
Deep Execution Monitor for Robot
Assistive Tasks

Lorenzo Mauro , Edoardo Alati , Marta Sanzari, Valsamis Ntouskos ,
Gianluca Massimiani, and Fiora Pirri(B)

Alcor Lab, Diag, University of Rome La Sapienza, Rome, Italy
pirri@dis.uniroma1.it

Abstract. We consider a novel approach to high-level robot task exe-
cution for a robot assistive task. In this work we explore the problem
of learning to predict the next subtask by introducing a deep model for
both sequencing goals and for visually evaluating the state of a task. We
show that deep learning for monitoring robot tasks execution very well
supports the interconnection between task-level planning and robot oper-
ations. These solutions can also cope with the natural non-determinism of
the execution monitor. We show that a deep execution monitor leverages
robot performance. We measure the improvement taking into account
some robot helping tasks performed at a warehouse.

1 Introduction

In this paper, we present a novel approach to model high-level robot task exe-
cution. An execution monitor is a real-time decision process, which amounts to
choosing at each step of the execution the next subtask and deciding whether the
current task succeeded or failed [12,34]. A real-time execution monitor involves
plan inference, verification of the current robot state, and choice of next goal
state.

Several authors, in the planning community, have explored hierarchical task
networks (HTN) (see for instance [10]) and hierarchical goal networks (HGN)
(see for example [44]) to provide a way of sequencing a suitable decision process
[2] at the correct level. However, both HTN and HGN require that these decisions
are stacked a priory in the network, putting on the designer the burden to provide
a task decomposition, for each task.

In this paper we overcome these difficulties by integrate two deep models to
predict next state choice. The first model is a DCNN, identifying the objects in
the scene and supporting recognition of relations holding at the current execution
time. The second is a sequence to sequence model (seq2seq) [46] with attention
[3,30,31] inferring a plausible next robot world-state given the current world-
state. The interplay between the two models and classical planning grounds the
specification of a world-state. The execution monitor manages the interaction
amid the models at execution time. This is a very preliminary contribution,
considering only the high-level robot decisions. Direct robot control is managed
by state charts [48].
c© Springer Nature Switzerland AG 2019
L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11134, pp. 158–175, 2019.
https://doi.org/10.1007/978-3-030-11024-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11024-6_11&domain=pdf
http://orcid.org/0000-0002-7895-6307
http://orcid.org/0000-0002-8761-910X
http://orcid.org/0000-0003-1810-7802
http://orcid.org/0000-0001-8665-9807
https://doi.org/10.1007/978-3-030-11024-6_11

Deep Execution Monitor 159

Current Task: bring spray bottle to technician
Robot view of the scene

ti
ti+1

ti+2

DCNN Interesting Objects Detection

Segmentation of depth imagef depth image
Relations recognition according to VDEM
query for preconditions

2

Current
plan:1

3

k

Preconditions:
(,)

(,)
(,)

On sprayBottle table
CloseTo robotHand sprayBottle
At robotHand table
Action:

(,)grasp robotHand sprayBottle

Action Effects:
(,)Hold robotHand sprayBottle

Seq2Seq

Choose next plan

VDEM
Ask Seq2Seq next plan

Verify plan
preconditions with
vision

If preconditions
trigger action execution

Verify action
effects

Plan
library

Get
current
plan

Preconditions:
)O (

statetate
chartstion

s
c

Fig. 1. The schema above presents the flow of information managed by the deep exe-
cution monitor (VDEM) for the task bring the spray bottle to the technician. While the
robot observes the scene, the state is built by the detected relations, restricted accord-
ing to what is required by the current planner. The VDEM queries the vision system to
both verify the preconditions for action to be executed, and the realization of the action
effects. A plan library (see e.g. [22] for a reference) provides background knowledge in
a symbolic language. The seq2seq model learns to predict goal-states, according to the
specific task and current state, and it is invoked by the VDEM whenever a new goal
state is required.

Main Idea and Contribution. In this paper we address a vision-based deep
execution monitor (VDEM) for robot tasks. The main idea is the introduction of
a robot learning model to predict the next goal from the current one, verifying
the preconditions and effects of the currently executed action. Preconditions and
effects are specified in a symbolic language. Whether they hold or not at a state
can be determined by the robot vision. The robot monitors the states of its
execution by linking the symbolic language with the vision interpretation, such
that the objects in the scene are the terms of the symbolic language, and the
relations are the predicates. The next goal state is inferred by associating to
each goal described by some plan in the plan library, the goal which is the most
plausible successor state. Therefore, given that X is a goal descriptions, and Y
is the next goal description, the seq2seq model infers P (Y |X). A description is
formed by the predicates and terms verified by vision, which form the current
robot world-state. The seq2seq model is formed by an encoder fed by token of
the symbolic language, an attention mechanism that pairs each description with
the task, which is a sort of memory of the goals concerned with such a task, and
a decoder, which infers the most likely successor state.

Though recent approaches [1,27,33,53,54] have considered vision based exe-
cution, our approach is novel in combining vision based execution with next

160 L. Mauro et al.

step prediction, binding the planning symbolic languages with visual instances.
The binding allows the execution monitor to generate a state merging vision
and planning feedbacks. Furthermore, the approach provides both depth and
location for relations recognition to cope with the task dynamics.

