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Abstract. Hand gestures form a natural way of interaction on Head-
Mounted Devices (HMDs) and smartphones. HMDs such as the Microsoft
HoloLens and ARCore/ARKit platform enabled smartphones are expen-
sive and are equipped with powerful processors and sensors such as mul-
tiple cameras, depth and IR sensors to process hand gestures. To enable
mass market reach via inexpensive Augmented Reality (AR) headsets
without built-in depth or IR sensors, we propose a real-time, in-air gestu-
ral framework that works on monocular RGB input, termed, DrawInAir.
DrawInAir uses fingertip for writing in air analogous to a pen on paper.
The major challenge in training egocentric gesture recognition models
is in obtaining sufficient labeled data for end-to-end learning. Thus, we
design a cascade of networks, consisting of a CNN with differentiable
spatial to numerical transform (DSNT) layer, for fingertip regression,
followed by a Bidirectional Long Short-Term Memory (Bi-LSTM), for a
real-time pointing hand gesture classification. We highlight how a model,
that is separately trained to regress fingertip in conjunction with a clas-
sifier trained on limited classification data, would perform better over
end-to-end models. We also propose a dataset of 10 egocentric pointing
gestures designed for AR applications for testing our model. We show
that the framework takes 1.73 s to run end-to-end and has a low memory
footprint of 14 MB while achieving an accuracy of 88.0% on egocentric
video dataset.
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1 Introduction

Most popular interfaces in HMDs/Smartphones are speech and gestures. How-
ever, the accuracy of speech recognition tends to suffer in an industrial or an
outdoor setting due to ambient noise [1]. To this end, gestural interfaces are
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preferred in the areas of human-computer interaction and human-robot inter-
action [1–3] as one does not require sophisticated skills to communicate, and
they enable wider accessibility without bias on speech accents. However, real-
time gesture tracking and recognition in First Person View (FPV) for wearable
devices is still a challenging task (refer Fig. 1). Expensive AR devices such as
the Microsoft HoloLens, Daqri and Meta Glasses are equipped with gestural
interface powered by a variety of on-board sensors including a depth sensor and
customized processors making the product expensive and unaffordable for mass
adoption.

Fig. 1. Users performing egocentric in-air gestures in complex backgrounds such as
outdoor environments, reflective backgrounds and different lighting conditions. Note:
Variations in the speed of gestures and gesture trajectories between individuals are
some of the issues that affect in-air hand gesture recognition [4].

In this paper we propose a novel gestural framework without the need of
specialized hardware that would provide mass accessibility of gestural interfaces
to the most affordable video-see-through HMDs such as Wearality Sky (50 USD)
and Google Cardboard1 (15 USD). These devices provide immersive AR expe-
riences with the help of stereo rendering of the smartphone camera feed. The
immediate applications are industrial inspection and repair, tele-presence, and
FPV photography. Google Cardboard still employs primitive modes of user inter-
action, that is magnetic trigger and conductive lever, and any development is
restricted to the hardware and sensors available on a smartphone. Hence, we aim
to design pointing gesture based user interaction for frugal HMDs/smartphones.

3D CNNs and RNNs are found to be effective in analysis of egocentric ges-
tures. However, these networks are highly reliant on the large scale video dataset
and pixel-level depth information while training, often hindering real-time per-
formance. In this work, we present a neural network architecture comprising of
a base CNN and a differentiable spatial to numerical transform (DSNT) [18]
layer followed by a Bidirectional Long Short-Term Memory (Bi-LSTM). The
layer transforms the heatmap from CNN, that is rich in spatial information,
to output spatial location of fingertip. The Bi-LSTM effectively captures the
dynamic motion of user gesture that aids in classification. Feeding the fingertip
keypoints to the Bi-LSTM, as opposed to traditional approaches of inputting

1 https://vr.google.com/cardboard/.

https://vr.google.com/cardboard/
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featuremaps or images, reduces the computational cost in classification. Our key
contributions are:

1. We propose DrawInAir, a neural network architecture, consisting of a base
CNN and a DSNT network followed by a Bi-LSTM, for efficient classification
of user gestures. It works in real-time, uses only RGB image sequence with no
depth information, and can be ported on mobile devices due to low memory
footprint.

