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Abstract. What people look at during a visual task reflects an interplay
between ocular motor functions and cognitive processes. In this paper,
we study the links between eye gaze and cognitive states to investigate
whether eye gaze reveal information about an individual’s knowledgeabil-
ity. We focus on a mobile learning scenario where a user and a virtual
agent play a quiz game using a hand-held mobile device. To the best of
our knowledge, this is the first attempt to predict user’s knowledgeability
from eye gaze using a noninvasive eye tracking method on mobile devices:
we perform gaze estimation using front-facing camera of mobile devices
in contrast to using specialised eye tracking devices. First, we define a
set of eye movement features that are discriminative for inferring user’s
knowledgeability. Next, we train a model to predict users’ knowledgeabil-
ity in the course of responding to a question. We obtain a classification
performance of 59.1% achieving human performance, using eye move-
ment features only, which has implications for (1) adapting behaviours
of the virtual agent to user’s needs (e.g., virtual agent can give hints);
(2) personalising quiz questions to the user’s perceived knowledgeability.

Keywords: Assistive mobile applications · Noninvasive gaze tracking
Analysis of eye movements · Human knowledgeability prediction

1 Introduction

Interactive intelligent systems are becoming a ubiquitous part of everyday life,
motivated by numerous practical applications in web services, healthcare, edu-
cation, and much more. In such applications, effective modelling of human
behaviours and cognition is essential to build adaptation and personalisation
mechanisms. Interaction logs are generally not adequate for genuinely interpret-
ing human behaviours; tasks such as problem solving and reading are hard to
be assessed based on verbal protocols [5,17]. In addition, the more information
exchanged between the user and the system through multiple modalities, the
more versatile, efficient and natural the interaction becomes [17].
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Fig. 1. Automatic inference of user’s knowledgeability from eye gaze in mobile learning
settings: We focus on a quiz game where we record interactions between a user and a
virtual agent using the front facing camera of the tablet. We train a CNN-based system
to estimate user’s gaze fixations on the tablet screen. From estimated gaze fixations,
we define a set of eye movement features to discriminate between users knowing the
correct answer and users not knowing the correct answer. We train binary classifiers
to predict users’ knowledgeability from eye movement features.

Eye gaze has been frequently studied in interactive intelligent systems as a cue
for inferring user’s internal states. Eye movements directly reflects what is at the
centre of an individual’s visual attention, and are linked to cognitive processes
in the mind [19]. A significant body of work has investigated the relationships
between eye movements and cognitive processes to provide an understanding into
memory recall [8], cognitive load [18], interest [13], level of domain knowledge [9],
problem solving [5,11], desire to learn [4], and strategy use in reasoning [20].
However, so far relatively little research [13] has focused on the interpretation
of eye behaviours from the perspective of a camera enabled mobile device. This
is due to its long list of challenges including randomness in the camera view,
camera motion, drastic illumination changes and partially visible faces.

Accurate eye tracking, namely measuring eye gaze precisely to estimate where
the participant is looking at on the screen, requires the use of invasive devices
that are not practical to use in everyday life. Although not as precise as the eye
tracking devices, recent convolutional neural network (CNN) based approaches
such as iTracker [12] provide us with a positive outlook for reliably predict-
ing user’s gaze fixations from a mobile device’s front-facing camera in a non-
obstructive manner. Building upon the deep-learning based approaches, this
paper sets out to explore the inference of user’s knowledgeability from noisy
and temporally sparse gaze estimations in a mobile learning setting. Intelli-
gent tutoring systems can significantly benefit from incorporating such reasoning
mechanisms to improve system adaptation and enhance learning.
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As illustrated in Fig. 1, we focus on an interaction setting where a user plays
a quiz game with a virtual agent while being recorded by front-facing camera of
the tablet. Once we estimate on-screen gaze locations based on a deep-learning
method, we make a simplifying assumption that the user’s knowledgeability is
binary, i.e. either the user knows correct answer of a question or not. There is a
strong correlation between the correctness of a person’s answer and their Feeling
of Knowing (FoK) [6]. FoK is a meta-cognitive state where people assess their
knowledge of a subject when being posed a question. During this state, people
exhibit certain nonverbal cues through face and voice such as smiles, gaze acts,
which are indicator of their knowledgeability [6]. In addition, humans can predict
the performance of others solving a multiple choice reasoning task by looking
at their eye movements only [21]. Humans make use of high distinctive patterns
and gaze dynamics to judge whether a person knows the correct answer or not.
Motivated from [6,21], we extract a multitude of features from eye movements
such that gaze behaviours of a person knowing the answer and a person not
knowing the answer appear dissimilar by classification schemes.