We tested the framework at a warehouse with a humanoid robot, described in
the experiment section, see Sect. 6. We provide ablation of the execution monitor
functionalities to experiment the robotic performance and the advantages of the
proposed vision based deep execution monitor.

2 Related Work

Vision Based Robot Execution. The earliest definitions of execution moni-
toring in nondeterministic environments were introduced by [12,34]. Since then
an extraordinary amount of research has been done to address the nondeter-
ministic response of the environment to robot actions. Several definitions of
execution monitoring are reported in [38]. For high-level robot tasks, a review
of these efforts is given in [24]. The role of perception in execution monitoring
was already foreseen in the work of [9]. Likewise, recovery from errors that could
occur at execution time was already faced by [50]. Despite this foresight, the dif-
ficulties in dealing with scene recognition have directed the effort toward models
managing the effects of actions such as [4,47], allowing to execute actions in
partially observable environments, similarly as in [5,13,15]. On the other hand,
different approaches have studied learning policies for planning as in [28] and also
for decision making, in partially observable domains [18]. Vision based planning
has been studied in [54]. These approaches did not consider execution monitor
and the duality between perception and learning. Likewise despite facing the
integration of observations in high-level monitor [23,32] did not use perception
for verifying the current state, which is crucial for both monitoring and further
decision learning.

Relations Recognition in Videos. Relations in videos dynamically change,
in the sense that the configuration of the involved objects is altered accord-
ing to the robot vantage points. Recently a number of approaches have stud-
ied spatial relations and their grounding, such as [8,16,29,42]. Among them,
only [16] faces the problem from the point of view of robot task execution.
There are also recent contributions concerned with human activity recognition
and human-objects interaction studying the problem regarding human dynamics
such as [36,43,49,51,53], here in particular for container and containee relations.
Although these latter approaches consider both videos and 3D objects they do
not face general relations amid objects. The main difficulty seems that of recog-
nizing relations in a complex scenario without overloading the perceptual scene,
namely what the robot has to infer from the scene. To this end, and also to
maintain real time execution, we rely on the execution monitor querying the
visual interpretation at each current state about the existence of specific rela-
tions. Relations computation exploits approximate depth estimation within the
object bounding box. To obtain this good performance we use DCNN trained

Deep Execution Monitor 161

on different classes of models, which are retrieved by the execution monitor, and
the active features of the recognized objects, involved in the relation, to estimate
the object depth.

Sequence to Sequence Models and Next Step Prediction. Sequence to
sequence models (seq2seq) [46] are made of two networks, one for processing the
input and a second network generating the output, in an encoder-decoder con-
figuration. They have shown an excellent performance in several sequence pre-
diction problems especially in machine translation, image captioning and even in
high-level decision processing. In planning problems, [25] have proposed recently
QMDP-Net combining POMDP and LSTM to obtain a neural network architec-
ture under partial observability. They applied their model to 2D grids to cope
with 2D path planning. While we do not know of other approaches to execution
monitor and high-level planning with seq2seq architecture, LSTM have been
used for path planning, while [17] show that their CMP approach to naviga-
tion outperforms LSTM. The introduction of an attention mechanism [3,30,31]
has improved sequence to sequence models essentially for neural translation and
also for image captioning. Attention mechanisms for robot execution have been
studied in [35], and here in particular we base our approach on the attention
mechanism to exploit the task context.

The problem of predicting next step has not yet faced with seq2seq models.
An approach to driving the focus of attention to the next useful object has been
introduced by [14]. On the other hand [7] have designed a new public database
including annotations also for the next action, which is relevant for execution
monitor, where prediction of next state can take advantage of surrounding people
actions.

3 Deep Execution Monitoring

In this section we give an overview of the execution monitor (VDEM) altogether,
providing at the end of the section the main algorithms.

Preliminaries on the Environment and the Tasks. We consider robot assis-
tive tasks related to maintenance activities at a warehouse. The robot language
L is defined by atoms, which are formed by predicates taking terms as argu-
ments. Terms, can be either variables or constants, and they are instantiated by
the objects that the robot identify in the environment. Likewise, predicates are
the relations the robot is able to identify in the environment. Predicates take
also indexed terms denoting the frame as arguments. The robot language L is
extended with meta terms denoting tasks, hence L ∪ {T}Ki=1. Where Ti is a sen-
tence specifying a task. Tasks sentences are, for example, pass the brush and the
cloth to the technician, help the technician to hold the guard. Therefore a task
sentence is expressed in natural language, and the execution of a task requires a
number of actions to be performed, for both controlling the robot visual process
and the robot motion. These actions are specified by plans collected into the
plan library.

162 L. Mauro et al.

V isionOn(robot, t0) ∧ Free(robot hand, t0),
Detected(brush, t1) ∧ Detected(ladder, t1) ∧ On(brush, ladder, t1),
At(robot, ladder, t2) ∧ Holding(robot hand, brush, t3),
Detected(technician, t3) ∧ CloseTo(robot, technician, t3),
Detected(technician hand, t4) ∧ Holding(technician hand, brush, t4)∧
Free(robot hand, t4)

(1)

Plans and Plan Library. Let us assume that the execution of a task requires
the execution of n plans, where each plan specifies a number of actions.

