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Abstract. Researchers have over time developed robotic feeding assis-
tants to help at meals so that people with disabilities can live more
autonomous lives. Current commercial feeding assistant robots acquire
food without feedback on acquisition success and move to a prepro-
grammed location to deliver the food. In this work, we evaluate how
vision can be used to improve both food acquisition and delivery. We
show that using visual feedback on whether food was captured increases
food acquisition efficiency. We also show how Discriminative Optimiza-
tion (DO) can be used in tracking so that the food can be effectively
brought all the way to the user’s mouth, rather than to a preprogrammed
feeding location.
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1 Introduction

Disabilities that can affect control of the arms, including paralysis, Parkinson’s
disease, and cerebral palsy, may prevent or hinder someone from feeding them-
selves. In that case, the person may require a human caretaker to assist in
the feeding task. To help people with disabilities live more autonomous lives,
researchers have over time developed and tested how robotic feeding assistants
may help at the difficult task of having a meal [1]. A feeding robot is a way
of achieving greater independence at meals and can make the mealtime a more
social event. Also, compared to a human caretaker, a robotic feeding assistant
can have more time and patience in soliciting user requests for what type of food
to acquire and in following the user’s desired pace of the meal [2].
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There are several commercial assistive feeding robots, including the Obi [3],
Bestic [4], and Meal Buddy [5]. All of these robots allow the user or a caretaker
to program the desired feeding location to which the robot will bring the food.
However, that feeding location remains constant throughout the meal. Current
feeding systems are not equipped with a perception scheme and are not able
to perceive the changes in the pose of the user or in the environment. People
without sufficient head control to bring their mouth to the programmed feeding
location might be better accommodated by a robot that can bring the spoon all
the way to the current location of the user’s mouth.

To solve this problem we propose in this paper to create a complete robotic
feeding assistant system that incorporates a visual perception module to locate
the user’s face and mouth. Our system setup is shown in Fig. 1.

We propose a real-time system that uses depth images to track the user’s
mouth in 3D space and a separate vision system to provide useful feedback
for how much food was acquired on the robotic spoon. Real experiments show
that the visual feedback module significantly improves the feeding system’s
performance.

Fig. 1. Our feeding system includes a MICO robot arm, an RGB-D camera, and an
RGB camera. The first image also labels the axis orientations of the robot coordinate
system. (Color figure online)

2 Related Work

Several approaches have been used previously in detecting mouth location for
robotic feeding tasks. In [6], an ARTag was affixed to the user’s forehead. In [7],
Park et al. extend their system to localize the user’s mouth using a RGB-D
camera, but do not specify or evaluate the algorithm used. Hawkins et al. [8]
also focus on head pose estimation including user’s feedback to help the head
detection. Visual servoing was used to find the user’s mouth in [9], but that sys-
tem was unable to ascertain the distance to the user’s mouth along the principal
axis, as it did not use a depth camera. Their system takes roughly 10 s to identify
the mouth location [9], whereas our system tracks mouth location in real time.
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In [10], the user’s face is tracked using three specific face points (one on the
forehead, and one on each cheek), and those points are used to infer the mouth
location. Like their system, the proposed approach is robust to occlusions of the
mouth. However, unlike [10], our tracking algorithm is able to track faces even
in profile.1

Discriminative Optimization (DO) [11] was applied in the work of Silva et al.
[12] to track the user’s face for robotic feeding, however they do not provide
results about the performance of the tracking or the feeding system.

Research into anomaly detection during feeding tasks was performed in [7],
which is used to detect errors during the feeding motion to the user’s mouth.
However, anomalies related to food acquisition were not analyzed in that work.
The anomalies we investigate in our work are related to failures in acquiring
a sufficient amount of food. Herlant [13] also uses feedback on the state of the
fork in order to detect an anomalously low mass of food acquired. They use an
expensive 6DOF force-torque sensor, while we use an inexpensive vision system
as our feedback sensor, in the hope that a cheaper system will accessible to a
broader range of people.

