
Chapter 6
Introduction: A Glass Half Full?

Pat Drake

Abstract The three chapters in this section each exemplify authentic practical prob-
lems addressed in learning situations. In so doing they point to the implied questions
of scaling up problems so that a wider range of learners and teachers might engage
with practical STEM. How can the work of inspirational and creative teachers with
high levels of mathematical understanding be extended for wider participation? This
part of the book draws out these issues by considering the slipperyness of STEM in a
generalised, selective and examination-focused curriculum. In so doing, technology-
afforded practice highlights specific areas for teacher development and curriculum
liberation. In this section the authors of the chapters are grappling with some difficult
issues. The work is all to a greater or lesser extent empirically driven. The studies
to which the chapters refer are smaller scale, and although one (Mayes) draws on
a project with 20 schools, the other two are set in the context of a single group of
students working on a single project.

6.1 Glass Half Full?

Each chapter has a focus on authentic practical problems. LópezLeiva, Pattichis &
Celedón-Pattichis present an out-of-school project aimed at Latinx students, inwhich
middle-school students learn to programme digital videos. The other two chapters
(Mayes and Sokolowski) both present in-school situations, designed to provoke prob-
lem solving that cuts across the Science, Technology, Engineering and Mathematics
(STEM) disciplines, and generates different forms of thinking. Sokolowski focuses
on developing student mathematical predictions in a teacher stimulated laboratory-
based activity, rolling a basketball. Mayes is curriculum-based, and draws on work in
the Real STEM Project that identified characteristics of interdisciplinary STEM sce-
narios to stimulate student-led problem solving. All the authors have written ‘glass
half full’ chapters, enthusiastically reporting on activities that have generated learner
engagement, with Sokolowski and Mayes writing about what is possible in school,
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and LópezLeiva et al. demonstrating that out of school learning has a part to play
in reaching the entire range of learners. Each chapter identifies opportunities for
teachers to develop mathematical reasoning with students, although each also notes
that students’ inclination to mathematical reasoning is infrequent and, or, low level.

The overall challenge for educators, from the chapters in this section, is that
interdisciplinary STEM is context dependent and so resists definition. Challenges
for schools in providing authentic interdisciplinary curriculum activities in STEM
include the high degree of specificity of genuine problems and their connection to
specific occupational areas: medicine, engineering and so on. As Hoyles, Noss, Kent,
and Bakker (2010) have previously shown, the nature of mathematical thinking at
work, is, firstly, technology-related and technology afforded, and second, undertaken
in specific ways afforded by the technology and the context. This means that, for
example, airline pilots and bankers will engage in mathematical thinking about sim-
ilar structural problems in entirely different ways. Mathematical reasoning is indeed
a process cutting across STEM, but it is undertaken differently in different circum-
stances.

One way of tackling the difficulty of identifying cross-cutting skills and concepts,
is to imaginewhat professional scientists, engineers, andmathematicians do, and then
emulate their activities. This approach leads to exemplar simulations, because what
does ‘interdisciplinary’ mean when there are no bounded disciplines at play in the
first place, as tends to be the case in authentic problems? As Engeström (2016, most
recently) wisely points out, thewhole point of new knowledge is that it is new, it is not
known in advance.Nonetheless, each of the papers in this section succeeds in defining
STEM in meaningful ways for the purposes of teaching and learning. The papers
do this by deciding what characterises thinking in interdisciplinary situations, and
then devising activities designed to generate such thinking processes. Each illustrates
interdisciplinary STEM activities, and each identifies opportunities for more focused
attention on developing reasoning by students.

Another key cross-cutting concept pervading the chapters in this section is the idea
of mathematics reaching out to other disciplines. All the authors have addressed the
difficulty of pinning mathematical reasoning down—where and when it occurs, what
it looks like, and how it can be encouraged. Mayes unpacks, and presents problems,
that develop thinking, Sokolowski identifies, through examining student responses to
a prediction problem, ways in which students’ mathematical reasoning is deficient,
pointing to an ideal that he argues should be encouraged. LópezLeiva et al. show
how mathematical modelling is integral to the students’ design process.

Technology generally cuts across, intersects with, and underpins STEM, and it
is indeed technological settings that provide the opportunities for thinking that both
Mayes and LópezLeiva et al. consider integral. Sokolowski, however, has offered
what seems to start with as a more traditional classroom task, that of predicting
the particularities of a rolling basketball, data-gathering using conventional tools of
stopwatches and tapemeasures. This chapter, rather than integrating STEM, attempts
to unpick the mathematical reasoning component, and identify students’ approaches
tomathematical reasoning,with a view to developingways of teaching this reasoning.