A plan library is a collection of plans. In a plan library, each plan defines all
the actions needed to achieve a goal of a part of a task, by a suitable axiomatiza-
tion. For example, to grasp an object the robot needs to be close to the object,
which is a partial task.

A plan is formed by a problem specifying the initial state and a goal, defined in
the propositional Planning Domain Definition Language (pddl), and by a domain
providing an axiomatization of actions, which is first-order pddl with types and
equality. Plans, therefore, form the background knowledge of the robot about
what is needed for an action to be performed.

A state s, with respect to an action a, is formed by either the preconditions
for executing a or by the effects of a execution. When s is a goal state this is
the goal of the problem. To simplify the presentation here we assume that the
preconditions and effects are conjunctions of binary or unary atoms, and a state
can be reduced to s =

∧
i Ri(νi1, . . ., νik, t), where (νi1, . . ., νik), k >= 1, are

ground terms. Plan inference amounts to deduce the goal of the problem, given
the starting state. A goal of a problem is, for example, At(robotHand, table),
requiring to search where the table is, and reaching it.

To facilitate inference, the set of actions axiomatized in a plan domain
are partitioned into actions that affect the state of the world (like moving
objects around) and ecological actions, which affect only the state of the robot.
Ecological actions are for example search, verify vision, turn head, look up,
look down. A plan is formed by at most a single action that can affect the world
and by a number of ecological actions. This allows to partition the terms of
the plan into terms denoting the world, with their types hierarchy, and terms
related to the robot representation, requiring appropriate measures, for vision
and motion control.

The plan library is the collection of all plans needed for the assistive tasks and
it is generated together with the maintenance experts to cope with the foreseen
assistive tasks, hence the hypothesis is that: for all foreseen tasks there exists a
sequence of goals factoring them.

Task Factorization. Given a task, factorization amounts to decompose the task
into plans, which are supposed to belong to the plan library. Task factorization is
crucial for a number of issues. It avoids useless combinations of unrelated groups
of objects, it limits the inference of a goal just to the involved objects, it ensures
a high flexibility in robot execution, and allows to easily recover from failures.
A top down factorization, such as HTN [10] or HGN [44], might be too costly

Deep Execution Monitor 163

to be achieved in real-time, and also might not be able to take care of the state
resulting after the execution of the n-th plan. An incongruence would require,
in fact, to search backward for a previous reliable state.

The solution we propose here is to learn to predict the next goal, given the
current goal state. In this way, given a task and its initial state goal, a successor
state goal can be predicted after the success of the current goal state is confirmed.

Execution. The execution monitor loops over the following operations: (1) get
the next goal; (2) identify the plan for the given goal; (3) forward the inferred
actions to the state charts [48], as soon as the preconditions are satisfied, accord-
ing to the vision process; (4) verify the effect of the inferred actions; (5) if the
current plan goal is obtained ask the seq2seq model to infer next goal and go
to (2) else continue with the current plan. The execution, illustrated in Fig. 1, is
resumed in Algorithms 1, 2 and 3.

Algorithm 1. Vision based deep execution monitor
Input: Current task T , plan Π, current state s, plan library LibΠ

Output: end-task T
1 while not end-task do

2 if Π �= ∅ and s =
∧N

i Ri(ν, a) then
3 (α, bounding box, depth):=query vision(s)
4 if α = True then
5 if s goal of Π then
6 Π:=query seq2seq(T , s, LibΠ)

7 else
8 Continue Π

9 else
10 Return end-task T

11 if Π = ∅ and s = start(T , s0) then
12 Π:=query seq2seq(T , s, LibΠ)

13 if Π �= ∅ and s = goal(T) then
14 Return end-taskT

Algorithm 2. Query seq2seq
Input: seq2seq model, plan library LibΠ , current task T , current state s
Output: subplan Π

1 Compute seq2seq output with input (T , s) and choose the goal state sg

maximizing: p(sg|s, T)
2 Search in LibΠ best match Π with ν, {R}M

i , mentioned in sg, goal of Π
3 Return Π

164 L. Mauro et al.

Algorithm 3. Query Vision
Input: video-stream at current time lapse ti:ti+n, DCNN models M1, . . ., Mk,

current state s, thresholds μ, τ
Output: Boolean

1 s =
∧N

i Ri(ν, a)
2 Compute bounding boxes in video-stream using models M1, . . ., Mk

3 Segment objects in depth images in video-stream for each ν ∈ ν (Sect. 4)
4 if confidence(ν) > μ then
5 Compute Ri, i=1, . . .N

6 else
7 while time lapse T < τ do
8 Search for missed ν ∈ ν

9 if T ≤ τ then
10 Return True, bounding box for ν, depth

11 else
12 Return (False,{},−1)

Terms in robot language for detected objects

Only terms in relations required to assess preconditions and effects are instantiated

Predicates in robot language for relations detected on segmented objects

Fig. 2. Objects detected in the scene observed by the robot, while it is executing its
task, are terms of the robot language. Only relations needed by the planner and queried
by the VDEM to vision are considered and instantiated with detected terms.

