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Abstract. In this paper we propose to learn a multimodal image and
text embedding from Web and Social Media data, aiming to leverage the
semantic knowledge learnt in the text domain and transfer it to a visual
model for semantic image retrieval. We demonstrate that the pipeline can
learn from images with associated text without supervision and perform
a thorough analysis of five different text embeddings in three different
benchmarks. We show that the embeddings learnt with Web and Social
Media data have competitive performances over supervised methods in
the text based image retrieval task, and we clearly outperform state of the
art in the MIRFlickr dataset when training in the target data. Further
we demonstrate how semantic multimodal image retrieval can be per-
formed using the learnt embeddings, going beyond classical instance-level
retrieval problems. Finally, we present a new dataset, InstaCities1M,
composed by Instagram images and their associated texts that can be
used for fair comparison of image-text embeddings.

Keywords: Self-supervised learning - Webly supervised learning
Text embeddings - Multimodal retrieval - Multimodal embeddings

1 Introduction

1.1 Why Should We Learn to Learn from Web Data?

Large annotated datasets, powerful hardware and deep learning techniques are
allowing to get outstanding machine learning results. Not only in traditional
classification problems but also in more challenging tasks such as image caption-
ing or language translation. Deep neural networks allow building pipelines that
can learn patterns from any kind of data with impressive results. One of the
bottlenecks of training deep neural networks is, though, the availability of prop-
erly annotated data, since deep learning techniques are data hungry. Despite the
existence of large-scale annotated datasets such as ImageNet [11], COCO [16] or
Places [40] and tools for human annotation such as Amazon Mechanical Turk,
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the lack of data limits the application of deep learning to specific problems where
it is difficult or economically non-viable to get proper annotations.

A common strategy to overcome this problem is to first train models in
generic datasets as ImageNet and then fine-tune them to other areas using
smaller, specific datasets [36]. But still we depend on the existence of annotated
data to train our models. Another strategy to overcome the insufficiency of data
is to use computer graphics techniques to generate artificial data inexpensively.
However, while synthetic data has proven to be a valuable source of training
data for many applications such as pedestrian detection [19], image semantic
segmentation [28] and scene text detection and recognition [8,26], nowadays it
is still not easy to generate realistic complex images for some tasks.

An alternative to these strategies is learning from free existing weakly anno-
tated multimodal data. Web and Social Media offer an immense amount of
images accompanied with other information such as the image title, description
or date. This data is noisy and unstructured but it is free and nearly unlim-
ited. Designing algorithms to learn from Web data is an interesting research
area as it would disconnect the deep learning evolution from the scaling of
human-annotated datasets, given the enormous amount of existing Web and
Social Media data.

1.2 How to Learn from Web Data?

In some works, such as in the WebVision Challenge [14], Web data is used to
build a classification dataset: queries are made to search engines using class
names and the retrieved images are labeled with the querying class. In such a
configuration the learning is limited to some pre-established classes, thus it could
not generalize to new classes. While working with image labels is very convenient
for training traditional visual models, the semantics in such a discrete space is
very limited in comparison with the richness of human language expressiveness
when describing an image. Instead we define here a scenario where, by exploiting
distributional semantics in a given text corpus, we can learn from every word
associated to an image. As illustrated in Fig. 1, by leveraging the richer semantics
encoded in the learnt embedding space, we can infer previously unseen concepts
even though they might not be explicitly present in the training set.

The noisy and unstructured text associated to Web images provides infor-
mation about the image content that we can use to learn visual features. A
strategy to do that is to embed the multimodal data (images and text) in the
same vectorial space. In this work we represent text using five different state of
the art methods and eventually embed images in the learn semantic space by
means of a regression CNN. We compare the performance of the different text
space configurations under a text based image retrieval task.