Overall, the key contributions of this paper are: (1) introducing a novel yet
very challenging computer vision problem, predicting human knowledgeability
from eye gaze only, and introducing the first automatic vision-based method to
detect knowledgeability from eye gaze on tablets without using any additional
sensor; (2) introducing the first audio-visual dataset for predicting human knowl-
edgeability in an interactive mobile learning setting; and (3) providing baseline
results for knowledgeability classification from eye movement features. Proposed
features based on eye gaze only improves the performance by 7% as compared
to facial features (i.e. action units).

2 Related Work

This paper focuses on the problem of inferring user’s cognitive states from eye
movements in mobile learning settings, which lies at the crossroad of various
research areas.

Gaze Estimation. The first challenge of building an eye movement analysis frame-
work is to develop a gaze estimation method that can reliably work during
unconstrained interactions with a mobile device. There are a few prominent
works that perform gaze estimation without using specialised sensors or devices.
These methods can be divided into two groups: (i) methods learning a mapping
from input space to 3D gaze direction (3D gaze estimation) [22–24]; and (ii)
methods learning a mapping from input space to on-screen gaze location (2D
gaze estimation) [10,12].

Two recent works [10,12] focused on 2D gaze estimation using hand-held
mobile devices such as smart phones, tablets. Huang et al. [10] collected a gaze
estimation dataset using a tablet in a systematic way, which is called TabletGaze
dataset. They asked 51 subjects to gaze at a dot being displayed on the tablet
screen while holding the tablet in four different body postures, namely, standing,
sitting, slouching and lying. They showed that recordings from hand-held mobile
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devices are more characterised by partially visible faces, random camera motion
and random camera angles (e.g., centred view vs. low-angle view), as compared
to recordings from a laptop placed on a desk [24]. For 2D gaze estimation,
they compared four generic regression approaches including Random Forests
(RF), Support Vector Regression (SVR) in conjunction with commonly used
appearance features (e.g., Histogram of Gradient - HoG, Local Binary Patterns
- LBP) extracted from eye regions. Following the TabletGaze dataset [10], Krafka
et al. [12] introduced the largest 2D gaze estimation dataset, called the Gaze-
Capture dataset. The GazeCapture Dataset was collected via a crowd-sourcing
service, which enabled gathering data from a large number of subjects (1474
in total) and 15 different mobile devices (iPhones and iPads only) at four differ-
ent orientations, resulting in a large variability in illumination, appearance and
pose. In addition, the GazeCapture dataset enabled training a CNN model from
scratch for gaze estimation. Cross-dataset evaluations showed that the iTracker
outperforms the 2D gaze estimation methods in [10] by a large margin.

Eye Movement Analysis. There is a long list of prominent works focusing on
eye movement analysis to provide an insight into human cognitive processing [4,
5,7–9,11,13,18,20,21]. Among these works, [4,7,9,21] collected eye movement
data using a specialised eye tracking device, and investigated internal states
relevant to knowledgeability and learning. In [7], Broekens et al. focused on a
scenario where 31 users played a card game against a desktop computer. The
card game involved matching numbers, shapes and colours of objects displayed
on a total of 12 cards, and selecting out of 3 cards, called Set, based on a set
of rules (e.g., all 3 cards have the same shape). If user claimed a Set among
12 cards, the decision made by the user was annotated as correct or incorrect
based on whether the Set identified by the user satisfied all of the rules or not.
For automatically classifying user’s decisions, Broekens et al. first extracted a
set of eye movement features such as duration of fixation, attention spread,
saccade length, etc., which are widely used in the literature, and then used
various traditional classification methods. Using eye movement features only,
Bagging resulted in the best performance of 77.9% for predicting whether the
user identified a set or not, and MLP resulted in the best performance of 75.1%
for classifying the Set identified by the user into correct or incorrect.

We are aware of only one work that performed gaze estimation from the front
facing camera of a mobile device with the goal of inferring user’s internal states.
Li et al. [13] focused on predicting user’s interest in an online store setting. They
designed a task where they asked 36 users to interact with the Google Play Store
and mentally pick up the items that they found interesting. They estimated the
on-screen gaze locations from eye regions using a CNN-based method similar
to [12,24]. They recorded calibration data consisting of 13 points from each
user prior to the task and during the task, which was further used to fine-tune
the gaze estimation method, and collected users’ explicit responses after the task
was performed. From the estimated on-screen gaze locations, they computed two
types of attention metrics: (i) gaze metrics including gaze well time, gaze dwell
fraction and gaze time to first visit; and (ii) viewport metrics including viewport
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time, viewport dwell fraction and viewport time to first visit. They formalised the
problem of inferring user’s interest as a binary classification task, i.e., predicting
whether a user was interested in an item or not, and used the calculated metrics
both singly and jointly to compare three traditional classification methods. They
obtained the best classification performance of 90.32% with nonlinear Support
Vector Machine (SVM) by fusing all of the attention metrics.