Note, therefore, that according to the algorithms the seq2seq model is called
only if the current state is either a goal of the current plan, just concluded, or the
start state of a task. Note that in case of failure a new task T ′ can be recovered
from last successful state.

4 Vision Interpretation

As highlighted in the previous section, the execution monitor gets from the
current plan the state to be verified in the form of a conjunction of atoms, and

Deep Execution Monitor 165

query the vision interpretation to assess if the current state holds. An example
is shown in Fig. 2.

To detect both objects and relations we have trained Faster R-CNN [40] on
ImageNet [26], Pascal-VOC [11] dataset, and with images taken on site. We have
trained 5 models to increase accuracy, obtaining a detection accuracy above 0.8.
The good accuracy is also due to a confidence value measured on a batch of 10
images, taken at 30 fps, simply computing the most common value in the batch
and returning the sampling mean accuracy for that object.

The model is called according to the state request. For example, if
On(brush, ladder) is requested from the plan state, the execution monitor asks
the vision interpretation to call the models for brush and ladder first and for On
relation for all the found terms, after. Though the main difficult part is searching
the objects and the relations, we shall not discuss this here.

To infer spatial-relations we have introduced a look-up table for the definition
of each relation of interest for the assistive task. The relations require the depth
within the bounding boxes of each object denoted by the queried terms. Depth
is crucial in the warehouse environment, because objects at different distances
appear within the bounding box of an object, as shown in the first image of
Fig. 2. There is, indeed a tradeoff between using MaskRCNN [19] and Faster.
With Mask we have the depth segmentation immediately, by projecting the
mask on the RGBD image, but objects of the warehouse need to be manually
segmented. On the other hand Faster using Imagenet offers a huge amount of
data, but depth needs to be obtained. In this version of our work we considered
Faster R-CNN [40] and did a local segmentation by clustering.

We have first trained a non-parametric Bayes model to determine for each
object of interest the number of feature classes. To this end, we estimate a
statistics of the active features with dimension 38 × 50 × 512, taken before the
last pooling layer, at each pixel inside the recognized object bounding box (here
we are referring to VGG, though we have considered also ZF, see [45,52]). Once
the number of classes for each object is established we have trained a normal
mixture model on the selected feature classes for each object, resulting in a
probability map that a pixel belongs to the specific class of the object.

During execution, as the object is known, we choose the learned parameters
for the model to estimate a probability that the pixel in the bounding box belongs
to the object. The distribution on the bounding box is projected onto the depth
map and a ball-tree is built using only the pixels with a probability greater than
a threshold (we used 0.7). Using unsupervised nearest neighbor, checking the
distance, a resulting segmentation is sufficiently accurate for the task at hand.
Depth is considered relative to the robot-camera. See Fig. 2.

Having the depth, the relations are established, a reference are the spatial
relations based on the connection calculus [6], though here distance and depth
play a primary role, which are not considered in [6]. To establish the relation
amid n ≤ 3 objects we consider the distance first (within a moving visual cone
with vertex the center of projection) and further the other properties consistently
with the connection calculus and its 3D extensions (see [41]). See Sect. 6 for an
overview of the relations and the accuracy on the recognition.

166 L. Mauro et al.

5 The seq2seq Architecture for Deep Monitoring

As gathered in previous sections the robot is given a high level task specified
by a sentence, such as help the technician to support the guard. The objective,
here, is to find the sequence of plans, in the plan library, ensuring the task to
succeed. We have seen that relevant steps to this end are the definition of states,
which are conjunctions of literals, inferred by the plans and verified by the vision
interpretation to hold before or after the robot executes an action.

We have also introduced the notion of goal state as the state of a plan problem
in which the goal holds. When a goal state is achieved, task execution requires
to predict the next goal, in so ensuring to progress in the accomplishment of the
assigned task.

We show that a sequence to sequence architecture is effective for mapping a
current goal state, expressed as a conjunction of literals into a new goal state,
where it is intended (see Sect. 3) that the predicted goal is a goal of some plan
in the plan library.

A sequence to sequence system mapping a state of the robot into a new state
is a network modeling the conditional probability p(Y |X) of mapping a source
state x1, . . . , xn into a target state y1, . . . , ym. The encoder-decoder is made of
two elements: an encoder which transform the source into a representation S
and a decoder generating one target item at a time, so that the conditional
probability is [30]:

log p(y|x) =
m∑

j=1

log p(yj |y1, . . . yj−1, S) (2)

We define an input state as a set of tokens belonging to the extended robot
language L ∪ {T}Ki=1 with L the language including terms (denoting objects in
the scene) and predicates, denoting relations in the scene, and with Ti a task
sentence. Given an input state s = (u1, . . . , un), this is initially mapped into a
low dimensional vector x. With x = W s, where W is the embedding matrix,
which is fine-tuned during the training of the seq2seq model.

Given the encoded sequence x and the true output sequence y, encoded as
well, the goal is to learn how they match in order to predict, at inference time,
the correct y′ given the input s′.