2 Related Work

Multimodal image and text embeddings have been lately a very active research
area. The possibilities of learning together from different kinds of data have
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Fig. 1. Top-ranked results of combined
text queries by our semantic image
retrieval model. The learnt joint image-
text embedding permits to learn a rich

Fig. 2. First retrieved images for mul-
timodal queries (concepts are added
or removed to bias the results) with
Word2Vec on WebVision.

semantic manifold even for previously
unseen concepts even though they might
not be explicitly present in the training
set.

motivated this field of study, where both general and applied research has been
done. DeViSE [22] proposes a pipeline that, instead of learning to predict Ima-
geNet classes, it learns to infer the Word2Vec [21] representations of their labels.
The result is a model that makes semantically relevant predictions even when it
makes errors, and generalizes to classes outside of its labeled training set. Gordo
and Larlus [7] use captions associated to images to learn a common embed-
ding space for images and text through which they perform semantic image
retrieval. They use a tf-idf based BoW representation over the image captions
as a semantic similarity measure between images and they train a CNN to min-
imize a margin loss based on the distances of triplets of query-similar-dissimilar
images. Gomez et al. [5] use LDA [1] to extract topic probabilities from a bunch
of Wikipedia articles and train a CNN to embed its associated images in the
same topic space. Wang et al. [32] propose a method to learn a joint embedding
of images and text for image-to-text and text-to-image retrieval, by training a
neural net to embed in the same space Word2Vec [21] text representations and
CNN extracted features.
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Other than semantic retrieval, joint image-text embeddings have also been
used in more specific applications. Patel et al. [23] use LDA [1] to learn a joint
image-text embedding and generate contextualized lexicons for images using only
visual information. Gordo et al. [6] embed word images in a semantic space rely-
ing in the graph taxonomy provided by WordNet [27] to perform text recognition.
In a more specific application, Salvador et al. [29] propose a joint embedding of
food images and its recipes to identify ingredients, using Word2Vec [21] and
LSTM representations to encode ingredient names and cooking instructions and
a CNN to extract visual features from the associated images.

The robustness against noisy data has also been addressed by the community,
though usually in an implicit way. Patrini et al. [24] address the problem of
training a deep neural network with label noise with a loss correction approach
and Xiau et al. [33] propose a method to train a network with a limited number of
clean labels and millions of noisy labels. Fu et al. [4] propose an image tagging
method robust to noisy training data and Xu et al. [34] address social image
tagging correction and completion. Zhang et al. [20] show how label noise affects
the CNN training process and its generalization error.

2.1 Contributions

The work presented here brings in a performance comparison between five state
of the art text embeddings in multimodal learning, showing results in three
different datasets. Furthermore it proves that multimodal learning can be applied
to Web and Social Media data achieving competitive results in text-based image
retrieval compared to pipelines trained with human annotated data. Finally, a
new dataset formed by Instagram images and its associated text is presented:
InstaCities1M.

3 Multimodal Text-Image Embedding

One of the objectives of this work is to serve as a fair comparative of differ-
ent text embeddings methods when learning from Web and Social Media data.
Therefore we design a pipeline to test the different methods under the same
conditions, where the text embedding is a module that can be replaced by any
text representation.

The proposed pipeline is as follows: First, we train the text embedding model
on a dataset composed by pairs of images and correlated texts (I,z). Second,
we use the text embedding model to generate vectorial representations of those
texts. Given a text instance x, we denote its embedding by ¢(z) € R?. Third,
we train a CNN to regress those text embeddings directly from the correlated
images. Given an image I, its representation in the embedding space is denoted
by (I) € R%. Thereby the CNN learns to embed images in the vectorial space
defined by the text embedding model. The trained CNN model is used to generate
visual embeddings for the test set images. Figure 3 shows a diagram of the visual
embedding training pipeline and the retrieval procedure.
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In the image retrieval stage the vectorial representation in the joint text-
image space of the querying text is computed using the text embedding model.
Image queries can also be handled by using the visual embedding model instead
of the text embedding model to generate the query representation. Further-
more, we can generate complex queries combining different query representations
applying algebra in the joint text-image space. To retrieve the most semantically
similar image Ir to a query x4, we compute the cosine similarity of its vectorial
representation ¢(x,) with the visual embeddings of the test set images ¥ (Ir),
and retrieve the nearest image in the joint text-image space:

(¢(zq), ¥(UI1))
(o)l - v ()l

State of the art text embedding methods trained on large text corpus are very
good generating representations of text in a vector space where semantically sim-
ilar concepts fall close to each other. The proposed pipeline leverages the seman-
tic structure of those text embedding spaces training a visual embedding model
that generates vectorial representations of images in the same space, mapping
semantically similar images close to each other, and also close to texts correlated
to the image content. Note that the proposed joint text-image embedding can
be extended to other tasks besides image retrieval, such as image annotation,
tagging or captioning.

arg min
I ETest

(1)

Training
Visual w()

embedding | ?3

-~ “old car”
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Text -
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old car embedding “¢(x) representation
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Fig. 3. Pipeline of the visual embedding model training and the image retrieval by
text.

3.1 Visual Embedding

A CNN is trained to regress text embeddings from the correlated images minimiz-
ing a sigmoid cross-entropy loss. This loss is used to minimize distances between
the text and image embeddings. Let {(I,,, z,)}n=1.n be a batch of image-text
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pairs. If o(+) is the component-wise sigmoid function, we denote p,, = o(¢(x,))
and p, = o(¢¥(I,)), and let the loss be:

N
= % Z Pn logpn 1 _pn) log(l _ﬁn)]a (2)

where the sum’s inner expression is averaged over all vector components. The
GoogleNet architecture [30] is used, customizing the last layer to regress a vector
of the same dimensionality as the text embedding. We train with a Stochastic
Gradient Descent optimizer with a learning rate of 0.001, multiplied by 0.1 every
100,000 iterations, and a momentum of 0.9. The batch size is set to 120 and
random cropping and mirroring are used as online data augmentation. With
these settings the CNN trainings converge around 300K-500K iterations. We
use the Caffe [10] framework and initialize with the ImageNet [11] trained model
to make the training faster. Notice that, despite initializing with a model trained
with human-annotated data, this does not denote a dependence on annotated
data, since the resulting model can generalize to much more concepts than the
ImageNet classes. We trained one model from scratch obtaining similar results,
although more training iterations were needed.

3.2 Text Embeddings

Text vectorization methods are diverse in terms of architecture and the text
structure they are designed to deal with. Some methods are oriented to vectorize
individual words and others to vectorize full texts or paragraphs. In this work
we consider the top-performing text embeddings and test them in our pipeline
to evaluate their performance when learning from Web and Social Media data.
Here we explain briefly the main characteristics of each text embedding method
used.

LDA [1]: Latent Dirichlet Allocation learns latent topics from a collection of
text documents and maps words to a vector of probabilities of those topics. It
can describe a document by assigning topic distributions to them, which in turn
have word distributions assigned. An advantage of this method is that it gives
interpretable topics.

Word2Vec [21]: Using large amounts of unannotated plain text, Word2Vec
learns relationships between words automatically using a feed-forward neural
network. It builds distributed semantic representations of words using the con-
text of them considering both words before and after the target word.

FastText [2]: It is an extension of Word2Vec which treats each word as com-
posed of character ngrams, learning representations for ngrams instead of words.
The vector for a word is made of the sum of its character n grams, so it can
generate embeddings for out of vocabulary words.
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Doc2Vec [12]: Extends the Word2Vec idea to documents. Instead of learning
feature representations for words, it learns them for sentences or documents.

GloVe [25]: It is a count-based model. It learns the vectors by essentially doing
dimensionality reduction on the co-occurrence counts matrix. Training is per-
formed on aggregated global word-word co-occurrence statistics from a corpus.