Intelligent Tutoring Systems. Personalising system’s actions to individual differ-
ences is compulsory for achieving good learning outcomes. To this effect, there
have been some works (e.g., [2]) that focused on automatically detecting stu-
dent’s mental states such as satisfied, confused or bored. Alyuz et al. [2] collected
data from 20 students (14–15 years) over the course of several months as part of
a math course. Each student worked independently in the class using a laptop,
and was recorded using a 3D camera. From the recordings, they extracted two
types of features, namely, appearance features and contextual features. While
appearance features were composed of face location, head pose, facial gestures
and seven basic facial emotions (e.g., happiness, sadness, etc.), contextual fea-
tures were extracted from (i) user profiles including age, gender; (ii) session
information including video duration, time within a session; and (iii) perfor-
mance features including number of trials until success, number of hints used,
grade. For inferring mental states, they trained Random Forest classifiers for
each feature type, where the contextual features yielded better performance in
overall (90.89% for assessment sessions).

The work most relevant to ours was proposed by Bourai et al. [6]: they
developed an automatic method for predicting human knowledgeability from
facial features such as head pose, gaze direction, facial action units and audio
features such as speaking rate, voice pitch. They collated a dataset of 198 clips
from the British Broadcasting Service’s University Challenge trivia show. Each
clip contained a participant answering a question posed by the moderator, and
was further annotated either with correct or incorrect. Classification results with
SVM showed that facial features alone can be informative enough, yielding a
performance above chance (56.1%), while combining facial features with audio
features significantly improved the performance (67.5%), and outperformed the
human performance by a margin of 4%.

Our Work. Similarly to [10,12], this paper is concerned with 2D gaze estima-
tion. We propose an automatic method for predicting human knowledgeability
from estimated on-screen gaze locations. We design a study where we use a
tablet-based quiz game. We record users on video while they are playing the
quiz game with a virtual agent to answer a set of general knowledge questions.
Following [6], we formalise the problem of human knowledgeability prediction as
a binary problem, and use a multitude of eye movement features in conjunction
with a classification scheme to predict whether a user gives the correct answer
to a question or not.

Taken together, to the best of our knowledge, we introduce the first dataset
for predicting human knowledgeability in mobile learning settings, which we
name the PAL M-Learning corpus, and we introduce the first automatic method
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to detect human knowledgeability from eye movements on tablets without using
any additional sensor. Considering the widespread use of mobile devices and the
potential of technology-enhanced learning and e-health applications, our work
has significant implications for adapting system behaviours to user’s individual
profiles and needs beyond just clicks.

3 The PAL M-Learning Corpus

We are not aware of an existing dataset that supports research in predicting
user’s internal states from eye gaze in a mobile learning setting. This section
therefore introduces a novel corpus, called PAL Mobile Learning (M-Learning)
Corpus. The PAL M-Learning Corpus comprises two datasets: (i) PAL M-
Learning Interaction dataset; and (ii) PAL M-Learning Gaze dataset. The PAL
M-Learning Interaction dataset consists of audio-visual recordings of 31 users
using a tablet to play Quiz Game with a virtual agent, which is further used to
develop automatic models for predicting knowledgeability. The PAL M-Learning
Gaze dataset is built by following a similar approach as in [10,12], namely, it
is collected by showing users a sequence of dots one at a time on the screen
and recording their gaze using the front-facing camera. We use the PAL M-
Learning Gaze dataset to fine-tune gaze estimation models trained using larger
datasets [10,12].

3.1 Data Collection

For collecting data, we used the mobile interactive platform of our PAL (Personal
Assistant for healthy Lifestyle) EU H2020 Project1, which is based on an Android
app. This Android app offers a wide range of tools including a virtual diary and
several games, from which we focused on a quiz game as an educational tool.
The quiz game is played with a virtual agent, and involves user and the virtual
agent asking each other multiple choice questions about a topic. As illustrated
in Fig. 1, quiz game interface consists three components, namely, a virtual agent,
a question box and an information box.

