
They believe that a system can support global process monitoring where the
encryption mechanism is used to handle privacy. However, their work is rather
conceptually and they do not focus on or provide any implementation aspects.

In [16] the feasibility of Blockchain technology for process management was
proven for the first time. This work includes a Translator for an automated
translation of BPMN process models to Smart Contracts as well as two differ-
ent artefacts for the execution: a choreography monitor (C-Monitor) for passive
monitoring and an active mediator. A trigger establishes a connection between
the artefacts on the Blockchain and the external workflow management systems
of the involved participants. The Smart Contract stores two lists, which are used
for encoding the process status. Their system enables collaborative process exe-
cution over untrusted nodes where all transactions are stored immutable and
only conforming cases are executable. They completely rely on executions on a
public Blockchain and thus their architecture is affected by some restrictions. For
instance, they propose that not all aspects of collaborative process management
should be transferred onto the Blockchain due to costs for data storage, transac-
tions and computation. On the other hand, they also had to implement triggers
to connect the Blockchain technology world with the enterprise internal process
engine, because Smart Contracts could not call external APIs. However, Solidity
was developed further and supports function callbacks to the user-interface and
error-handling in the meantime. Further on, they have to create a specific Smart
Contract for each process model, whereas our Smart Contract is more generic.
The work of [16] was revived in [5] and again highlights the need for resource
usage optimization driven by the execution on a public Blockchain. This is done
by detouring the translation of BPMN models to Smart Contracts via Petri Nets
which are minimized. They also took care of the number of deployed contracts
as well as throughput rates by optimizing runtime components.

The authors of [7] adopted the approach of artefact-driven business modelling
and make use of Blockchain technology for a shared ledger Business Collaboration
Language. They discussed the advantages of domain specific languages on a rather
conceptual level without any implementation aspects regarding Smart Contracts.
[8] introduces Caterpillar, a Business Process Management System that runs on
top of the Ethereum Blockchain and makes use of the work in [16], for instance
the BPMN-to-Solidity translator. The work does not give enough insights how the
internal structures are build and work together or how the system can be extended.
Madsen et al. demonstrated in [9] a declarative workflow execution based on DCR-
Graphs [6] in an adversarial setting in which Smart Contracts on Ethereum solves
the lack of a trusted third party. They also had taken cost issues into concern due to
the execution on the public Blockchain. In contrast to them, we see our approach
not solely in adverse settings, but also where documentation and traceability plays
a key role, for instance regarding quality management in the supply chain. The
problem of the immaturity of the Ethereum Blockchain is discussed in [13] where
the decision was made in favour of the Bitcoin Blockchain to address the short-
comings regarding major stability issues. However, this 1st-generation Blockchain

A Lean Architecture for Blockchain Based Decentralized Process Execution 365

restricts the opportunities by far. Hence, the authors focus rather on runtime ver-
ification of processes than on a sophisticated execution engine.

4 Lean Architecture with a Generic Smart Contract

We present a source-code optimised solution for executing business processes on
the Blockchain. At the time of writing, our implementation comprises just around
100 lines of code (independent from the underlying process model) and yet, the
deployed Smart Contract is able to run a fully - albeit rudimentary - system
for collaborative process execution on the Ethereum Blockchain. Additionally,
due to brevity, the contract is easy to maintain, to extend and to integrate via
its Application Binary Interface. Contrary to the work of [16], we use a generic
Smart Contract, i.e. our Smart Contract serves as scaffolding for each process
instance and process model. Once deployed, the logic of the implemented process
is poured into the Smart Contract by sending transactions (see below). Using
this approach, also the process logic itself is on-chain and thus transparent and
trustworthy, whereas in the architecture of [16] a superior authority creates and
deploys a process-specific Smart Contract. We refer to this issue in Sect. 6.

Infrastructure of the Architecture. As a prerequisite, every participant who
wants to join the collaboration, i.e. execute a task, has to establish a connection
to the Ethereum Peer-to-Peer-network. This is done with the help of a so-called
wallet, which assigns the user an unique identifier (160-bit hash value). The
user can interact through this account with the Ethereum Blockchain, i.e. create
transactions and interact with Smart Contracts. Consider Fig. 1. A Supervisor
S deploys as a first step the Smart Contract out of his wallet (1a) with a trans-
action (1b). After then, he can add users by registering the wallet addresses via
addCollaborators (2) and create tasks in a similar way (3). Step (2) is optional
but enables an advanced permission system (see below). The implementation
of the core architecture is described in detail in Sect. 5. Our approach is easy
to connect to organisation-internal structures. The Ethereum Virtual Machine
allows callbacks and error-handling which can be used in a JavaScript interface
on the client side. The role of the Supervisor can be assigned to any wallet and
is responsible for the initial setup (e.g. addTasks) but the full transparency of
the Blockchain does not limit the level of trust and tamper protection.