To the best of our knowledge, this is the first time these text embeddings
are trained from scratch on the same corpus and evaluated under the image
retrieval by text task. We used Gensim' implementations of LDA, Word2Vec,
FastText and Doc2Vec and the GloVe implementation by Maciej Kula?. While
LDA and Doc2Vec can generate embeddings for documents, Word2Vec, GloVe
and FastText only generate word embeddings. To get documents embeddings
from these methods, we consider two standard strategies: First, computing the
document embedding as the mean embedding of its words. Second, computing
a tf-idf weighted mean of the words in the document. For all embeddings a
dimensionality of 400 has been used. The value has been selected because is the
one used in the Doc2Vec paper [12], which compares Doc2Vec with other text
embedding methods, and it is enough to get optimum performances of Word2Vec,
FastText and GloVe, as [2,21,25] show respectively. For LDA a dimensionality
of 200 has also been considered.

4 Experiments

4.1 Benchmarks

InstaCities1M. A dataset formed by Instagram images associated with one of
the 10 most populated English speaking cities all over the world (in the images
captions one of this city names appears). It contains 100K images for each city,
which makes a total of 1M images, split in 800K training images, 50K validation
images and 150K test images. The interest of this dataset is that is formed by
recent Social Media data. The text associated with the images is the description
and the hashtags written by the photo up-loaders, so it is the kind of free available
data that would be very interesting to be able to learn from. The InstaCities1M
dataset is available on https://gombru.github.io/2018/08/01 /InstaCities1M/.

WebVision [15]. It contains more than 2.4 million images crawled from the
Flickr Website and Google Images search. The same 1,000 concepts as the
ILSVRC 2012 dataset [11] are used for querying images. The textual information
accompanying those images (caption, user tags and description) is provided. The
validation set, which is used as test in this work, contains 50K images.

! http://radimrehurek.com/gensim.
2 http://github.com/maciejkula/glove-python.
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MIRFlickr [9]. It contains 25,000 images collected from Flickr, annotated using
24 predefined semantic concepts. 14 of those concepts are divided in two cate-
gories: (1) strong correlation concepts and (2) weak correlation concepts. The
correlation between an image and a concept is strong if the concept appears
in the image predominantly. For differentiation, we denote strong correlation
concepts by a suffix “*”. Finally, considering strong and weak concepts sep-
arately, we get 38 concepts in total. All images in the dataset are annotated
by at least one of those concepts. Additionally, all images have associated tags
collected from Flickr. Following the experimental protocol in [13,17,18,35] tags
that appear less than 20 times are first removed and then instances without tags
or annotations are removed.

4.2 Retrieval on InstaCities1M and WebVision Datasets

Experiment Setup. To evaluate the learnt joint embeddings, we define a set
of textual queries and check visually if the TOP-5 retrieved images contain the
querying concept. We define 24 different queries. Half of them are single word
queries and the other half two word queries. They have been selected to cover a
wide area of semantic concepts that are usually present in Web and Social Media
data. Both simple and complex queries are divided in four different categories:
Urban, weather, food and people. The simple queries are: Car, skyline, bike; sun-
rise, snow, rain; ice-cream, cake, pizza; woman, man, kid. The complex queries
are: Yellow + car, skyline + night, bike + park; sunrise + beach; snow + ski;
rain + umbrella; ice-cream + beach, chocolate + cake; pizza + wine; woman +
bag, man + boat, kid 4+ dog. For complex queries, only images containing both
querying concepts are considered correct.

Table 1. Performance on InstaCitieslM Table 2. Performance on transfer learning.
and WebVision. First column shows the First column shows the mean P@5 for all
mean P@5 for all the queries, second for the queries, second for the simple queries and
the Simple queries and third for Complex third for Complex queries_

queries.