Attention [3,39] has become, recently a hot topic for measuring similarities
and dissimilarities between input and output sequences, according to the spe-
cific objective of the mapping. For example, while in neural machine translation
(NMT) alignment can be quite relevant, in the case of a new state prediction
alignment is not really relevant while the task at hand it is, since a new goal is
looked for while a specific task is executed. In general attention computes the
relevance of each token in the encoded sequence with respect to the true encoded
sequence y via a function ϕ(xi,y), which returns a score whose distribution, via
a softmax function, determines the relevance of each token in x with respect to

Deep Execution Monitor 167

the encoded output y. This can be expressed as the expectation of a token given
the distribution induced by the score:

∑
p(z = i|x,y)xi (3)

Where p(z = i|x,y) is the distribution induced by the softmax applied to the
score given to each token xi, with z the indicator of the encoded input tokens.
In the literature different score function have been proposed, e.g. additive or
multiplicative [3,31]:

ϕ(xi,y) = w�σ(W (1)xi + W (2)y) (additive)
ϕ(xi,y) = 〈W (1)xi + W (2)y)〉 (multiplicative)

(4)

Where W (i) are learned weights. In our case we have two basic structures,
the task sentence and the sequence of atoms. We have also specific separators:
for the atoms 〈eoa〉, for the end of task sequence 〈ets〉 and for the end of the
state description 〈eos〉. The attention mechanism required here needs to score
the compatibility of each atom, namely a subsequence of the output sequence
y, with the task and with each input token. For example we expect that in the
context of the task pass the brush to technician the output subsequence Hold,
technician, brush has an encoding similar to Hold, robot, brush while this is not
true in the context of the task help the technician to hold the guard, in which
the correct subsequence would be On, table, brush.

To this end we formulate the input and output embedded sequences in terms
of subsequences τx = (τx

1 , . . . τx
K) and τy = (τy

1 , . . . , τy
m), using both the 〈eoa〉

and 〈ets〉, in order to compute the weights of the attention mechanism. Weights
are learned by a dense layer taking as input the concatenation of the previous
predicted τy

t−1, from the decoder, the embedded task, which is always τy
1 , and

the previous hidden state of the decoder. The weights for each τ form a matrix,
hence we obtain:

ϕ(τx
i , τy) = W�σ(W (1)τx

i + W (2)τy) (5)

Finally, following the softmax application, we have a prediction of the importance
of each token of the encoder according to the ‘context’ atom and according to
the task. Thus we have p(z = i|τx

i , xi, τ
y), which is a vector of the dimension of

τx
i . This is the probability that a subsequence, namely an atom, is relevant for

the current task and the predicted sequence. Then the output is obtained as the
expectation over all the atoms:

s =
∑

p(z = i|τx
i , xi, τ

y)τx
i (6)

We can note that in (6) also words are made pivotal, since the probabil-
ity is a vector. For example, in case the task is bring the brush to the techni-
cian, the brush is a pivotal word, and the context will most probably imply
that the mapping of the predicate Hold is from Hold(robotHand, brush) to

168 L. Mauro et al.

Hold(technician, brush) and the task sentence triggers attention to both the
term brush and the relation Hold.

Data Collection for the seq2seq Model. The robot vocabulary is formed by
18 unary predicates, 13 binary predicates and 42 terms. We build the Herbrand
Universe from predicates and terms, obtaining a language of more than 35k
atoms. Elements of the language are illustrated in Fig. 3.

A number of the atoms does not respect the type hierarchy, which is defined
in pddl, therefore are deleted from the language. Finally we have grown all the
goal states provided in the plan library up to 20k states.

Some of the predicates from the whole set are listed in Table 1, detailing the
recognition ability of the vision interpretation. We should note that a number of
predicates concerns the robot inner state, such as for example VisionOn or the
head and body positions, which are not listed in Table 1.

6 Experiments and Results

Experiments Setup. Experiments have been done at a customer fulfillment
center warehouse, under different conditions in order to test different aspects of
the model. To begin with, all experiments have been performed with a humanoid
robot, created at the High Performance Humanoid Technologies Lab (H2T). The
robot has two 8-DoF torque-controlled arms, two 6-DoF wrists, two underactu-
ated 5-finger hands, a holonomic mobile base and 2-DoF head with two stereo
camera systems and an RGB-D sensor. The Asus Xtion PRO live RGB-D cam-
era has been mounted on the robot head to provide the video stream to the
visual system and ran the VDEM on two of the computers mounted on the
robot. We dedicated one to the planning and management of the execution and
another one, equipped with an Nvidia Titan GPU, to ran the visual stream.
Robot control is interfaced with the VDEM via the state charts [48].

Results for the Visual Stream. We trained the visual stream system using
images taken from the ImageNet dataset, Pascal VOC, as well as images collected
inside the warehouse by the RGB-D camera of the robot. Most of the objects,
indeed, are specific of the warehouse and cannot be found in public databases.
The relations considered were essentially those relevant to the maintenance tasks
(see Table 1). To train the DCNN models we split the set of images in training
and validation sets with a proportion of 80%–20%. We trained a number of dif-
ferent models for the different types of objects, and we performed 70000 training
iterations for each model on a PC equipped with 2 GPUs. The visual stream has
been tested under different conditions, in a standalone tests and during the exe-
cution of different tasks. The accuracy has been computed considering the batch
of 10 images, accuracy of objects recognition and relations recognition is shown
in Table 1, evaluating accuracy and ablation study specifically for relations.