Process Logic Through Requirements. For the implementation of the process
logic, the generic Smart Contract provides a struct Task. The struct contains a
list requirements holding a reference to every task which must be set on completed
before the next task can be completed.

In the process model depicted in Fig. 3 the task B have the requirements
[A]. Referring to Fig. 4, the Tasks C and D have [A] as a requirement and B has
the requirements [C, D]. Figure 2 describes the situation after the execution of
the activity A. C and D are now ready for execution. Based on the gateway, it
is sufficient that at least one task is completed (Exclusive Gateway (XOR)) or
both tasks in the requirements must be set on completed (Parallel Gateway).
The Smart Contract implements the gateway logic as described in Sect. 5.

366 C. Sturm et al.

Fig. 1. Architecture of the Blockchain based process execution

Fig. 2. Requirements

Execution. For each process instance, one Smart Contract must be deployed
on the Blockchain. After than, all collaborators (their wallet addresses) can
be registered in the Smart Contract for access control purposes. To generalize
the execution, the wallet addresses could be mapped organization-internal to a
number of employees or IoT-devices etc. The next step is to build the process
logic by registering the tasks, with the specific requirements. This is controlled
by further transactions, i.e. function calls to the Smart Contract. This procedure
can also be automated (cf. Sect. 5). To finish a task, another method call to the
Smart Contract is required. To achieve conformance, this method checks if this
task can be executed, i.e. if the requirements are fulfilled and if the user is allowed
to complete the task.

Fig. 3. Simple sequence flow Fig. 4. Process model with BPMN-
gates

A Lean Architecture for Blockchain Based Decentralized Process Execution 367

5 Implementation

The architecture of the implementation is depicted in Fig. 1. We only focus on
the essential elements of BPMN to proof the feasibility of our approach. However,
at spots where we omitted advanced concepts, we show up possible extensions
we plan to implement in future.

From BPMN to the Smart Contract. We start from a BPMN process
model which encodes the collaboration. The process model is parsed to find the
requirements and generate the transactions. Contrary to [16], we do not generate
a Smart Contract in this step. As stated, our generic Smart Contract is the same
for every process (instance) at time of deployment, and is filled with logic by
transactions. Thus, instead of creating Solidity programming code, the translator
module outputs the transactions containing the requirements for instance.

The Smart Contract Scaffolding. One Smart Contract represents exactly one
process model (or instance) and its structural elements are depicted in Listing 1
exemplary.

Listing 1. Structural concerns of the Collaboration Manager
1 contract ContractCollaborationManager {
2 address supervisor;
3 enum Tasktype {TASK, AND, OR};
4 struct Collaborator { address resource; string organisation; }
5 struct Task { string activity; address taskresource; bool completed; Tasktype

tasktype; uint[] requirements; }
6 mapping(uint=>Task) tasks; uint[] public tasksArray;
7 mapping(uint=>Collaborator) collaborators; uint[] public collaboratorArray; }

The struct Collaborator defines the template for any organizational resource or
actor, which is included in the process execution and potentially wants to execute
a task. Currently, such a collaborator is described by address resource, the wallet
address of the performer, and string organization that associates the resource with
the employing organization. This can be used in future to restrict the execution
not only to a specific person, but also to an organization in general instead. The
execution permission mechanism (cf. Permission System) is described below.

The struct Task defines the template for any task in the process model. A task
is identified by int id which is used in combination with the address taskresource
field for checking the permission to execute the task or to store the actor which
has actually executed the task. string activity gives a textual representation of the
task and uint[] requirements empowers the conformance of the process execution
(cf. Conformance System).

Note the behavioural concerns of the Smart Contract in Listing 2. Mainly
two functions are responsible for the initialization or deployment of the Smart

368 C. Sturm et al.

Contract. Firstly, function addCollaborator to register every wallet address who
wants to execute at least one task and secondly function addTask, to make the
required tasks of the process model available. Note the third parameter of the
function createTask. This enum can assume the values TASK, AND and OR and
describes the represented BPMN element. This is an essential feature that is
used in the Conformance System, described in Listing 3.