We designed a study using the quiz game with the goal of developing an
automatic method for inferring user’s internal states. For the quiz game, we gen-
erated a question database by randomly selecting questions at different levels of
difficulty (i.e., easy, medium, hard) from a trivia question database, called Open
Trivia Database [14]. There is a total of 24 question categories in the Open Trivia
Database. Since our goal was to observe different internal states from our target
users (e.g., confident vs. uncertain), we conducted a preliminary study where
we asked a total of 16 participants to assess whether they found each question
category easy or hard, and whether they found them boring or interesting. Using
the results of the preliminary study, we hand-picked 9 question categories rang-
ing from boring (e.g., Celebrities) to interesting (e.g., Books, Science & Nature)

1 http://www.pal4u.eu/index.php/project/about/.

http://www.pal4u.eu/index.php/project/about/
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and from easy (e.g., Computers, Mathematics) to hard (e.g., Mythology, Art),
and generated a question database for the quiz game by randomly selecting 5
questions from each category, resulting in 45 questions in total.

We used a Lenovo TB2-X30F tablet during the data collection procedure. 31
users (10 of which were females; age ranging from 18 to 37 with a mean of 27)
were recorded, and gave written informed consent for their participation. Each
user were guided into the experimental room that had natural lighting. The users
were asked to sit on a chair, and hold the tablet in the landscape orientation as
they felt comfortable. Apart from these, no further instructions were given to
the users. We collected interaction videos by asking each user to play the quiz
game with the virtual agent for a duration of 12 mins. Each interaction video
contained alternately user and the virtual agent asking questions (20 questions
in total, half of which were asked by the virtual agent). These questions were
randomly selected from the question database generated as explained before.
Before we started to record the interaction, we allowed users to play the quiz
game for a couple of questions to familiarise themselves with the Android app.
This is a common practice widely used to reduce the novelty effect of a new
technology. In both sessions, we recorded users on video from the front-facing
camera of the tablet at a rate of 30 fps with an image resolution of 1280 × 800
pixels. Prior to collecting interaction videos, we collected gaze estimation data
by asking each user to look at a sequence of red circles - one at a time - shown
on the tablet screen. The red circles were appeared at 35 fixed locations and 25
random locations on the tablet screen, each for a duration of 3 s. Following [10],
the fixed locations were equally distributed on the tablet screen, arranged in 5
rows and 7 columns and spaced 2.71 cm vertically and 3.10 cm horizontally. This
procedure resulted in gaze estimation data for a duration of 3 mins and a total
of 60 on-screen locations per user.

Fig. 2. Example snapshots from the PAL M-Learning Interaction dataset, which are
taken from the perspective of the front-facing camera while users were answering a
question posed by the virtual agent using the tablet.

From the conducted study, we built two datasets, namely, the PAL M-
Learning Interaction dataset and the PAL M-Learning Gaze dataset. The inter-
action dataset was created by segmenting each interaction video into a set of
short clips. Each clip contained either the user or the virtual agent asking a
question and the other one responding. More explicitly, a short clip started
when a new quiz question together with four choices appeared on the tablet
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screen, and finished when a response was given by the user/the virtual agent.
For further automatic analysis, in this paper, we only focused on the clips where
the virtual agent was asking a question and the user was answering. Example
snapshots from these clips are shown in Fig. 2. The gaze dataset was generated
by segmenting gaze estimation data into a set of short clips, where each clip
contained user gazing at an on-screen location for 2 s (i.e., we removed the first
0.5 s and the last 0.5 s to obtain a clean dataset).

3.2 Summary of the Datasets and Statistics

PAL M-Learning Interaction Dataset. We removed 5 users and some of the clips
from the interaction dataset as they were not usable, for example, users’ eyes
were not visible. The resulting dataset consists of 27 participants and a total of
242 clips. On average there are 9 short clips per participant, and each clip has a
duration ranging from 10.67 s to 39.43 s with a mean duration of 22.6 s.

After the study took place, we conducted a post-study where we collected
assessments from a subset of users (9 in total) for each quiz question with respect
to three difficulty levels, namely, easy, medium and hard. We labelled each quiz
question as easy, medium or hard by taking average of the collected assessments
over all the users, where medium appears in the largest number - 106 of the 242
clips contain questions at the medium level of difficulty. For predicting user’s
knowledgeability, we used interaction logs to annotate each clip based on the
user’s response. If the user’s response to a question is correct, we annotated
the corresponding clip with “correct”. Otherwise, we annotated the clip with
“incorrect”. This resulted in 136 incorrect clips and 106 correct clips, which
were used for automatically predicting knowledgeability (see Sect. 6).