Text embedding|Train: WebVision | Train: InstaCities

Text embedding|InstaCities1M |WebVision Test: InstaCities |Test: WebVision
Queries All |S Cc |Al |S C Queries All S C All |8 [¢]
LDA 200 0.40 |0.73 |0.07 |0.11 |0.18 |0.03  LDA 200 0.14 |0.25 [0.03  {0.33|0.55 |0.12
LDA 400 0.37 /0.68 |0.05 |0.14 [0.18 |0.10 LDA 400 0.17 /0.25 |0.08  0.24 |0.39 |0.10

Word2Vec mean|0.46 |0.71 10.20/0.37 10.57 |0.17 ‘Word2Vec mean|0.41 |0.63|0.18 0.33 0.52 |0.15
Word2Vec tf-idf|0.41 [0.63 [0.18 |0.41|0.58 |0.23 ~ Word2Vec tf-idf|0.42|0.57 |0.27 ]0.320.50 |0.13

Doc2Vec 0.22 10.25 10.18 10.22 10.17 |0.27 Doc2Vec 0.27 ]0.40 |0.15 0.24 /0.33 |0.15

GloVe 0.41 /0.72 10.10 |0.36 |0.60/0.12 GloVe 0.36 |0.58 |0.15 0.29 /0.53 |0.05
GloVe tf-idf 0.47/0.82/0.12 |0.39 |0.57 |0.22 GloVe tf-idf 0.39 |0.57 |0.22 0.51/0.75/0.27

FastText tf-idf |0.31 10.50 (0.12 0.37 |0.60 |0.13 FastText tf-idf |0.39 |0.57 |0.22 0.18 |0.33 |0.03

Results and Conclusions. Tables1 and 2 show the mean Precision at 5
for InstaCities1M and WebVision datasets and transfer learning between those
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Fig. 4. First retrieved images for city Fig. 5. First retrieved images for text
related complex queries with Word2Vec non-object queries with Word2Vec on
on InstaCites1M. InstaCites1 M.

datasets. To compute transfer learning results, we train the model with one
dataset and test with the other. Figures 1 and 4 show the first retrieved images for
some complex textual queries. Figure 5 shows results for non-object queries, prov-
ing that our pipeline works beyond traditional instance-level retrieval. Figure 2
shows that retrieval also works with multimodal queries combining an image and
text.

For complex queries, where we demand two concepts to appear in the
retrieved images, we obtain good results for those queries where the concepts
tend to appear together. For instance, we generally retrieve correct images for
“skyline 4 night” and for “bike + park”, but we do not retrieve images for
“dog + kid”. When failing with this complex queries, usually images where only
one of the two querying concepts appears are retrieved. Figure 6 shows that in
some cases images corresponding to semantic concepts between the two query-
ing concepts are retrieved. That proves that the common embedding space that
has been learnt has a semantic structure. The performance is generally better
in InstaCitiesIM than in WebVision. The reason is that the queries are closer
to the kind of images people tend to post in Instagram than to the ImageNet
classes. However, the results on transfer learning show that WebVision is a bet-
ter dataset to train than InstaCities1M. Results show that all the tested text
embeddings methods work quite well for simple queries. Though, LDA fails when
is trained in WebVision. That is because LDA learns latent topics with seman-
tic sense from the training data. Every WebVision image is associated to one
of the 1,000 ImageNet classes, which influences a lot the topics learning. As a
result, the embedding fails when the queries are not related to those classes.
The top performing methods are GloVe when training with InstaCities1M and
Word2Vec when training with WebVision, but the difference between their per-
formance is small. FastText achieves a good performance on WebVision but a bad
performance on InstaCities1M compared to the other methods. An explanation
is that, while Social Media data contains more colloquial vocabulary, WebVi-
sion contains domain specific and diverse vocabulary, and since FastText learns
representations for character ngrams, is more suitable to learn representations
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from corpus that are morphologically rich. Doc2Vec does not work well in any
database. That is because it is oriented to deal with larger texts than the ones
we find accompanying images in Web and Social Media. For word embedding
methods Word2Vec and GloVe, the results computing the text representation as
the mean or as the t¢f-idf weighted mean of the words embeddings are similar.