Listing 2. Behavioural concerns of the Collaboration Manager
1 contract ContractCollaborationManager {
2 function addCollaborator(address collab, string org) public { /*...*/ }
3 function createTask(string activity, address taskresource, Tasktype

tasktype, uint[] requirements) public {
4 require(msg.sender == supervisor);
5 Task storage task = tasks[taskcount++];
6 task.taskresource = taskresource;
7 task.requirements = requirements;
8 /*...*/

Permission System. Our Permission System follows currently the guidelines
described next, but is easy to adapt. The decision, who is permissioned to exe-
cute a task, is made at design time. When a new task is registered at the Smart
Contract, the address taskresource parameter (cf. function createTask in List-
ing 2, Line 6) specifies the sole wallet address which is permissioned to place
the transaction of completing the task (with function setTaskOnCompleted, cf.
Line 2 in Listing 3). This is essential when using the public Blockchain, because
every wallet could interact with the Smart Contract. The relevant code can be
refactored to address less restrictive policies for instance just a requirement that
a registered Collaborator belongs to a specific organisation. Note that the organi-
zation is encoded in the struct Collaborator. A big advantage of using Blockchain
technology is the inbuilt account system with wallet addresses to trace the trans-
actions and interactions with their corresponding performer.

A different conceivable approach is to register a bunch of wallet addresses
within the Smart Contract, so that the specific resource allocation can be done
at runtime. The resource which wants to execute a task can log in with his cre-
dentials to a client-side user-interface which provides an assigned wallet address.

Conformance System. The Conformance System ensures, that the Smart Con-
tract allows only valid process executions according to the initial BPMN model.
Line 7 in Listing 2 assigns the ids of tasks which have to be completed, before a
Collaborator wants to execute the next task with setTaskOnCompleted. The Con-
formance System is built upon the requirements which are extracted from the
BPMN model. For instance, in a trivial case the starting event with id= 0 has
no requirement, i.e. it can be executed. The And-gate is encoded in Listing 3
from Line 8 on. The task is only set on completed (Line 12), when all tasks

A Lean Architecture for Blockchain Based Decentralized Process Execution 369

Listing 3. Execution concerns of the Collaboration Manager
1 function setTaskOnCompleted(uint id) public returns(bool success) {
2 require(tasks[id].taskresource == msg.sender);
3 uint[] temprequire = tasks[id].requirements;
4 /*Tasks */ if(tasks[id].tasktype == Tasktype.TASK) {
5 if(isTaskCompletedById(temprequire[0]) == true) {
6 tasks[id].completed = true; return true;
7 else { return false; }}
8 /*And-Gate */ if(tasks[id].tasktype == Tasktype.AND) {
9 for(uint i = 0; i ¡ temprequire.length; i++) {

10 if(isTaskCompletedById(temprequire[i])==true) {tempcount++; } }
11 if(tempcount == temprequire.length) {
12 tasks[id].completed = true; return true; }
13 else { return false; } /*...*/

in the requirements are completed. The contract uses a similar solution for the
Or-gate, where only one of the requirements has to be fulfilled.

Advanced Implementation Concepts. Contrary to Related Work that we
evaluated, we were able to use language constructs which were not introduced
back than to design a more sophisticated architecture.

One of the key concepts our proposed architecture is built on, is the require
keyword which allows us to introduce a kind of error-handling and to have an
interaction with the client side. Error-handling is one of the reasons, we could
get rid of intermediary structures like triggers [16] to communicate with Smart
Contract-external structures and therefore develop a much cleaner concept. We
used require at several points, for instance to check if the current sender of a
transaction is allowed to execute a task (cf. Listing 3, Line 2). When trying to
complete an unassigned task, we receive an error message from the Ethereum
Virtual Machine which we can handle in our external application. Also in this
context, Solidity provides so-called events for enabling callbacks to a user inter-
face. The concept of mapping helps us to set up a key-value data structure for
all Tasks within the Smart Contract. In combination with this, the use of structs
and enums gives us a customizable data structure and the final execution on the
Smart Contract is according to that much more scalable (cf. Sect. 6). Due to lack
of space, we provide the full Smart Contract at our GitHub-Repository2.