2. EgoGestAR: a dataset of spatio-temporal sequences representing 10 ges-
tures suitable for AR applications. We have published the dataset online at:
https://github.com/varunj/EgoGestAR.

Fig. 2. DrawInAir framework. DrawInAir comprises a Fingertip Regressor module
which accurately localizes the fingertip (the fingertip is analogous to a pen-tip in HCI)
and a Bi-LSTM network is used for classification of fingertip detections on subsequent
frames into different gestures (Images at the bottom show input/output at different
stages).

2 Related Work

Despite being intuitive and natural, gestures are prone to inherent ambiguity
which makes them a topic of interest to the research community [5]. Most of the
early gesture recognition frameworks involve either (i) low-level image analysis
such as detection of contours, texture, segmentation, histograms [6] or (ii) vision
approaches such as feature extraction, object detection followed by tracking, and
classification [7].

Recently using CNNs for object classification and detection has shown to give
promising results. Huang et al. [8] proposed bi-level cascade CNNs approach for
hand and key point detection in egocentric view using HSV color space informa-
tion. Tompson et al. [9] proposed a pipeline for real-time pose recovery of human
hands from a single depth image using a CNN. Coming to the gesture classifica-
tion methods, in [10], Liu et al. presented two real-time third-person hand ges-
ture recognition systems - (i) utilizing the stereo camera hardware setup with

https://github.com/varunj/EgoGestAR
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DTW classifier and (ii) using dual-modality sensor fusion system with HMM
classifier. Dardas et al. [11] presented a system for hand gesture recognition via
bag-of-features and multi class Support Vector Machines (SVM). The Random-
ized Decision Forest classifier has also been explored for hand segmentation [9]
and hand pose estimation [12]. Jain et al. [?] have shown the efficacy of using
LSTM networks for the classification of 3-dimensional gestures.

In a recent work, Hegde et al. [1] discussed simple hand swipe gestures for
Google Cardboard in egocentric view using GMM based modeling of skin pixel
data. Further, this work was extended in [13] for accurate hand swipe clas-
sification. Implementing such ad-hoc recognizers is very challenging when the
number and type of gestures increase. This is due to high inter class similar-
ity among the gesture classes [14]. Unlike the works [15–17], which use RGB-D
inputs to recognize multi pose gestures and occluding fingers in egocentric view,
our proposed framework focuses on computationally efficient pointing pose-based
gesture recognition using just RGB data.

In our work, we specifically deal with pointing finger gestures which requires
detecting fingertip coordinates. We are inspired by the recent work of Nibali
et al. [18] which proposed DSNT layer for numerical coordinate regression for
estimating human body joints position. But they use a fully convolutional net-
works (FCN), a stacked hourglass network and other complex networks for gen-
erating heatmaps which makes their method slow in comparison to ours.

3 DrawInAir

A recent trend in the deep learning community has been to develop end-to-
end models that learn several intermediate tasks simultaneously. While this has
obvious benefits for learning joint tasks like object detection, regression and
classification, it is reliant on the presence of sufficient labelled data to learn all
the tasks in a pipeline.

Fig. 3. Overview of our proposed fingertip regressor architecture for fingertip local-
ization. The input to the network is 3 × 256 × 256 sized RGB images. The network
consists of 6 convolutional blocks, each with different convolutional layers followed by
a max-pooling layer. Then we have a convolutional layer to output a heatmap which
is input to DSNT. Finally, we get 2 coordinates denoting fingertip spatial location.

We, hence, propose a pointing hand gestural framework in egocentric view
with limited labelled classification data. We focus on classifying the point gesture
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motion patterns into different gestures. Figure 2 shows the blocks which are: (a)
the Fingertip Regressor that takes an RGB input image and accurately localizes
the fingertip, (b) a Bi-LSTM network for classification of the fingertip detection
on subsequent frames into different gestures.

We assume that the subjects are stationary while performing gestures to
interact with the device. Slight errors introduced due to the head movement
can be rectified by post-processing the Fingertip Regressor output and by the
Bi-LSTM network used in classification. Bi-LSTM also has the ability to handle
unexpected impulses/peaks arising in gesture pattern due to false detections or
fingertip localizations for short duration.