Mean average precision mAP for object detection is 0.87 and localization in
depth is 0.98 accurate up to 3 m.

Deep Execution Monitor 169

Table 1. Accuracy and ablation study of predicate grounding. Legend: BB : bounding
boxes only, masks: segmentations masks only, no prior : without use of distance no
shape: without use of shape properties no depth: without use of depth.

Predicate Full BB Masks No prior No shape No depth

CloseTo 89% 79% 82% 79% 72% 49%

Found 95% 85% 81% 85% 80% 61%

Free 91% 86% 91% 86% 83% 68%

Hold 88% 72% 82% 75% 74% 56%

Inside 87% 64% 78% 71% 65% 57%

On 96% 77% 85% 79% 78% 65%

InFront 95% 81% 85% 84% 83% 63%

Left 95% 81% 88% 85% 86% 72%

Right 91% 79% 88% 79% 80% 61%

Under 88% 76% 69% 79% 76% 59%

Behind 81% 78% 78% 76% 79% 61%

Clear 82% 75% 80% 73% 73% 60%

Empty 83% 72% 78% 79% 68% 61%

Average 89% 77% 83% 79% 77% 62%

Results of the seq2seq. We used for the seq2seq network the encoder decoder
structure with LSTM [21], in particular a multilayer bidirectional LSTM for the
encoder. The maximum input sentence length is set to 17 predicates and a task,
which is equivalent to 72 words among relations and terms. The embedding layer
transforms the index encoding of every word in the input into a vector of size
20, the encoder then uses a bidirectional LSTM and an LSTM to transform the
input question in a vector of size 10. This vector is repeated 3 times, as the length
of output sentence and then it is fed to the decoder network. A fully connected
layer is then applied to every time sequence returned and then it is passed to a
softmax activation layer. The attention function is modeled by a fully connected
two layers network.

The seq2seq training uses the Categorical Cross Entropy loss and Adam as
an optimizer using batches of 5 sequences for a total of 100 epochs. The total
size of the dataset is of 20 thousand sequence pairs.

The accuracy, calculated as the percentage of correct prediction made on
a test set extracted from the dataset is used to evaluate the training results.
The measurement is done under three different hypotheses. First we considered
only the best combination, then we considered the first three combinations,
randomly changing the length of the input sequences, finally we considered the
accuracy under the local attention model. As shown in Fig. 3 we vary the number
of predicates from one to nineteen, which is equivalent to a sequence length
varying from 4 to 72 considering both relations and terms. It is possible to see

170 L. Mauro et al.

Fig. 3. Accuracy plot at variable number of predicates in the input sequence, consid-
ering the first combination, the first three and, finally with attention. On the right
a cloud representation of the robot language expressed in the form of an Herbrand
Universe, namely, all predicates are instantiated with all terms.

that initially the accuracy increases as the amount of atoms increases, this is
caused by the fact that with more than one atom the sequence is more specific
and characteristic. The maximum accuracy is reached at seven atoms with 94,2%
of accuracy for the first combination and 97,9% using the first three. After this
point the accuracy starts to decrease with the increase of the atoms in the input
sequence. On the other hand we can note that by adding the attention mechanism
the accuracy keeps high also with a large number of atoms.

Experiments of the VDEM Framework at Warehouse. In this section,
we report the results of the experiments carried out with the VDEM deployed
on the humanoid robot inside the warehouse. In the absence of other frameworks
to make a comparison with, we perform a comprehensive ablation study. Table 2
shows the results. We identify the components of our framework with: PL =
Planning, Ex = Execution, M = Monitoring (Visual Stream), GPr = Goals
Prediction (LSTM). Furthermore, we indicate with Kn the complete knowledge
of the world.

The experiments were performed on 5 tasks: remove panel, support panel,
clean diverter, bring object, find object. Snapshots taken from two of these tasks
are shown in Fig. 4. Each task was executed 50 times for assessing the accu-
racy, excluding failures caused by the robot controllistic part (grasping failure,
platform movement error, etc.). The tasks have been tested for each framework
configuration, making 750 total experiments. Note that for Task 5, there are
no values related to the first configuration. This is because this task intrinsi-
cally requires perceptive and search skills, which can not be tested in the first
configuration.

Starting from the PL + Ex + Kn case, the framework is tested with the
FastDownward (FD) [20] based planning system and the execution component.
FD was adopted as it proved to be the fastest among the other planners that
were considered, i.e. POMDP and PKS [37]. In this configuration a complete
knowledge of the world was provided. We note that the system in this case

Deep Execution Monitor 171

Fig. 4. Recognition during tasks execution. The sequence shows the detection of guard
(panel), handle and its manipulation to lower it helping the technician to hold the
guard for inspecting the rollers. The involved relations are At, Hold, InFront, On,
and CloseTo.

Table 2. Accuracy and average execution time according to task and configuration.