Error Analysis. Remarkable sources of errors are listed and explained in this
section.

Visual Features Confusion: Errors due to the confusion between visually similar
objects. For instance retrieving images of a quiche when querying “pizza”. Those
errors could be avoided using more data and a higher dimensional representa-
tions, since the problem is the lack of training data to learn visual features that
generalize to unseen samples.

Errors from the Dataset Statistics: An important source of errors is due to
dataset statistics. As an example, the WebVision dataset contains a class which
is “snow leopard” and it has many images of that concept. The word “snow”
appears frequently in the images correlated descriptions, so the net learns to
embed together the word “snow” and the visual features of a “snow leopard”.
There are many more images of “snow leopard” than of “snow”, therefore, when
we query “snow” we get snow leopard images. Figure 7 shows this error and how
we can use complex multimodal queries to bias the results.

snow

-leopard - plow

Fig. 6. First retrieved images for sim- Fig. 7. First retrieved images for text
ple (left and right columns) and com- queries using Word2Vec on WebVision.
plex weighted queries with Word2Vec on Concepts are removed to bias the results.

InstaCites1M.
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Words with Different Meanings or Uses: Words with different meanings or
words that people use in different scenarios introduce unexpected behaviors.
For instance when we query “woman + bag” in the InstaCities1M dataset we
usually retrieve images of pink bags. The reason is that people tend to write
“woman” in an image caption when pink stuff appears. Those are considered
errors in our evaluation, but inferring which images people relate with certain
words in Social Media can be a very interesting research.

4.3 Retrieval in the MIRFlickr Dataset

To compare the performance of our pipeline to other image retrieval by text sys-
tems we use the MIRFlickr dataset, which is typically used to train and evaluate
image retrieval systems. The objective is to prove the quality of the multimodal
embeddings learnt solely with Web data comparing them to supervised methods.

Experiment Setup. We consider three different experiments: (1) Using as
queries the tags accompanying the query images and computing the MAP of all
the queries. Here a retrieved image is considered correct if it shares at least one
tag with the query image. For this experiment, the splits used are 5% queries
set and 95% training and retrieval set, as defined in [18,35]. (2) Using as queries
the class names. Here a retrieved image is considered correct if it is tagged with
the query concept. For this experiment, the splits used are 50% training and
50% retrieval set, as defined in [31]. (3) Same as experiment 1 but using the
MIRFlickr train-test split proposed in Zhang et al. [38].

Results and Conclusions. Tables 3 and 4 show the results for the experiments
1 and 3 respectively. We appreciate that our pipeline trained with Web and
Social Media data in a multimodal self-supervised fashion achieves competitive
results. When trained with the target dataset, our pipeline outperforms the other
methods. Table 5 shows results for the experiment 2. Our pipeline with the GloVe
tf-idf text embedding trained with InstaCites1M outperforms state of the art
methods in most of the classes and in MAP. If we train with the target dataset,
results are improved significantly. Notice that despite being applied here to the
classes and tags existing in MIRFlickr, our pipeline is generic and has learnt to
produce joint image and text embeddings for many more semantic concepts, as
seen in the qualitative examples.