3.1 Fingertip Regression

Estimating human pose by localizing human joints has been an important study
in computer vision. Toshev et al. [19] propose DeepPose, which formulates the
human pose estimation problem as a CNN based regression over body joints. In
a similar context, we employ a CNN architecture followed by DSNT layer [18]
(refer Fig. 3) for localizing fingertip by regressing over the coordinates, (x, y), of
the fingertip.

Differentiable Spatial to Numerical Transform (DSNT): The proposed
architecture consists of a CNN that produces a heatmap, Z , containing the
spatial information of fingertip location. The heatmap is passed on to a dif-
ferentiable spatial to numerical transform (DSNT) layer which transforms the
heatmap to numerical coordinates of the fingertip location. The DSNT layer has
no trainable parameters, preserves the differentiability and generalizes spatially,
hence allowing the entire network to learn by back-propagation. DSNT normal-
izes the heatmap Z to Ẑ such that all the elements of normalized heatmap are
non-negative and sum to one. After normalization, the heatmap coordinates are
scaled such that the top-left corner of the heatmap is at (−1,−1) and bottom-
right is at (1, 1). This is followed by outputting the expected coordinates in the
scaled coordinate system with normalized heatmap, Ẑ , as probability distribu-
tion map.

For training the network we use Euclidean loss as follows:

L(Ẑ ,p) = ‖p − DSNT (Ẑ )‖2 + λLreg(Ẑ ) (1)

where p is the ground truth coordinates and λ is a regularization constant.
DSNT (Ẑ ) is the expected scaled coordinates that is produced by the DSNT
layer. Nibali et al. [18], suggest different regularizers, Lreg, for training the net-
work. We find that using Kullback-Leibler divergence (KLD) as regularizer gave
us the best results. Thus, we have Lreg as follows:

Lreg(Ẑ ,p) = KLD(Ẑ‖N (p, σ2
t )) (2)

where σ2
t is a variance hyper-parameter of a target normal distribution, N .

This regularizer encourages the heatmap to resemble a isotropic target Gaussian
distribution.
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3.2 Gesture Classification

The localization network discussed in the previous section outputs the spatial
location of the fingertip (x, y), which is then fed as an input to our gesture
classification network. Since we use the gestures that have only pointing fingers,
the classification task reduces to analyzing the motion of the fingertip. Thus, we
input (x, y) coordinate instead of the entire frame to the network. Motivated by
the effectiveness of LSTMs [20] in learning long-term dependencies of sequential
data [21], we employ a Bi-LSTM [22] network for the classification of gestures.
We found that Bi-LSTM performs better than LSTM for classification as it
processes the sequence in both forward and reverse direction.

We found the raw fingertip coordinates from the fingertip regressor to be
noisy. This is due to the relative motion of head and hand of the user in an ego-
centric setting. Thus, we applied smoothing operation on the sequence of finger-
tip points as an egocentric correction measure (refer Fig. 4). We used Savitzky-
Golay filter [23] on the fingertip sequence with window size of 15 and polynomial
order 1 yielding the best classification accuracies on applying this filter. This fil-
ter operates by increasing the signal-to-noise ratio without greatly distorting the
signal. The entire framework is also adaptable to videos/live feeds with variable
length frame sequences. This is particularly important as the length of gestures
depends on the user performing it.

Fig. 4. Effect of smoothing for egocentric correction. (Left to right) Output of Savitzky-
Golay filter [23] for samples of classes – Circle, Square, Star and Up respectively. The
highlighted point in each gesture indicates the starting position of the gesture.

4 Datasets

4.1 Hand Dataset

We use the SCUT-Ego-Finger benchmark Dataset [8] for training the base CNN
followed by DSNT layer model. Twenty four subjects in different environments
(such as basketball field, canteen, teaching building, library, lake) contributed
to the dataset to gather variations in illumination conditions, background and
to address challenges such as variation in hand shape, hand color diversity,
and motion blur. The dataset includes 93,729 frames with corresponding labels
including hand candidate bounding boxes and index finger key point coordinates.
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4.2 EgoGestAR Dataset

To train and evaluate the proposed Bi-LSTM architecture, we present EgoGes-
tAR: a spatio-temporal sequence dataset for AR wearables. The dataset includes
spatial patterns representing 10 gestures and inspired by industrial applications,
we divided the gestures patterns primarily into 3 categories. (a) 4 swipe gesture
patterns (Up, Down, Left, and Right) for navigating/selecting user preferences
in AR HMDs. (b) 2 gesture patterns (Rectangle and Circle) for RoI highlighting
in user’s FoV for tele-support applications. (c) 4 gesture patterns (Checkmark:
Yes, Caret: No, X: Delete, Star: Bookmark) for evidence capture in inspection,
maintenance and repair applications.