The work of Ragusa et al. [14] focuses on food/non-food detection on plate
images. In that work, they benchmark different deep-learning based approaches.
They used pre-trained convolution neural networks (CNNs) to capture features
and trained a support vector machine (SVM) and Soft-Max classifier to clas-
sify food/non-food images. That work also analyses the impact of fine tuning
the CNNs to capture more relevant features to the food/non-food detection.
Although those approaches are successful, in this work we are interested in clas-
sification of specific spoon images. We also go beyond classification and compute
a continuous measure of how much food is present in the image of the spoon.

3 Feeding System

The developed feeding system is composed of two parts: a vision system that is
responsible for tracking the user and also for detecting if there is food on the
spoon and a control system that is responsible for transforming visual perception
into tasks executed by the robot arm. These tasks are food acquisition from the
plate and delivering the food to the user’s mouth.

In the next subsections, we describe each component in the system diagram
presented in Fig. 2.

3.1 Vision System

Our vision system is composed of two parts. One is responsible for tracking the
person’s face using an RGB-D sensor, and the other is responsible for detecting
what is on the spoon using a small RGB camera mounted on the robot’s end-
effector.
1 A video of our system working is available at https://www.youtube.com/watch?

v=X7McqWk1AK8.

https://www.youtube.com/watch?v=X7McqWk1AK8
https://www.youtube.com/watch?v=X7McqWk1AK8
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Fig. 2. Feeding system architecture diagram

Tracking a person’s face is a challenging task because faces are non-rigid.
However, since the face movements are constrained by the head movements, we
can, in a first approximation, track the person’s head and assume that the mouth
is just a point in the rigid body shaped by the head.

Given a front view 3D model of the person’s head (PM ) and a 3D point cloud
of the scene given by the RGB-D sensor (PS), we can formulate the problem of
tracking the person’s head as a 3D point registration problem. This can be
formulated as the following optimization problem:

(R∗, t∗, C∗) = argmin
R,t,C

NPS∑

i=1

NPM∑

j=1

Cij

∥
∥
∥piS − R · pjM − t

∥
∥
∥
2

subject to det(R) = 1, RTR = I, Cij ∈ {0, 1}
(1)

where we want to fit the rotation R∗ and translation t∗ that align the model
point cloud with the scene point cloud. piS and pjM are, respectively, points from
the point clouds PS and PM . C∗

ij represents the optimal point correspondences
between the two point clouds. C∗

ij is equal to 1 if piS and pjM are corresponding
points and the model point pjM is visible on the scene. Otherwise, C∗

ij will be 0.
Since we do not know the correspondences C∗ between the two point clouds, we
have to include them in the optimization problem. This leads to a non-convex
combinatorial problem.

When the correspondences between the model and scene point clouds are not
known, it is a common practice to solve 3D registration problems using ICP [15].
Although ICP is a standard procedure to use, it tends to get trapped in local
minima near the initialization provided and to have problems when dealing with
a high percentage of outliers.

To overcome these problems we use Discriminative Optimization (DO) [11]
to solve the model-based 3D registration tracking problem presented in Eq. 1. In
[11] it is shown that DO is better than ICP in terms of computation time and
more robust to outliers.
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Discriminative Optimization (DO). We want to develop a vision system
that is capable of locating the person’s mouth in real time. We also want that
system to be robust to occlusions of the face, because the robot arm will move
between the person’s face and the camera.

Discriminative Optimization (DO) [11] is a method that can solve the reg-
istration problem of Eq. 1 given a 3D model. DO is a fast method compared to
other approaches like ICP and has a wider convergence region. Moreover, since
we want to deal with occlusions, DO is a good approach because it can handle a
high percentage of outliers. Finally, DO has lighter computational requirements
than approaches based on deep learning and can be run directly on the CPU. DO
is a learning-based methodology to tackle problems that are formulated as opti-
mization problems but for which the function is unknown. From training data,
DO learns a vector field, represented by a series of linear maps, that “emulate”
the gradient of a function. During testing, given unseen data, DO follows this
“gradient” leading to a stationary point that solves the optimization problem.
Specifically in our case, the algorithm is given a 3D model of the rigid body
that we want to track and generates a set of synthetic training data by applying
random rotations and translations to the 3D model. This augmented training
data is used to discover a sequence of linear maps that represent the descending
directions. Those maps are used during inference, which is an iterative proce-
dure that repeatedly updates the translation and rotation of the 3D model of
the head to better align it with the point cloud of the scene.