4.4 Comparing the Image and Text Embeddings

Experiment Setup. To evaluate how the CNN has learnt to map images to
the text embedding space and the semantic quality of that space, we perform
the following experiment: We build random image pairs from the MIRFlickr
dataset and we compute the cosine similarity between both their image and
their text embeddings. In Fig. 8 we plot the images embeddings distance vs the
text embedding distance of 20,000 random image pairs. If the CNN has learnt



Table 3. MAP on the image by text
retrieval task on MIRFlickr as defined
in [18,35].
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Table 5. AP scores for 38 semantic
concepts and MAP on MIRFlickr. Blue
numbers compare our method trained
with InstaCities and other methods

Method Train Map trained with the target dataset.
LDA 200 InstaCites1M |0.736
o Method |GloVe |MMSHL|[SCM |GloVe
LDA 400 WebVision  |0.627 oot [ ‘[37] Glow
Word2Vec tf-idf|InstaCites1M |0.720 Train MIRFlickr InstaCities
‘Word2Vec tf-idf| WebVision 0.738 animals |0.775 [0.382 0.353 |0.707
- - baby 0.337 |0.126  |0.127 |0.264
GloVe tf—¥df InstaC.lt.eslM 0.756 baby” [0.627 [0.086 0086 0.2
GloVe tf—ldf WebVISlOI’l 0.737 bird 0.556 |0.169 0.163 0.483
FastText tf-idf |InstaCities1M|0.677 bird* 0.603 |0.178 |0.163 |0.680
FastText tf-idf [WebVision 0.734 <2, e s
Word2Vec tf-idf MIRFlickr 0.867 female |0.693 |0.537 |0.514 |0.481
GloVe tf-idf MIRFlickr 0.883 ferk“ale* g-lgg g":gi 8.‘1122 82’%
DCH ([35] MIRFlickr 0.813 sea 0.720 [0.469 [0.498 10.565
LSRH [13] MIRFlickr 0.768 sea* 0.859 0.242 0.166 |0.731
CSDH [18] MIRFlickr 0.764 :ree* g;;z g'izg 8‘223 8"?’3?
- ree . . . .5
SePH [17] MIRFlickr 0.735 clouds 0.792 [0.739 |0.698 |0.613
SCM [37] MIRFlickr 0.631 clouds* [0.884 [0.658  |0.598 [0.710
CMFH [3} MIRFlickr 0.594 dog 0.800 |0.195 0.167 0.760
- dog* 0.901 |0.238  |0.228 |0.865
CRH [39] MIRFlickr 0.581 sky 0.900 [0.817 0.797 |0.809
KSH-CV [41] |MIRFlickr 0.571 structures[0.850 |0.741  |0.708 |0.703
sunset  |0.601 |0.596  |0.563 |0.590
transport (0.650 |0.394 0.368 0.287
water 0.759 |0.545 0.508 0.555
Aower 0.715 |0.433  |0.386 |0.645
) flower® | 0.870 |0.504 |0.411 |0.818
Table 4. MAP on the image by text oq 0.712 |0.419  |0.355 |0.683
retrieval task on MIRFlickr as defined  indoor [0.806 [0.677 [0.659 [0.304
. plant _life|0.846 |0.734 |0.703 |0.564
in [38]. portrait |0.825 |0.616 |0.524 0.474
od portrait* |0.841 [0.613 0.520 |0.483
Metho Train Map river 0.436 [0.163 |0.156 |0.304
GloVe tf-idf InstaCites1M|0.57 river®  0.487 |0.134 |0.142 ]0.326
- - male 0.666 |0.475 |0.469 |0.330
GloVe tf-idf| MIRFlickr  |0.73 male® 0.743 0376 0341 (0338
MML [38] |MIRFlickr |0.63 night 0.589 [0.564  |0.538 |0.542
InfR [38] MIRFlicke  10.60 night* ]0.804 [0.414 (0420 |0.720
- people  |0.910 |0.738  |0.715 |0.640
SBOW [38] MIRFlickr |0.59 people™ 0.945 |0.677  |0.648 |0.658
SLKL [38] |MIRFlickr |0.55 MAP 0.738 |0.451  |0.415 |0.555
MLKL [38] |MIRFlickr |0.56
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correctly to map images to the text embedding space, the distances between the
embeddings of the images and the texts of a pair should be similar, and points
in the plot should fall around the identity line y = z. Also, if the learnt space
has a semantic structure, both the distance between images embeddings and
the distance between texts embeddings should be smaller for those pairs sharing
more tags: The plot points’ color reflects the number of common tags of the
image pair, so pairs sharing more tags should be closer to the axis origin.
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Fig. 8. Text embeddings distance (X) vs the images embedding distance (Y) of dif-
ferent random image pairs for LDA, Word2Vec and GloVe embeddings trained with
InstaCities1M. Distances have been normalized between [0,1]. Points are red if the pair
does not share any tag, orange if it shares 1, light orange if it shares 2, yellow if it
shares 3 and green if it shares more. R? is the coefficient of determination of images
and texts distances. (Color figure online)