Fig. 5. EgoGestAR dataset: The first 3 columns show standard sequences shown to
the users before the data collection and the last 3 columns (captured at a resolution
of 640 × 480) depict the variations in the data samples. The highlighted point in each
sequence indicates the starting position of the gesture.

We collected the data from 50 subjects in our research lab with ages in the
range 21 to 50 with average age 27.8 years. The dataset consists of 2500 gesture
patterns where each subject recorded 5 samples of each gesture. The gestures
were recorded by mounting a 10.1 in. display HP Pro Tablet to a wall. The
gesture pattern drawn by a user’s index finger on a touch interface application
with position sensing region was stored. The data was captured at a resolution
of 640×480. Figure 5 describes the standard input sequences shown to the users
before data collection and a sample subset of gestures from the dataset showing
the variability introduced by the subjects. Detailed statistics of the EgoGestAR
dataset is available at https://github.com/varunj/EgoGestAR.

5 Experiments and Results

Since the framework comprises of a cascade of two networks, we evaluate each
network performance individually and then present the results of the entire
pipeline. We use an 8 core Intel(R) Core(TM) i7-6820HQ CPU, 32 GB mem-
ory and an Nvidia Quadro M5000M GPU machine for experiments. The models
are trained using Tensorflow v1.6.0.

https://github.com/varunj/EgoGestAR
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5.1 Training

Fingertip Localization: We first train the fingertip regressor using the SCUT
Ego-finger dataset (refer Sect. 4.1). Out of the 24 subjects in the dataset, we
choose 17 subjects’ data for training with a validation split of 70:30, and 7
subjects’ data (24,155 images) for testing the networks. We use Adam optimizer
with a learning rate of 6× 10−5. We set the hyper-parameters λ and σt to 1 and
4 respectively.

Classification: We then use EgoGestAR dataset (discussed in Sect. 3.2) for
training and testing of the Bi-LSTM and also an LSTM network for classification.
During training, we use 2000 gesture patterns in the training set. These patterns
are fed as input to the Bi-LSTM layer consisting of 30 hidden units. The forward
and backward outputs are multiplied before passing it to a fully connected layer
with 10 output scores that correspond to each of the 10 gestures. We use a
softmax activation function and cross-entropy loss for training the Bi-LSTM
network. We train both the networks using Adam optimizer with learning rate
of 0.001, a batch size of 32 and validation split of 80:20.

5.2 Performance Evaluation

Framework Evaluation: The average Euclidean loss in predicting the fingertip
coordinates by the fingertip regressor is 1.147 on an input image of resolution
256 × 256. The mean absolute regression error is found to be 23.73 pixels for
our approach. Table 1 presents comparison of the proposed LSTM and Bi-LSTM
approach with DTW [10] and SVM [24]. We see that Bi-LSTM outperforms the

Fig. 6. The overall performance of our proposed framework on 240 egocentric videos
(22 per class) captured using a smartphone based Google Cardboard head-mount. The
gesture is detected when the predicted probability is more than 0.75. Accuracy of the
model is 88%, ignoring unclassified class and 82.27% otherwise.
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traditional approaches that are being used for similar classification tasks. Since
the proposed approach is a series of different networks, the overall classifica-
tion accuracy in real-time will vary depending on the performance of the ear-
lier network used in the pipeline. Therefore, we evaluate the entire framework
using 240 egocentric videos captured with a smartphone based Google Card-
board head-mount. Dataset and demos are available at https://ilab-ar.github.
io/DrawInAir/. The overall framework achieved an accuracy of 88% on this
dataset (as shown in Fig. 6).

Runtime and Memory Analysis: Table 2 shows the time profile of the pro-
posed framework. The entire model has a very small memory footprint of 14 MB
without compression and could be easily ported to mobile devices for testing.

Table 1. Performance of different classification methods on our proposed fingertip
sequence dataset, EgoGestAR. Note that these results are observed on sequence data
and not on hand gesture videos.