Initialization. 3D registration algorithms, like ICP and DO, require an initial-
ization step that places the model of the face close to the face in the scene. We
use a face detector as our initial guess for where the face is in the RGB-D image
of the scene.

A popular face detector is the Viola Jones face detector [16]. Though this
face detector is fast, it is not invariant to different face poses. MTCNN [17] is
more robust to different face poses and also provides landmarks of the mouth,
nose, and eyes. Though MTCNN is based on deep learning, it can still run on a
CPU at a lower speed. Since initialization does not happen frequently, the speed
of the initialization step is not an important concern, and we remove the need
for a GPU in our system by running initialization on a CPU.

We initialize our face tracker using the average 3D location of the facial
landmarks given by MTCNN. The 3D locations of these landmark points can be
computed because we are using an RGB-D camera. With these 3D points, we
approximate the initial translation t̃ of the face model in the scene as:

t̃ =
1
L

L∑

i=1

piS − 1
N

N∑

j=1

pjM , (2)

where L is the number of landmarks and N is the number of points in the
model. For the initial rotation of the model, we assume R = I, where I is the
3 × 3 identity. The MTCNN landmarks are also used to compute the mouth 3D
location in the model’s point cloud.
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Food Detection. To see what is on the spoon, we place a tiny RGB camera
on the end-effector of the robot arm. After a simple calibration step of holding
a light-colored background behind the spoon, we compute a mask for the image
that only contains the spoon. We use this masked image for two purposes, to
detect if there is enough food to serve the user, and to detect if the user has
eaten the food off the spoon. To detect if there is enough food on the spoon
we use a detection algorithm that we can tune to specify the required amount
of food. To detect if the user has eaten the food, we use a classifier with two
classes: “food” and “no food.”

Calibration is performed by acquiring an image with a white sheet of paper
under the spoon. Otsu’s method [18] is used to select a threshold and segment
the image which provides a spoon mask. This method works well because the
colored spoon contrasts sharply with the white sheet of paper. In the calibration
step, we also record a histogram, Hs, of the H channel of the HSV image of the
empty spoon after applying the calibration mask.

The recorded histogram, Hs, is compared with the histograms of subsequent
images of the spoon, Ha. To compare the histograms, we used the normalized
correlation between the two histograms,

d(Hs,Ha) =
∑N

i=1(Hs(i) − H̄s)(Ha(i) − H̄a)
√∑N

i=1(Hs(i) − H̄s)2
∑N

i=1(Ha(i) − H̄a)2
, (3)

where H̄ = 1
N

∑N
i=1 H(i) is the histogram mean. If the value of the correlation is

below a certain threshold, then the algorithm reports that there is enough food
on the spoon.

To tune the correlation threshold, we gathered a dataset containing 387 data
points of correlations and the corresponding weight of food present on the spoon.
Example images collected are shown in Fig. 3. We use peanuts and fried rice as
our test foods. We train a linear regression to discover the relationship between
the histogram correlation value and the weight of the food on the spoon. This
regression can be used to inform the choice of the threshold for “enough food”
on the spoon.

We can detect if there is food on the spoon after the user’s bite using a
classifier. We tried two different classifiers: a logistic regression and a linear
support vector machine (SVM). The input feature to the logistic regression is
the value of the histogram correlation, and the input features to the SVM are the

Fig. 3. Example masked images of the plastic spoon, showing the spoon empty, with
nuts, and with rice.
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bins of the H color channel histogram of the spoon image. Both classifiers were
trained using a dataset containing 119 empty spoon images and 118 non-empty
spoon images.

3.2 Control System

Gradient-Based Planning. The goal of our planning algorithm is to move
the tip of the spoon from its current location to the user’s mouth. Because the
mouth of the user may be moving, we need our planning algorithm to be able
to quickly re-compute its plan based on updated mouth-target positions. For
this reason, we choose a planning algorithm that iteratively moves the tip of the
spoon one step in a straight line toward the current location of the mouth. We
also want to ensure that the spoon does not dump its contents during transit,
so we control the orientation of the spoon during transit.