PL + Ex + Kn PL + Ex + M PL + Ex + M + GPr

a. ex. time Task 1 540 s 135 s 135 s

Task 2 260 s 70 s 70 s

Task 3 596 s 147 s 147 s

Task 4 477 s 121 s 121 s

Task 5 x 52 s 52 s

accuracy (%) Task 1 23 72 81

Task 2 52 78 80

Task 3 24 68 79

Task 4 26 75 86

Task 5 x 85 93

suffers from long planning times caused by considering knowledge of the entire
scene. Furthermore, this setting excludes dynamic and non-deterministic tasks.

172 L. Mauro et al.

Considering the PL + Ex + M setting, the robot is able to complete all the
tasks correctly, as it is possible to manage the non-deterministic nature of the
tasks in this case. An example of the detection and monitoring capacity is shown
in the first row of Fig. 4.

A limitation of this setting concerns the management of failures due to the
inability to predict the correct sequence of the goals.

Finally, the complete configuration of the framework is taken into considera-
tion, PL + Ex + M + GPr. In this setting tasks are decomposed and executed
dynamically, identifying in real time different ways to complete a task. A direct
consequence of this greater flexibility, as can be seen in Table 2, is the improve-
ment of the accuracy on the successful execution of the tasks.

An example is shown at the bottom row of Fig. 4. In this case the task is
to find, grab and bring the brush to the technician. Based on experience, the
seq2seq system first suggests on(brush, table).

The goal fails, as another object is found (on(spraybottle, table) detected). At
this point the possibility of recovery using seq2seq comes into play. The execution
monitor takes the second proposal (regarding the first goal to be achieved) made
by the seq2seq-based proposal system, namely on(brush, ladder).

7 Conclusions

We have presented an approach to vision based deep execution monitor for a
robot assistive task. Both the idea and the realization are novel and promis-
ing. The experiment with the humanoid robot created at the High Performance
Humanoid Technologies Lab (H2T) have proved that the framework proposed
works as far as the specific tasks are considered and as far as the high level
actions are taken into account. Weak elements of the approach are the ability of
the robot to search the environment, which should cope with the limitation of
vision at distances greater than 2.5 m. We are currently facing this problem by
modeling search with deep reinforcement learning, so that the robot can optimize
its search of objects and relations.

Acknowledgments. The research has been granted by the H2020 Project Second
Hands under grant agreement No. 643950. We thanks in particular our partners: the
team at Ocado, Graham Deacon, Duncan Russel, Giuseppe Cotugno and Dario Turchi,
the team of KIT led by Tamim Asfour, the team at UCL with Lourdes Agapito, Martin
Runz and Denis Tome, and the group at EPFL led by Aude Billiard.

References

1. Al-Omari, M., Chinellato, E., Gatsoulis, Y., Hogg, D.C., Cohn, A.G.: Unsupervised
grounding of textual descriptions of object features and actions in video. In: KR
2016, pp. 505–508 (2016)

2. Alford, R., Shivashankar, V., Roberts, M., Frank, J., Aha, D.W.: Hierarchical plan-
ning: relating task and goal decomposition with task sharing. In: IJCAI 2016, pp.
3022–3029 (2016)

Deep Execution Monitor 173

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

4. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-dynamic programming: an overview. Decis.
Control 1, 560–564 (1995)

5. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S., et al.: Decision-theoretic,
high-level agent programming in the situation calculus. In: AAAI/IAAI 2000, pp.
355–362 (2000)

6. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: an
overview. Fun. Inf. 46(1–2), 1–29 (2001)

7. Damen, D., et al.: Scaling egocentric vision: the epic-kitchens dataset. In: ECCV
2018 (2018)

8. Das, A., Agrawal, H., Zitnick, C.L., Parikh, D., Batra, D.: Human attention in
visual question answering: do humans and deep networks look at the same regions?
arXiv preprint arXiv:1606.03556 (2016)

9. Doyle, R.J., Atkinson, D.J., Doshi, R.S.: Generating perception requests and expec-
tations to verify the execution of plans. In: AAAI 1986, pp. 81–88 (1986)

10. Erol, K., Hendler, J.A., Nau, D.S.: UMCP: a sound and complete procedure for
hierarchical task-network planning. In: AIPS, vol. 94, pp. 249–254 (1994)

11. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J.,
Zisserman, A.: The Pascal visual object classes challenge: a retrospective. IJCV
111(1), 98–136 (2015)

12. Fikes, R.E.: Monitored execution of robot plans produced by strips, SRI, Technical
report (1971)

13. Finzi, A., Pirri, F.: Combining probabilities, failures and safety in robot control. In:
International Joint Conference on Artificial Intelligence, vol. 17, no. 1. Lawrence
Erlbaum Associates Ltd., pp. 1331–1336 (2001)

14. Furnari, A., Battiato, S., Grauman, K., Farinella, G.M.: Next-active-object pre-
diction from egocentric videos. J. Vis. Commun. Image Represent. 49, 401–411
(2017)

15. Gianni, M., Kruijff, G.-J.M., Pirri, F.: A stimulus-response framework for robot
control. ACM Trans. Interact. Intell. Syst. (TIIS) 4(4), 21 (2015)