Method Precision Recall (Accuracy) F1 score

DTW [10] 0.763 0.749 0.756

SVM [24] 0.938 0.922 0.929

LSTM [20] 0.808 0.788 0.798

Bi-LSTM [22] 0.967 0.966 0.966

Table 2. Run-time analysis of different modules (with different inputs) of the frame-
work. The input image resolution is 256 × 256 for the entire analysis. Note: the entire
pipeline time is calculated starting from the first frame into the regressor to the pre-
diction at the end of the entire video.

Module Fingertip regressor
(per frame)

Gesture classifier
(per sequence)

Entire pipeline
(per video)

Time (in s for unit
input)

0.0096 0.0314 1.73

6 Discussion and Comparison

On deeper analysis, we observe that the X (Del) gesture is slightly correlated
with the CheckMark since the difference in them is due to a triangle in the bottom
of X (Del) gesture. Hence, due to variations in how users perform gestures and
occlusion in users’ hand, we observe a drop in their classification accuracies. Our
framework is limited to a single finger in the user FoV and the accuracy drops if
multiple fingers are present at roughly the same distance or on using any gesture
different from pointing gesture. Figure 7 shows some cases, such as presence of
multiple fingers (in case of reflection), where DrawInAir gives low accuracies. But
our framework robustly detects and classifies fingertip of any of the fingers (even

https://ilab-ar.github.io/DrawInAir/
https://ilab-ar.github.io/DrawInAir/
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if the user is wearing nail paint or has minor finger injuries) provided it is the
only finger in the user FoV. Our framework is also robust to variations in starting
position of the gestures in frame, hand sizes and skin colors. The framework can
accommodate a number of pointing gestures as per the requirements of FPV
application, making it generic for all touch-less interaction systems.

Fig. 7. Misclassified cases. Our framework fails to detect fingertip accurately in the
cases of (a) reflective surfaces in the background, (b) near skin pixel background, and
(c) very low illumination conditions.

Table 3. Analysis of gesture recognition accuracy and latency of various models against
the proposed DrawInAir. We compared and evaluated all the end-to-end methods
against ours on the 240 egocentric videos.

Method Accuracy (%) Time taken (in s)

Tsironi et al. [21] 32.14 0.76

VGG16 + LSTM [25] 58.37 0.69

C3D [26] 66.71 1.19

DrawInAir 88.00 1.73

We compared our framework against a few end-to-end baseline architectures
used for video classification to highlight the importance of modular architec-
tures, such as ours (see Table 3). We train these methods on our egocentric video
dataset with a train, validation and test data split of 50:25:25. In [25], 2D CNNs
are used to extract features of individual frames and then these frame-level fea-
tures are encoded as video descriptors followed by training a classifier to predict
the labels. Donahue et al. [26] use 3D CNNs to extract features of video clips.
Then, clip features are aggregated into video descriptors for classifier training.
As we can see, methods proposed by Tran et al. [25] and Donahue et al. [26] do
not perform well as the data has high inter class similarity.

Tsironi et al. [21] propose end-to-end gesture classification method that works
with differential image input to convolutional LSTMs. They use LSTMs to cap-
ture body parts motion involved in the gestures performed in second-person
perspective. This method gave us a very low accuracy, even after fine-tuning the
model on our egocentric video dataset. The possible reason for this behaviour
could be that our data involved varying background and no static reference to
the camera. Sharma et al. [27] propose attention based video classification that
performed poorly owing to the high inter-class similarity which posed challenges
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in classification with the limited data available for end-to-end training. For such
fine-grained classification tasks, we require features from a very small portion of
the entire frame, that is, the fingertip location. In our scenario, since the fingertip
location is known, training an attention model appears redundant.

7 Conclusion

We present an in-air gestural interface, DrawInAir to enable researchers to incor-
porate hand gestures in frugal HMDs. DrawInAir achieves an average accuracy
of 88.0% when tested on EgoGestAR dataset. We have tested the two networks
in the pipeline on an egocentric hand gesture video dataset to ensure robust fin-
gertip detection and accurate gesture classification. The entire framework works
just with monocular RGB data at real-time and can be used with frugal AR
devices without any sensor fusion. Gestural interface with RGB data alone helps
to facilitate mass market reach in frugal HMDs. Given that the model size is
14 MB, our framework is small enough to be ported on a resource constrained
smartphone/HMD.
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