A flexible approach to allow quick re-planning and to constrain orientation is
a gradient-based approach. At each timestep, we compute an intermediate Carte-
sian end-effector target that is a certain distance, parameterized by a parameter
“translationStepSize,” from the current location. The intermediate Cartesian
target is the mouth location itself if the mouth location is within “translation-
StepSize.”

We similarly compute an intermediate orientation target by computing the
rotation necessary to convert from the current orientation of the end-effector
to the target orientation. We define the target orientation to along the y-axis
direction shown in Fig. 1. We set our intermediate orientation target to be the
orientation that is at most a certain angle rotation, parameterized by a parameter
“rotationStepSize,” away from the current orientation. During transit from the
plate to the user’s mouth, the orientation is never more than a very small angle
away from the desired final feeding orientation, so the target orientation is always
the desired final orientation.

We use OpenRave [19] to compute the Cartesian Jacobian, which is a 3×DOF
matrix showing how changes in each joint angle locally moves the end-effector in
Cartesian space. We also use OpenRave to compute the angular velocity Jaco-
bian, which is a 3×DOF matrix showing how changes in each joint angle locally
rotates the end-effector, where rotations are given in angle-axis representation.

We write our desired translation as a length three vector. We concatenate
that vector with the angle-axis representation of our desired rotation to give us a
length 6 vector representing our desired change in end-effector pose. Our “trans-
lationStepSize” and “rotationStepSize” parameters guarantee that our interme-
diate target pose is “close” to our current pose, so we can reasonably linearize
our problem to be Eq. 4, where Jc and Jr are the Cartesian and rotation Jaco-
bian defined above, and Δc and Δr are the desired translation and rotation to
move the end-effector to the intermediate target. In our experiments, we use
a 6DOF robot, so we can use ordinary least-squares regression to compute the
required joint changes necessary to satisfy that equation. For a robot with more
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degrees of freedom, regularization could be used to prefer solutions with small
joint angle changes.

[
Jc

Jr

]

Θ =
[
Δc

Δr

]

(4)

We find that this simple architecture works for the majority of our feeding
tests. Since this gradient-based algorithm is greedy, we do note that it is possible
for the robot arm to follow trajectories into local minima where joint constraints
prevent the robot arm from continuing all the way to the user’s mouth. In our
setup, we find that this would generally happen if the trajectory brings the
robot end-effector too close to the robot base. Placing the user and plate so
that the path between them stays more than a certain distance from the robot
base circumvents this issue and leads to successful trajectories, though we also
implement a more robust solution that modifies planned trajectories to keep
away from the robot base while moving.

Learning from Demonstration. In addition to defining trajectories from the
plate to the mouth and back, we also need to train the robot to acquire food
from the plate. To do so, we use Learning from Demonstration to imitate human
utensil trajectories. In this manner, we do not need to perform the complex task
of modeling different food types in order to plan a food acquisition strategies.
The ability of Learning from Demonstration to plan trajectories without an
explicit model of the domain dynamics [20] is an attractive benefit for us in this
context. “Learning from demonstration” in the robotics context usually means
some mechanism of automatically acquiring knowledge from human demonstra-
tion, but for this work it was sufficient to pick and imitate a single trajectory
from a collection of trajectories for assistive feeding. In [21], Bhattacharjee et al.
collected detailed fork trajectories in a simulated assistive feeding environment.
We visualize several of those trajectories in Rviz and select and truncate a sin-
gle fork trajectory that follows a simple scooping motion in acquiring coleslaw.
Our robot imitates that single fork trajectory to acquire food with a spoon. We
find that single scooping trajectory to be sufficient for scooping up the different
food types we tested, but we expect that there are food types and serving plate
configurations for which more nuanced trajectory learning is required.