6 Evaluation

In this section, we evaluate how our approach can solve the problem of the need
for a trusted third party within collaborative process execution. We also enlarge
on a performance and cost evaluation as well as on a comparison among related
work.

2 https://github.com/Jonasmpi/PExSCo.

https://github.com/Jonasmpi/PExSCo

370 C. Sturm et al.

Solving the Lack of Trust. Without Blockchain technology, an automated
process-based collaboration would be far more complex and restricted. Each
participant may run his own workflow system on a local centralized data storage.
After a collaboration is established, a malicious competitor is able to corrupt
his local data storage and blame the other actors, if no trusted third party
is included. The decentralized data storage in conjunction with the consensus
mechanism on Blockchains prevents such a scenario. Albeit the advantages, our
solution is not suitable for all choreography processes. Participating business
partners have to agree on a globally accepted process model which is difficult,
if sensitive data is included in the process or participants do not want to reveal
organisation internal process flows. To the best of our knowledge, our approach
is the only one, where the process logic is also on-chain, i.e. every participant
can comprehend the steps and how the process is defined. In contrast, in [16]
the process logic is defined off-chain directly within Solidity code for instance,
which requires a kind of a trusted third party for initializing the process run and
misses the point of Blockchain a bit.

Execution Costs. Transactions on the (public) Ethereum Blockchain are not
free of charge. Miners are awarded for using their computational power to solve
the proof-of-work. The amount of GAS refers to the complexity of the computa-
tions. The GAS multiplied with the user-set GAS price (a higher price leads to
a faster validation) then indicates the price to pay. We propose a very different
approach compared to former work, wherefore we have to investigate the execu-
tion costs for our implementation. The result of our benchmarks is depicted in
Table 1. The (time) measurements bear on our local network solely, as we suggest
the usage of a private/Consortium Blockchain anyhow for several reasons (see
below). As Vitalik Buterin stated, the costs on a Consortium Blockchain can
be significantly lower as just a few nodes must verify the transactions, instead
of a world-wide network [4]. Then again, a Consortium Blockchain weakens the
tamper-proofness a little bit, as the voting power in the system is concentrated
on selected nodes. A sophisticated discussion on public vs. private/Consortium
Blockchains related to BPM is still missing in research. Table 1 shows that even
for oversized process executions with 8000 tasks, the architecture scales very well
and the average duration for adding and completing a task respectively remains
constant. The overall GAS consumption rises on a linear basis with the amount
of tasks and is 127, 000 for the transaction of adding one task to the Smart
Contract and 28,006 for the function call of completing one task. The initial
deployment of the Smart Contract requires 1, 265, 261 GAS. In [16], the execu-
tion of an Incident Management process containing 9 tasks costed on average
0.0347 Ether (ETH). The execution costs of a process with 9 tasks using our
solution are the following: 1, 265, 261 + 9 · 127, 000 + 9 · 28, 009 = 2, 660, 342.
Based on the GAS price set, i.e. how fast the transactions are validated, the
overall costs range from 0.00532 ETH and 0.0532 ETH which is on a similar
level compared to the values of [16]. However, as they generate one function for
each task and gate, and further on each function holds three different arrays

A Lean Architecture for Blockchain Based Decentralized Process Execution 371

for PreviousElements, NextElements and NextJoins, we believe that for more
complex process models our approach with key-value stores scales much better.

Table 1. Time and GAS consumption for different number of tasks on our test network

Number of tasks 100 1000 5000 8000

Duration (function addTask) 14.36 148.98 742.5 1237.6

Average 0.1463 0.1490 0.1485 0.1547

GAS (106) 12.7 1270 6350 10160

Duration (function setTaskOnCompleted) 11.38 114 482.6 802.5

Average 0.1138 0.1140 0.0965 0.1003

GAS (106) 2.8 280 1400 2240

Privacy and Security. Distributing all process related data affects the privacy
of the data. Other publications address this issue by keeping the sensible data
off-chain, or encrypt the data and use hash values to establish data integrity at
least [16]. However, our architecture is designed to store as much data as possible
on-chain (e.g. just extend the struct Task). This will further raise traceability,
transparency and to make Blockchain technology attractive to advanced disci-
plines of Business Process Management like Process Mining etc. The usage of
a Consortium Blockchain helps to address also this issue. All participants are
known in this isolated network, thus the data sensibility must only be evaluated
against the known business collaboration partners. On the other hand, security
is also enhanced. Referring to the DAO attack3 or the theoretical 51% attack4

in the Bitcoin network, Consortium Blockchains are not affected from these due
to the isolation from the public network.