As an example, take a dog image with the tag “dog”, a cat image with the tag
“cat” and one of a scarab with the tag “scarab”. If the text embedding has been
learnt correctly, the distance between the projections of dog and scarab tags in
the text embedding space should be bigger than the one between dog and cat
tags, but smaller than the one between other pairs not related at all. If the CNN
has correctly learnt to embed the images of those animals in the text embedding
space, the distance between the dog and the cat image embeddings should be
similar than the one between their tags embeddings (and the same for any pair).
So the point given by the pair should fall in the identity line. Furthermore, that
distance should be nearer to the coordinates origin than the point given by the
dog and scarab pair, which should also fall in the identity line and nearer to the
coordinates origin that another pair that has no relation at all.

Results and Conclusions. The plots for both the Word2Vec and the GloVe
embeddings show a similar shape. The resulting blob is elongated along the
y = x direction, which proves that both image and text embeddings tend to
provide similar distances for an image pair. The blob is thinner and closer to
the identity line when the distances are smaller (so when the image pairs are
related), which means that the embeddings can provide a valid distance for
semantic concepts that are close enough (dog, cat), but fails inferring distances
between weak related concepts (car, skateboard). The colors of the points in the
plots show that the space learnt has a semantic structure. Points corresponding
to pairs having more tags in common are closer to the coordinates origin and
have smaller distances between the image and the text embedding. From the
colors it can also be deducted that the CNN is good inferring distances for
related images pairs: there are just a few images having more than 3 tags in
common with image embedding distance bigger than 0.6, while there are many
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images with bigger distances that do not have tags in common. However, the
visual embedding sometimes fails and infers small distances for image pairs that
are not related, as those images pairs having no tags in common and an image
embedding distance below 0.2.

The plot of the LDA embedding shows that the learnt joint embedding is not
so good in terms of the CNN images mapping to the text embedding space nor in
terms of the space semantic structure. The blob does not follow the identity line
direction that much which means that the CNN and the LDA are not inferring
similar distances for images and texts of pairs. The points colors show that the
CNN is inferring smaller distances for more similar image pairs only when the
pairs are very related.

The coefficient of determination R? measures the proportion of the variance
in a dependent variable that is predicted by linear regression and a predictor
variable. In this case, it can be interpreted as a measure of how much image
distances can be predicted from text distances and, therefore, of how well the
visual embedding has learnt to map images to the joint image-text space. It
ratifies our plots’ visual inspection proving that visual embeddings trained with
Word2Vec and GloVe representations have learnt a much more accurate mapping
than LDA, and shows that Word2Vec is better in terms of that mapping.

5 Conclusions

In this work we learn a joint visual and textual embedding using Web and Social
Media data and we benchmark state of the art text embeddings in the image
retrieval by text task, concluding that GloVe and Word2Vec are the best ones
for this data, having a similar performance and competitive performances over
supervised methods in the image retrieval by text task. We show that our models
go beyond instance-level image retrieval to semantic retrieval and that can handle
multiple concepts queries and also multimodal queries, composed by a visual
query and a text modifier to bias the results. We clearly outperform state of the
art in the MIRFlick dataset when training in the target data. The code used in
the project is available on https://github.com/gombru/LearnFromWebData.
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