To have our robot spoon replicate the training trajectories, we want the robot
to move its arm in such a way that the tip of the spoon follows the demonstrated
tip of the fork in both position and orientation. In addition, we want the robot to
be able to translate the demonstration trajectory target by various offsets so that
the robot can scoop food from different parts of the serving plate. To accomplish
this, we use the same gradient-based planner described above, where now the
target position and orientation of our gradient-based controller are generated by
playing back the recorded utensil tip poses, offset by the desired translation. We
slow down the played-back demonstration to one fifth the demonstration speed
due to speed constraints of the robot arm and to ensure safety.
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4 Experimental Setup and Results

4.1 Hardware Setup

To test our feeding algorithm in a real robotic setting, we use a 6 degree-of-
freedom Kinova MICO robot affixed rigidly to a dining table. We place a serving
bowl of food in front of the robot and have the robot hold a spoon in its end-
effector. We attach an iDS-xs RGB camera to the end-effector pointed toward
the bowl of the spoon. Our user sits at the table, and across from the user we
place a Kinect V1 RGB-D camera on a tripod so that it can see the robot arm
and the user’s face. The two cameras publish ROS topics which are used in our
planning architecture.

4.2 Calibration of Camera to Robot

In order for the robot to use the information from the RGB-D camera in a
meaningful way, we have to calibrate the robot base frame with the RGB-D
camera frame. We want to do this calibration in an automatic way so that we
can use the feeding system quickly after changing the position of the camera or
the robot arm.

To automatically calibrate the robot frame with the camera frame, we attach
an orange ball to the robot arm end-effector and then we move the robot arm to
different positions. These positions are known in the robot base frame because
we know the robot kinematics. For each of the positions, we acquire the corre-
sponding RGB-D images from the camera. We use color segmentation to detect
the ball in those images and get its corresponding 3D points. We fit a sphere to
the 3D points of the ball using RANSAC to compute the 3D center of the ball in
the camera frame. Finally, using these 3D correspondences between the camera
frame and the robot base frame, we fit a rotation and a translation by solving
an Orthogonal Procrustes Problem [22].

4.3 Mouth Tracking Accuracy Over Time

Setup. To test the performance of our tracking system, we acquired an RGB-D
video of a person moving his head in front of the camera. In the first part of
the video, we ask the user to look in different directions but to keep his torso
still. In the second part, we ask the user to move his head to different places in
addition to looking in different directions.

Since DO requires a 3D face model, we acquire the face model of the user
using MTCNN to detect the face and DBSCAN [23] to filter the model point
cloud.

The error of our tracking system was measured by annotating the mouth
point in our dataset at a frame-rate of 2 FPS and then measuring the error
between the output mouth point of our tracking and the annotated label in each
frame.
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Results. The error in each frame is presented in Fig. 4. The experiment was
performed on a single thread on a Intel Core i7-6500U CPU 2.50 GHz with 8 GB
of memory. Our tracking achieved speeds of 8–10 FPS.

Fig. 4. Tracking error in each frame

Figure 4 shows that our tracking method can track the person’s mouth with
an error below 3 cm through the entire video. This is on the order of magnitude
of the mouth’s size, so the output of our system will not be far from the real
location of the mouth.

To have a better visual insight about the output of our tracking method, we
show in red on Fig. 5 the output mouth point of our algorithm.

As discussed previously, our tracking works well for rotations and translations
of the user’s head. With our method we can give an accurate position of the user’s
mouth.

4.4 Food Detection

Setup. We also analyze the performance of the food detector. In this section,
we evaluate the performance of our two methods for food detection. To train
the classifiers and the linear regression we split our dataset of spoon images into
70% train data and 30% test data.

Results. Figure 6 shows the linear regression fit modeling the weight of food in
the spoon with the correlation of histograms between the current image of the
spoon and the image of the empty spoon. The regression has a validation mean
squared error of 1.37 g and a correlation coefficient (r2) of 0.75 on the test set.
There is a strong negative correlation between the weight of the food that is on
the spoon and the correlation between the histograms. Even if the model is not
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Fig. 5. Tracking output in red for the user’s mouth. (Color figure online)

Fig. 6. Relationship between the correlation measure and the weight of food on the
spoon. The correlation measure is computed as shown in Eq. 3 by taking the histogram
of the image of the spoon with food on it and correlating that with the histogram of
the baseline image of the spoon without food on it. The data points used for training
are shown in red, the data used for test is shown in black, and the linear regression is
shown in blue. (Color figure online)

perfect in measuring the amount of food that is on the spoon, we can use this
model to calibrate our correlation threshold to require more or less food per bite.