In addition to users’ responses, we used a crowdsourcing service to collect
perceived knowledgeability annotations from external observers. Each clip was
viewed and annotated by a total of 5 external observers, according to whether
the user in the clip knows the correct answer to the question being asked or
not. Observers provided their responses on a 6-point scale ranging from strongly
disagree to strongly agree (we did not include neutral as a response). We also
included two trapping questions about the question’s topic and the person in
the clip to filter spam responses, also known as Honeypot technique [15]. We
approved responses submitted by each external observer based on their responses
to trapping questions before reimbursing them for their time. We computed the
inter-observer reliability in terms of Intra-Class Correlation (ICC) [16], where
we used ICC(1,k) as in our experiments each target user was rated by a differ-
ent set of k observers (k = 5), randomly sampled from a larger population of
observers (K = 80). We obtained a significant correlation (ICC(1, k) = 0.69,
p < 0.0001), indicating a high-level agreement among observers. Motivated from
this, we evaluated human performance for knowledgeability prediction task. We
aggregated the responses from multiple external observers by computing the
mean, and assigned the aggregated annotations to either “correct” or “incor-
rect” class. For this challenging task, humans achieved a classification accuracy
of 59.2%. However, we observed a bias towards the incorrect class, namely, the
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respective F-scores (×100) were 45.2% and 73.2% for the correct and incorrect
classes. We further compared these results with machine performance in Sect. 6.

PAL M-Learning Gaze Dataset. The gaze dataset is composed of 103, 911 images
captured from 31 users, 6 of which were wearing eye glasses, with corresponding
gaze fixation locations. In our experiments, we benefit from the GazeCapture
dataset to build a gaze estimation model, and use the PAL M-Learning Gaze
dataset to fine-tune the trained model to the Lenovo tablet in landscape mode
(see Sect. 4). As demonstrated in [12], different mobile device brands have dif-
ferent screen sizes and camera-screen configurations, and therefore fine-tuning
the generic gaze estimation model to the target device (Lenovo in our case) is
compulsory to obtain reliable results.

4 Gaze Estimation

Deep learning has proven to be successful in many end-to-end learning tasks,
yielding previously unattainable performances in various challenging computer
vision problems. Its performance has been validated for gaze estimation in [12,
24]. For example, the iTracker outperformed the best method using multilevel
HoG and RF in [10], reducing the estimation error by 0.59 cm on the TabletGaze
dataset. We therefore adopted the iTracker for gaze estimation in this work.

The architecture of the iTracker [12] is illustrated in Fig. 1. The iTracker has
four networks in parallel, and takes as an input (1) the image of the eyes; (2)
the image of the face; and (3) a binary mask indicating the location of the face
in the image (namely, face grid), and outputs the estimated x and y positions
of a gaze fixation on the device screen. The eyes are included as individual
inputs into the network to allow the network to identify subtle changes, and
the weights are shared between the eye networks. In addition to eye images,
face image and face grid are given as inputs into the network to incorporate
head pose variations without explicitly estimating the head pose relative to the
camera in contrast to [24]. In [12], it was also demonstrated that training the
CNN model with sufficient and variable training examples (>1M) can remedy
appearance changes due to head pose. The iTracker maps the input data onto a
unified prediction space that enables training a single joint model using all the
data from 15 different devices, and the model is trained using a Euclidean loss
on the x and y gaze positions in the unified prediction space.

In our experiments, as in [12], we used 1,251,983 images (1271 subjects) for
training, 59,480 images (50 subjects) for validation and 179,496 images (150
subjects) for testing. Firstly, we followed the implementation described in [12],
and trained the model for 150,000 iterations with an initial learning rate of
0.001 and a reduced learning rate of 0.0001 after 75,000 iterations, with a batch
size of 256. Similar to [12], we used stochastic gradient descent optimisation
method with a momentum of 0.9. However, the trained model yielded worse
results as compared to the results presented in [12]. Secondly, we repeated a
similar training procedure by (1) applying batch normalisation and (2) using
ADAM optimizer with an initial learning rate of 0.001 for 50,000 iterations and
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a reduced learning rate of 0.0001 for another 50,000 iterations. We called our
first and second implementations as iTrackerTF and iTrackerTF∗, respectively.

We evaluated the estimation error in terms of Euclidean distance (in centime-
ters) between the estimated location and the location of the true gaze fixation.
We also computed dot error, where we took average of gaze estimations of the
model for all the consecutive images corresponding to the same gaze fixation
at a certain location. As it was done in the original paper [12], we compared
our gaze estimation results with a baseline method that applies support vector
regression on features extracted from a pre-trained ImageNet network (called
baseline, hereafter). Our gaze estimation results are presented in Table 1: our
both implementations of iTracker outperforms baseline, and using batch nor-
malisation and ADAM optimizer further improves the accuracy by a margin of
0.62 cm in mobile phones and 0.54 cm in tablets, respectively (see iTrackerTF
vs. iTrackerTF∗).