6 Introduction: A Glass Half Full? 87

The combination of high level thinking skills with lower level of competence
remains, possibly, one of the most significant challenges for organisers of educa-
tional experiences, is particularly acute in the case of mathematics, and pervades
practice at every level of expertise. We see individual educators addressing this here
as best they can, and in stimulating and inspiring ways. But there is an overall chal-
lenge in scaling up educational change from individual practices, however exciting,
successful, and informative these may be. Innovative practice and thinking shows us
what is possible and we can use these ideas for inspiration. What is also necessary
is a detailed understanding of contexts for mathematical reasoning, so that organ-
isational curriculum strategy can build contexts in which mathematical reasoning
occurs. Sokolowski points out that teachers need this understanding, and suggests
the need to encourage professional development for teachers, through engaging them
also with investigative experiences.

6.2 Description of the Papers in the Section

Sokolowski describes an activity explicitly designed for high school students in one
school to bring together practical, mathematical reasoning, and predictive skills. Sci-
entific methods within interdisciplinary activities were designed to activate students’
mathematical reasoning skills. Rather than moving from the observational task of
observing a rolling basketball to generating a function to account for the movement
of the ball, in this activity students were encouraged to think predictively in the first
place before observing the ball in practice. This brought some success in so far as
students were generally able to predict some aspects of the motion of the ball, such
as its linearity. However, only a small proportion used explicitly mathematical rea-
soning, i.e. constant rate of change of distance with respect to time. Other responses,
although intuitively correct, are more general, and in some cases entirely qualitative,
and Sokolowski argues that the activity for students at this level of understanding
provides a specific opportunity to focus teaching on mathematising the predictions.

Mayes’ contribution draws on a larger scale Real STEM Project in 20 partner
middle and high schools, in which beautiful exemplar problems are presented to
develop five specific forms of reasoning modality evident in the problem-solving
practices of professional scientists, engineers, and mathematicians. The problems,
chosen to be ‘interdisciplinary’ in the sense that each is not bounded by specific
disciplines, are explained in detail and aligned with each reasoning modality devel-
oped, namely complex systems, scientific model-based, technologic computational,
engineering design-based, and mathematical quantitative. Teachers will recognise
the passion in Mayes’ chapter for the increased engagement and motivation shown
by students when tackling ‘real’ problems. He argues though, that whilst quantita-
tive reasoning has the potential to underpin authentic problem solving, students do
not have the skills to adopt it confidently, thus raising the perennial question: which
students are ‘authentic’ problem solving activities actually for? As Dowling (1998)
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pointed out, so many years ago now, the everyday tends to provide opportunities to
practice mundane skills, and the esoteric is for more highly performing students.

LópezLeiva, Pattichis&Celedón-Pattichis take, as their startingpoint, that schools
often do not promote comprehensive understanding of computers and computer pro-
gramming, and that engineering education is frequently an elective course or simply
not offeredwhatsoever. They argue that this needs to be challenged and present a case
of a successful out-of-school technology project in which middle school, predomi-
nantly Latinx students, programmed digital videos around self-generated topics. In
so-doing, the students engaged in science, technology, mathematics and engineering.
Mathematics practices were encouraged through model-eliciting activities, drawn
from a framework developed by Lesh, Hoover, Hole, Kelly, and Post (2000) in the
early 21st century. The authors’ claim is that, through a creative and collaborative
process of ‘design, model, implement’, computational thinking processes emerge
through synergies between mathematical modelling, engineering design, computer
programming, and student goals.

LópezLeiva et al. point out that technology and engineering practices in schools
are not part of the main curriculum. Furthermore, there is a paucity of STEM pro-
grams in schools that are inclusive of students from underrepresented groups such
as low socio-economic (SES) groups, ethnic minorities, and girls. They suggest that
interdisciplinary open-ended problem-solving approaches open to student input are
needed to be inclusive of these student populations. An out-of-school project that
has recruited largely middle-years Latinx students to learn and practice computer
programming adds value to an institutional curriculum provision.