In the classification task, we achieved an accuracy of 95.8% with the logistic
regression and 98.6% with the linear SVM. The SVM was trained using the
whole histogram and the logistic regression using only the correlation between
each sample of the train data and an empty spoon histogram example. We
present, in Figs. 7 and 8, the confusion matrix results for the two classification
methods. These results validate our classification approach to discover if there
is still food on the spoon.



Vision Augmented Robot Feeding 61

Fig. 7. Confusion matrix for logistic
regression

Fig. 8. Confusion matrix for SVM

4.5 Ablation Study for Food Acquisition

Setup. To analyze the importance of various components of the food acquisition
system, we perform an ablation study in the feeding task where we measure
the efficiency of the feeding robot when it does and does not use certain food
acquisition strategies. We define the efficiency to be the mass of food that is
delivered to the feeding location as a function of the total distance that the tip
of the spoon has traveled. We report the mass as a function of distance traveled
rather than the time taken because we want to negate any effect that setting the
robot to a faster or slower speed would have on the results.

The system components that we alter in our ablation study are (1) whether
or not we re-scoop if the spoon-facing camera detects that not enough food was
acquired and (2) whether the robot always scoops from the same position on the
serving plate or whether it scoops from a uniformly random position within a
6 cm × 3 cm rectangle on the plate. We perform the ablation experiment on two
different kinds of food: peanuts and fried rice. In this way, we can determine if
the importance of system components depends on the type of food.

For consistency in results, we use the same random seed for all trials that
randomize the scooping location on the plate. To speed up data collection, the
robot dumps the food directly onto the scale after food acquisition. Then, in our
data analysis we add in the distance to the user’s mouth and back. Cutting out
the travel time between the plate and the user’s mouth cuts the data acquisition
time by a factor of three. On average, the distance traveled by the spoon tip
in a single scooping motion is 32 cm and the average distance to and from the
user’s mouth is 49 cm in each direction. We use these average distance values
when representing the amount of food served as a function of distance.

Results. In our ablation study for food acquisition, we find that vision feedback
significantly increases the amount of food brought to the user in each bite. For
the spoon-facing vision feedback system, we use a histogram correlation cutoff of
0.5 for both rice and nuts. For rice, when randomizing the scooping location, the
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average amount of rice served per bite in the first 20 bites across three trials is
4.8 g with camera feedback and 3.2 g without camera feedback (paired t-test p-
value 9e−6). Likewise for nuts it is 3.8 g with camera feedback and 2.7 g without
(paired t-test p-value 1e−5). There is an added distance that the end-effector
travels in re-scooping when using camera feedback. Despite this added cost in
distance, Fig. 9 shows that even when looking at the amount of food served
as a function of the total distance that the spoon tip travels (including the
added distance required to re-scoop), after 25 m, random scooping with camera
feedback consistently outperforms random scooping without camera feedback.

(a) Feeding Nuts (b) Feeding Rice

Fig. 9. Charts showing the amount of food fed (in grams) as a function of the distance
the tip of the spoon has traveled, including the distance traveled in re-scooping. The
chart includes results for scooping location randomization (solid lines) compared to a
constant scooping location (dotted lines), and it includes results with (green lines) and
without (red lines) camera feedback on whether food was successfully acquired. We ran
three trials for each test type. (Color figure online)

For both rice and nuts we find that randomization of the scooping location
is a useful technique in food acquisition. Figure 9 also shows that randomization
coupled with visual feedback on the success of a scoop is the most effective. Most
interestingly, we find that the importance of our system components depends on
the type of food used. We find that randomizing the location of scoops is more
important when serving rice instead of nuts. This could be related to the fact
that nuts were observed to “settle” after each scoop, whereas fried rice will tend
not to fill in the hole left after scooping. Thus, scooping the same place for fried
rice will quickly result in very little (almost no) mass acquired by the spoon in
subsequent scoops.

5 Conclusion and Future Work

In this work, we explored how vision can be introduced in a robotic feeding
platform. By introducing a vision-based approach we can make the system more
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intelligent and also more autonomous. The developed system is fully capable of
feeding a user using a spoon with different types of food like rice or peanuts,
and uses visual feedback to ensure spoons are full of food when presented to the
user.