Table 1. Gaze estimation error in cm as Euclidean distance between the true fixation
and the estimated position on the Gaze Capture dataset and the PAL M-Learning
Gaze dataset.

Model Gaze capture dataset PAL M-learning gaze

Mobile phone Tablet Model Tablet

Error Dot error Error Dot error Error Dot error

Baseline 2.99 2.40 5.13 4.54 iTrackerTF∗ 5.31 5.23

iTrackerTF 2.91 2.33 4.40 3.95 fc1 features + SVR 6.63 6.56

iTrackerTF∗ 2.37 1.97 3.86 3.55 fc1 + fc2 finetuning 3.66 3.40

Since our goal was to apply gaze estimation on the PAL M-Learning Inter-
action dataset in which the full face was not always available, we experimented
with different network architectures. We obtained an average error of 4.21 cm
using eye images only and 3.45 cm using eye images together with face grid
(without face) on the GazeCapture dataset. We obtained the minimum error
when we took into account the face as well (3.11 cm). When the full face was
not available, we filled the face by repeating the last row of the face image.

Finetuning iTrackerTF ∗ with the PAL M-Learning Gaze Dataset. The Gaze-
Capture dataset was captured using iPhones and iPads only. On the other hand,
in the PAL M-Learning experiments we used a Lenovo tablet that has different
camera-screen configuration from an iPad. In addition, out of 1249 subjects, only
225 subjects used iPads during the data collection, resulting in unbalanced data
distribution between mobile phones and tablets. In order to obtain on-screen
gaze estimations on the PAL M-Learning Gaze and Interaction datasets, we fol-
lowed [12], and extracted features from the penultimate fully connected layer
of the iTrackerTF∗. We used these features to train Support Vector Regression
(SVR) models using 6-fold cross validation in a subject-independent manner.
More explicitly, we divided the dataset into 3 sets: train (20 subjects), validation
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(5 subjects) and test (6 subjects), and each time we selected the optimum param-
eters (C and γ) on the validation set, and tested the best model on the unseen
subset of test subjects. Using fc1 features in conjunction with SVR resulted in
a decrease in the accuracy as compared to the jointly trained network, namely,
the error increased from 5.31 cm to 6.59 cm (see fc1 features + SVR results in
Table 1). In [12], this approach reduced the error on the TabletGaze dataset [10].
However, only 35 fixed on screen gaze locations were considered in [10], whereas
the PAL M-Learning Gaze dataset comprises 25 random locations in addition
to 35 fixed locations. We conjecture that the SVR models were not able to gen-
eralise due to the randomness in the locations of dots.

We therefore finetuned the iTrackerTF∗ network using the PAL M-Learning
Tablet Gaze Dataset. Using the cropped faces and eyes from OpenFace [3]
as inputs, we only updated the weights in the original-dataset-specific layers,
namely, in the last two fully-connected layers (fc1 and fc2). As explained above,
we followed the same 6-fold cross validation strategy, where we used the vali-
dation set to select a learning rate and a stopping criteria, and tested the fine-
tuned model using a non-overlapping set of unseen test subjects each time. This
resulted in 6 networks finetuned with a learning rate of 0.0001 for 10,000 iter-
ations, and reduced the error from 5.31 cm to 3.66 cm on the PAL M-Learning
Gaze dataset. We further used these networks for gaze estimation on the PAL
M-Learning Interaction dataset (see Sect. 5).

In summary, our implementation has three necessary differences from [12]:
(i) we applied batch normalisation; (2) we used ADAM optimizer; and (3) we
mirrored right eye images before feeding into the network as it resulted in smaller
estimation error. We also showed that fine-tuning the last two layers is a bet-
ter approach for cross-dataset generalization in our case. Finally, we optimised
the trained model for deployment on mobile devices using Tensorflow Mobile.
Without face and eye detection, inference using the trained model on a GPU
enabled mobile device (namely, Google Pixel C) takes approximately 400–450 ms
per frame. As proposed in [12], we then trained a smaller version of the net-
work, namely, reduced the size of the input images from 224 × 224 to 80 × 80.
The smaller version of the network achieved 80–100 ms per frame, with a slight
increase in the mean error on the GazeCapture dataset (i.e., 0.15 cm).