6.3 The Empty Half of the Glass

Implicit in each of these papers is an underlying unease with what STEM means
in practice, and discomfort with how practice translates into teaching STEM in
schools. Indeed, LópezLeiva et al. argue directly that when schools provide open-
ended interdisciplinary activities with student input, students have opportunities to
learn challenging mathematics and computer programming and are held to high
standards. With the appropriate support to meet these standards and windows to
promote student action, underrepresented students can engage at these levels of a
demanding curriculum and meet high expectations. This is a two-fold critique, of
both curriculum organisation, and participation strategy, each component of which
offers a big challenge to STEMpolicy and design in schools. It is very difficult indeed
to organise interdisciplinary STEM activities in educational institutions whose very
raison d’être, currently, is the achievement of pre-determined and specified outcomes.
But this is not to say that it is not worth doing: the imagined lives of practitioners in
STEM, can only be enhanced by more detailed understanding of what they actually
do, at all levels, in different cultural settings with contemporary problems. People
with STEM qualifications work in a whole range of occupations; and conversely, a
whole range of non-STEM occupations require some STEM skills, particularly in
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ICT, mathematics, and data handling. As the current Chief Scientist of Australia, Dr.
Alan Finkel, recently remarked “As time moves on it becomes increasingly difficult
to decide who is, and isn’t, a ‘STEM worker’” (Office of the Chief Scientist, 2016).

Each chapter has focused on what is identifiable from practice, in practice, and
through engagement with social practices, in which mathematical reasoning elides
with what might be called STEM problems. The chapter by Mayes goes some way
to addressing the challenge through the identification of systems in which STEM
features, advocating ways of thinking in these systems. However, as Mayes asserts
almost as an aside, students’ mathematical skills are less well developed than their
scientific thinking skills. From this, arises the other significant educational chal-
lenge, that of providing opportunities for engaging in STEM, that are inclusive and
enable participation whatever the level of mathematical attainment. This challenge
is partially addressed by LópezLeiva et al. who describe their project activities as
specifically motivated by the need for inclusivity to draw in younger students’ input
within high-level curricular tasks. Their data show students can engage in higher
levels of the curriculum when provided the opportunity to do so. Their account
of the out-of-school project is inspiring, as it suggests ways that informal educa-
tional settings (such as those provided via youth clubs) can contribute to educational
culture building, enable participants to devise new identities, and expand student
self-development expectation.

As asserted earlier, inspiring projects in themselves are not enough to enable
curriculum organisers to scale up authentic practice. Is the glass half empty? Well if
it is, to identify cross-cutting skills we need to look at the empty half, what is not so far
examined here, as well as the full half. The chapters each concludewith a summary of
what researchers, practitioners, or policy-makers, should attend to in their futurework
as a result. LópezLeiva et al. argue for a transformative pedagogy that capitalises on
who students are and what they know, mixing with new goal-oriented, open-ended
challenges and experiences that enable access to new knowledge, particularly on
computer programming and coding. Mayes identifies a lack of STEM expertise in
schools, and points to new ways of collaborative working, and ways of extending
knowledge, within, and across, schools, specifically identifying the need for explicit
opportunities for mathematical modelling. Sokolowski is keen to identify, and focus
on, known mathematical weaknesses of students, in particular algebraic thinking.
These are all cross-cutting, but they are not skills, for as system needs they go
far beyond that. More broadly STEM development in educational settings would
include relations between teachers and teachers, learners and learners, and teachers
and learners. It would include more emphasis on mathematics for social justice that
is studying connections between mathematical reasoning and social division. It must
not remain the case that STEM in school serves to minoritise students. It must not
remain the case that an absence of confidently qualified teachers means that student
access to STEM is of variable quality, even within a single institution. Less qualified
teachers need support and training in mathematics if their subject knowledge is
weak. Those bringing up-to-date industrial ideas and application need pedagogical
support. The cases described in this section each bring both good examples and well-
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grounded ways of thinking about thinking. It is time now to support a wider network
in achieving this.

6.4 Afterword

In editing this section I have been struck by two things. The enthusiasm of the paper
authors and their willingness to contribute to this volume as it has taken shape over
time has been hugely impressive. Partly this is, I feel, because we all believe in the
importance of this volume in making a coherent contribution to the field of interdis-
ciplinary mathematics education. The second striking thing is that there is almost
no overlap between the references cited by each author, for although some work
on mathematical modelling by Lesh and colleagues over the ten years 1997–2007
has been built upon by both Sokolowski and LópezLeiva et al. clearly there are cur-
rently no seminal texts, no shared body of work on which to build our understanding.
Thus, I would emphasise the need to develop a research agenda in interdisciplinary
mathematics education that begins with a systematic and international review of the
field.
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