Our results show that DO approach can be used effectively for tracking a
user’s face. However, the method still needs improvements when generalizing
to different users from the one for which we have the 3D face model. In future
work, we are planning to test DO against other head-pose estimation approaches
like OpenFace [24]. We also want to incorporate the user’s facial expression
information to detect the user’s intention to be fed.

Using a camera that can see what is on the spoon, we are capable of ensuring
there is an adequate amount of food per bite. We can also use the proposed
classifiers to see if there is food on the spoon after the user’s bite. Given the
effectiveness in the spoon-facing vision feedback in identifying the mass of food
on the spoon, we also plan to investigate using that vision feedback system to
control the depth that the spoon digs into the food, so that the feeding system
can alter its serving strategy to accommodate the gradually decreasing level of
food in the serving bowl.

Using this vision framework, we hope in future work to personalize our system
to different users and make our system learn with individual user experience. We
plan to test our system in real-world situations with people living with disabilities
and plan to use a broader range of food types, potentially needing to improve
our food detection and acquisition algorithm. We hope to quantitatively and
qualitatively analyze the efficacy of our entire system for several users. We will
also compare our algorithm to the type of baseline algorithm found in current
commercially-available robots.
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10. Schröer, S., et al.: An autonomous robotic assistant for drinking. In: 2015 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6482–6487.
IEEE (2015)

11. Vongkulbhisal, J., De La Torre, F., Costeira, J.P.: Discriminative optimization:
theory and applications to point cloud registration. In: Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 3975–
3983, January 2017

12. Silva, C., Vongkulbhisal, J., Marques, M., Costeira, J.P., Veloso, M.: Feedbot -
a robotic arm for autonomous assisted feeding. In: Oliveira, E., Gama, J., Vale,
Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 486–497.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65340-2 40

13. Herlant, L.V.: Algorithms, implementation, and studies on eating with a shared
control robot arm. Ph.D. dissertation, Carnegie Mellon University (2016)

14. Ragusa, F., Tomaselli, V., Furnari, A., Battiato, S., Farinella, G.M.: Food vs. non-
food classification. In: Proceedings of the 2nd International Workshop on Multi-
media Assisted Dietary Management - MADiMa 2016, pp. 77–81 (2016)

15. Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes (1992)
16. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple

features. In: Proceedings of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518 (2001)

17. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using
multitask cascaded convolutional networks. IEEE Sig. Process. Lett. 23(10), 1499–
1503 (2016)

18. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9(1), 62–66 (1979)

19. Diankov, R.: Automated construction of robotic manipulation programs. Ph.D.
thesis, Carnegie Mellon University, Robotics Institute, August 2010

20. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

21. Bhattacharjee, T., Song, H., Lee, G., Srinivasa, S.S.: Food manipulation: a cadence
of haptic signals. arXiv preprint arXiv:1804.08768 (2018)

22. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transforma-
tions: a comparison of four major algorithms. Mach. Vis. Appl. 9, 272–290 (1997)

http://www.camanio.com/us/products/bestic/
https://www.performancehealth.com/meal-buddy-systems
https://www.performancehealth.com/meal-buddy-systems
https://doi.org/10.1007/978-3-319-65340-2_40
http://arxiv.org/abs/1804.08768


Vision Augmented Robot Feeding 65

23. Daszykowski, M., Walczak, B.: Density-based clustering methods. Compr.
Chemom. 2, 635–654 (2010)

24. Baltrusaitis, T., Robinson, P., Morency, L.P.: OpenFace: an open source facial
behavior analysis toolkit. In: 2016 IEEE Winter Conference on Applications of
Computer Vision, WACV 2016 (2016)


	Vision Augmented Robot Feeding
	1 Introduction
	2 Related Work
	3 Feeding System
	3.1 Vision System
	3.2 Control System

	4 Experimental Setup and Results
	4.1 Hardware Setup
	4.2 Calibration of Camera to Robot
	4.3 Mouth Tracking Accuracy Over Time
	4.4 Food Detection
	4.5 Ablation Study for Food Acquisition

	5 Conclusion and Future Work
	References