7 Conclusion

The usage of Blockchain technology empowers business partners to facilitate the
collaboration within choreography processes. Having a Consortium Blockchain
in action reduces the costs as the proof-of-work mechanism to reach consensus is
spread over a preselected number of nodes. Hence, our solution is not forced to
limit the number of transactions or the amount of data stored on the Blockchain.
Thus, our proposal can be used in future research to include more concepts of
BPMN for once and second, to include data attributes to support data-aware
process execution. Further research has to keep up with latest innovations in
the Blockchain universe. The technology is still immature and new ideas are
discussed permanent. For instance, the consensus mechanism on the Ethereum

3 https://www.coindesk.com/understanding-dao-hack-journalists/.
4 https://www.coindesk.com/bitcoin-miners-ditch-ghash-io-pool-51-attack/.

https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/bitcoin-miners-ditch-ghash-io-pool-51-attack/

372 C. Sturm et al.

Blockchain is planned to be changed from proof-of-work to proof-of-stake [2]. For
the future we plan to support the mentioned data-aware processes and evaluate
the integration of IoT devices in our process system on the Blockchain. We also
want to develop further tool support like process-aware user-interfaces for wallets
and the integration of our implementation into workflow management systems.

References

1. Antonopoulos, A.M.: Mastering Bitcoin: Programming the Open Blockchain.
O’Reilly Media, Inc., Sebastapol (2017)

2. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work.
CoRR (2014). http://arxiv.org/abs/1406.5694

3. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. Technical report (2014). https://github.com/ethereum/wiki/wiki/White-
Paper

4. Buterin, V.: On public and private blockchains (2015). https://blog.ethereum.org/
2015/08/07/on-public-and-private-blockchains/

5. Garćıa-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution
of business processes on blockchain. In: Carmona, J., Engels, G., Kumar, A. (eds.)
BPM 2017. LNCS, vol. 10445, pp. 130–146. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65000-5 8

6. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs (2010). https://doi.org/10.4204/
EPTCS.69.5

7. Hull, R., Batra, V.S., Chen, Y.-M., Deutsch, A., Heath III, F.F.T., Vianu, V.:
Towards a shared ledger business collaboration language based on data-aware pro-
cesses. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS,
vol. 9936, pp. 18–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46295-0 2

8. López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I.: Caterpillar: a
blockchain-based business process management system (2017)

9. Madsen, M.F., Gaub, M., Hgnason, T., Kirkbro, M.E., Slaats, T., Debois, S.: Col-
laboration among adversaries: distributed workflow execution on a blockchain. In:
Symposium on Foundations and Applications of Blockchain (2018)

10. Mendling, J., et al.: Blockchains for business process management - challenges and
opportunities. CoRR (2017). http://arxiv.org/abs/1704.03610

11. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

12. Neubauer, D.M., Goebel, A.: Blockchain for off-chain smart contracts in an SAP
environment (2018)

13. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for busi-
ness processes utilizing the bitcoin blockchain. CoRR (2017). http://arxiv.org/abs/
1706.04404

14. Rohr, J.: Blockchain for disaster relief: creating trust where it matters most (2017).
https://news.sap.com/blockchain-disaster-relief/

15. Szabo, N.: Formalizing and securing relationships on public networks. First Mon-
day (1997). http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/
view/548

http://arxiv.org/abs/1406.5694
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://doi.org/10.1007/978-3-319-65000-5_8
https://doi.org/10.1007/978-3-319-65000-5_8
https://doi.org/10.4204/EPTCS.69.5
https://doi.org/10.4204/EPTCS.69.5
https://doi.org/10.1007/978-3-319-46295-0_2
https://doi.org/10.1007/978-3-319-46295-0_2
http://arxiv.org/abs/1704.03610
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1706.04404
http://arxiv.org/abs/1706.04404
https://news.sap.com/blockchain-disaster-relief/
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548

A Lean Architecture for Blockchain Based Decentralized Process Execution 373

16. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 19

https://doi.org/10.1007/978-3-319-45348-4_19

	A Lean Architecture for Blockchain Based Decentralized Process Execution
	1 Introduction
	2 Background
	3 Related Work
	4 Lean Architecture with a Generic Smart Contract
	5 Implementation
	6 Evaluation
	7 Conclusion
	References