5 Feature Extraction

Once we finetuned the iTracker to the Lenovo tablet using the PAL M-Learning
Gaze dataset, we applied it onto the PAL M-Learning Interaction dataset to
obtain estimated on-screen gaze locations, and defined a set of eye movement
features to model gaze behaviour for knowledgeability classification. Prior to
feature extraction, we used OpenFace [3] to detect faces and eyes. In addition,
similarly to [6], we used OpenFace [3] to detect and estimate the intensity of
facial Action Units (AUs), which are codes that describe certain facial muscle
movements (e.g. AU12 is lip corner puller, AU43 is eye blinking, etc.). Since
we do not have ground-truth for the true locations of the gaze fixations in the
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Fig. 3. (a) Visual stimulus divided into seven region of interests (ROIs) overlaid with
sample estimated on-screen locations that are shown with circles in red and green;
(b) A heat map computed from the estimated on-screen locations in (a); (c) A gaze
history image (GHI) computed from the estimated on-screen locations in (a). (Color
figure online)

PAL M-Learning Interaction dataset, we manually inspected the results. Our
manual inspection showed that eye blinking results in spurious gaze estimations.
As a post-processing step, we therefore removed the corresponding gaze estima-
tions where an eye blink occurred. Given gaze fixations estimated in a clip, we
extracted three types of eye movement features: (1) attention metrics; (2) heat
map; and (3) gaze history images. We also compared eye movement features
with the features extracted from AUs.

For computing the attention metrics, we divided the visual stimulus into
seven regions of interest (ROIs) including the region enclosing the virtual agent,
the region showing whose turn to ask a question, the regions enclosing the quiz
question and the four options as shown in Fig. 3-(a). We computed two attention
metrics [13], namely, gaze dwell fraction and gaze dwell time. Let T be the total
time spent on the stimulus, given a total of N on-screen gaze estimations along
vertical and horizontal directions with corresponding time instants, {xi, yi, ti},
gaze dwell time is defined the amount of time a user spends viewing a ROI:
GDT (ROI) =

∑
{xi,yi}∈ROI(ti+1 − ti). For computing gaze dwell fraction, we

took into account the percentage of time a user gazes at a ROI: GDF (ROI) =∑
{xi,yi}∈ROI(ti+1−ti)

T .
Heat map is one of the most widely used representations to analyse eye move-

ments, which shows how looking is distributed over the stimulus. For each clip,
we generated a 54 × 40 heat map as illustrated in Fig. 3-(b). We first vectorised
the resulting heat map and then applied Principal Component Analysis (PCA)
to reduce its dimension from 2160 to 50.

Although heat map is a powerful representation to model gaze behaviours,
it does not incorporate the temporal information. On the other hand, as
reported in [21], people use gaze dynamics to judge whether a person knows
the correct answer or not. Inspired by motion history images [1], we trans-
formed gaze estimations into an image representation while encoding tempo-
ral information. We first divided the gaze estimations over time into tempo-
ral slices ({Δti}i=1:S) of a duration of 1 s, and then for each temporal slice
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Fig. 4. (a–b) The effect of question’s difficulty level on the gaze dwell time and gaze
dwell fraction; (c–d) The effect of user’s response (incorrect vs. correct) on the gaze
dwell time and gaze dwell fraction.

we built a heat map. From time-dependent heat maps, we computed a gaze
history image (GHI) per clip as follows. If a user gazes at a certain location
within a certain temporal slice Δti, we set GHIτ (x, y,Δti) = τ . Otherwise,
GHIτ (x, y,Δti) = max(0, GHIτ (x, y,Δti−1) − 1), where τ is set to total num-
ber of temporal slices in a clip, namely S. More explicitly, intensity at a certain
location is a function of recency of gaze fixation, where higher intensity values
are associated with a more recent gaze fixation. A GHI is illustrated in Fig. 3-(c),
where more recent gaze fixations are highlighted in yellow, and dark blue regions
correspond to areas that were never visited throughout the clip. As we did for
the heat map, we vectorised the resulting gaze history image and applied PCA
to reduce its dimension to 50.

Taken together, we extracted a total of 114 eye movement features, consisting
of 7 gaze dwell time features, 7 gaze dwell fraction features, 50 heat map features
and 50 gaze history image (GHI) features. In Fig. 4, we presented the impact of
question difficulty level (i.e., easy, medium, hard) on the gaze dwell time and gaze
dwell fraction (we only considered the 5 ROIs associated with the question box).
One can clearly observe that (i) gaze dwell fraction increases as the question’s
difficulty level increases; and (ii) people knowing the correct answer tend to
spend less time on the question box.
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In addition to eye movement features, for comparison purposes, we extracted
features from detected facial action units (AUs). We considered that an AU was
successfully detected when the confidence score was higher than a threshold, and
took into account a total of 7 AUs associated with upper face muscle movements
only, including inner brow raiser (AU1), outer brow raiser (AU2), brow lowerer
(AU4), upper lid raiser (AU5), cheek raiser (AU6), lid tightener (AU7), and blink
(AU45). Then we counted the number of occurrences of each AU and converted
these numbers into a histogram for each clip. We also took average of intensity
values of each AU over the whole clip, resulting in a total of 14 features.

6 Knowledgeability Prediction

We provided the baseline results with Support Vector Machines (SVM) and
Gaussian Processes (GP) as classification schemes. We trained a nonlinear SVM
with a Radial Basis Function (RBF) kernel to discriminate correct and incorrect
samples. We optimized the parameters in a subject-independent fashion. More
explicitly, we evaluated the classification performance using a double cross val-
idation approach. This is a common practice to ensure better generalizablity of
the trained models to the unseen subjects. In the outer loop, each time we used
all the data from one participant for testing, and all the data from the remaining
26 participants for training and validation. In the inner loop, we selected the best
parameters (C and γ) on the training and validation sets using a leave-one sub-
ject out validation approach. For GP, we adopted single leave-one-subject-out
cross validation approach, and used RBF kernel variety. We randomly subsam-
pled from the class having larger number of samples in order to balance the
data prior to training both of the classifiers, and reported classification results
as average F-Score/accuracy over multiple runs.

In Table 2, we presented our classification results for each feature type. As
mentioned before, this is the first attempt to predict human knowledgeability
from eye movements without using any specialised device. We are aware of only
one work that proposed an automatic method for predicting human knowledge-
ability from observable visual cues [6]. However, their work differs from our work
along three aspects: (1) they focused on a different setting; (2) they used clips
recorded from a static, third person vision perspective; and (3) they extracted
visual features from facial action units, head pose and 3D gaze direction. Nev-
ertheless, we compared our classification accuracy with the proposed method
in [6]. Looking at Table 2, using heat map only in conjunction with SVM yielded
the best classification accuracy of 59.1%, and outperformed the method based
on visual features in [6] (56.1%) in a more challenging scenario.

We observed three trends from Table 2. Firstly, SVM worked slightly better
as compared to GP. Secondly, gaze dwell time and heat map features yielded
better results with both classifiers as compared to gaze dwell fraction and gaze
history image features. Finally, in our setting, action unit features performed
just above chance, namely, yielding a classification accuracy of 51.8%.
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Table 2. Knowledgeability classification in terms of F-Score (×100) and average accu-
racy (ACC%) on the PAL M-Learning Interaction dataset. The best results are high-
lighted in bold. (DwellTime: gaze dwell time; DwellFrac.: gaze dwell fraction; HeatMap:
heat map; HistoryImage: gaze history image; ActionUnit: facial action units)

Feature type Support vector machines (SVM) Gaussian processes (GP)

F-score ACC F-score ACC

Incorrect Correct Ave. Incorrect Correct Ave.

Human 73.2 45.2 59.2 73.2 45.2 59.2

DwellTime 58.9 57.4 58.2 58.0 56.4 57.2

DwellFrac. 57.9 50.5 54.5 57.2 51.4 54.5

HeatMap 65.3 50.0 59.1 62.6 50.0 57.2

HistoryImage 47.3 45.3 46.3 46.8 45.8 46.3

ActionUnit 52.7 45.8 49.5 53.1 50.4 51.8

VisualFeatures [6] - - 56.1 - - -

7 Conclusion and Future Work

In this paper, we introduced a novel computational approach to the problem
of predicting human knowledgeability from eye movements without using any
additional sensor, in mobile learning settings. We designed a study using a mobile
interactive platform, where we recorded users on video while they were playing
quiz game with a virtual agent to answer a set of general knowledge questions. We
then formalised the problem of human knowledgeability prediction as a binary
problem, and used a multitude of eye movement features in conjunction with
SVM and GP to predict whether a user gave the correct answer to a question
or not. Our results showed that heat map in conjunction with SVM was able to
discriminate users clicking the correct response and users clicking the incorrect
response with an accuracy of 59.1%. We believe that combining eye movements
together with action units will help to improve the accuracy. From our manual
inspection of the recorded data, we also observed that people tend to divert their
attention from the tablet when thinking or bored. Eye contact [25] might be an
important cue to detect in these situations. Our research reported in this paper
has demonstrated results that warrant further investigation of non-obstructive
eye movement analysis to adapt system behaviours to users’ individual profiles.
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