16. Guadarrama, S., et al.: Grounding spatial relations for human-robot interaction.
In: IROS 2013, pp. 1640–1647 (2013)

17. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping
and planning for visual navigation. arXiv preprint arXiv:1702.03920, vol. 3 (2017)

18. Haarnoja, T., Ajay, A., Levine, S., Abbeel, P.: Backprop KF: learning discrimina-
tive deterministic state estimators. In: Advances in Neural Information Processing
Systems, pp. 4376–4384 (2016)

19. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE International
Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)

20. Helmert, M.: The fast downward planning system. JAIR 26, 191–246 (2006)
21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
22. Hofmann, T., Niemueller, T., Lakemeyer, G.: Initial results on generating macro

actions from a plan database for planning on autonomous mobile robots (2017)
23. Hornung, A., Böttcher, S., Schlagenhauf, J., Dornhege, C., Hertle, A., Bennewitz,

M.: Mobile manipulation in cluttered environments with humanoids: integrated
perception, task planning, and action execution. In: Humanoids 2014, pp. 773–778
(2014)

24. Ingrand, F., Ghallab, M.: Deliberation for autonomous robots: a survey. Artif.
Intell. 247, 10–44 (2017)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1606.03556
http://arxiv.org/abs/1702.03920

174 L. Mauro et al.

25. Karkus, P., Hsu, D., Lee, W.S.: QMDP-Net: deep learning for planning under
partial observability. In: Advances in Neural Information Processing Systems, pp.
4697–4707 (2017)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS 2012, pp. 1097–1105 (2012)

27. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J.
Robot. Res. 34(4–5), 705–724 (2015)

28. Littman, M.L., Sutton, R.S.: Predictive representations of state. In: Advances in
Neural Information Processing Systems, pp. 1555–1561 (2002)

29. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with
language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46448-0 51

30. Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

31. Luong, M.-T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the
rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206
(2014)

32. Mendoza, J.P., Veloso, M., Simmons, R.: Plan execution monitoring through detec-
tion of unmet expectations about action outcomes. In: ICRA 2015, pp. 3247–3252
(2015)

33. Mirowski, P., et al.: Learning to navigate in complex environments.
arXiv:1611.03673 (2016)

34. Nilsson, N.J.: A hierarchical robot planning and execution system. SRI (1973)
35. Ntouskos, V., Pirri, F., Pizzoli, M., Sinha, A., Cafaro, B.: Saliency prediction in

the coherence theory of attention. In: Biologically Inspired Cognitive Architectures,
vol. 5, pp. 10–28 (2013)

36. Ntouskos, V., et al.: Component-wise modeling of articulated objects. In: Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 2327–2335
(2015)

37. Petrick, R.P., Bacchus, F.: PKS: knowledge-based planning with incomplete infor-
mation and sensing. In: Proceedings of the System Demonstration session at ICAPS
(2004)

38. Pettersson, O.: Execution monitoring in robotics: a survey. Robot. Auton. Syst.
53(2), 73–88 (2005)

39. Raffel, C., Luong, M.-T., Liu, P.J., Weiss, R.J., Eck, D.: Online and linear-time
attention by enforcing monotonic alignments. arXiv preprint arXiv:1704.00784
(2017)

40. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NIPS 2015, pp. 91–99 (2015)

41. Sabharwal, C.L., Leopold, J.L., Eloe, N.: A more expressive 3D region connection
calculus. In: DMS, pp. 307–311. Citeseer (2011)

42. Santoro, A., et al.: A simple neural network module for relational reasoning. In:
Advances in Neural Information Processing Systems, pp. 4974–4983 (2017)

43. Sanzari, M., Ntouskos, V., Pirri, F.: Bayesian image based 3D pose estimation. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp.
566–582. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8 34

44. Shivashankar, V.: Hierarchical goal networks: formalisms and algorithms for plan-
ning and acting, Ph.D. dissertation, University of Maryland, College Park (2015)

45. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556 (2014)

https://doi.org/10.1007/978-3-319-46448-0_51
https://doi.org/10.1007/978-3-319-46448-0_51
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1410.8206
http://arxiv.org/abs/1611.03673
http://arxiv.org/abs/1704.00784
https://doi.org/10.1007/978-3-319-46484-8_34
http://arxiv.org/abs/1409.1556

Deep Execution Monitor 175

46. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

47. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press, Cambridge (2017)

48. Wächter, M., Ottenhaus, S., Kröhnert, M., Vahrenkamp, N., Asfour, T.: The
ArmarX statechart concept: graphical programing of robot behavior. Front. Robot.
AI 3, 33 (2016)

49. Wang, H., Liang, W., Yu, L.-F.: Transferring objects: joint inference of container
and human pose. In: CVPR 2017, pp. 2933–2941 (2017)

50. Wilkins, D.E.: Recovering from execution errors in SIPE. Comput. Intell. 1(1),
33–45 (1985)

51. Wu, C., Zhang, J., Sener, O., Selman, B., Savarese, S., Saxena, A.: Watch-n-patch:
unsupervised learning of actions and relations. In: TPAMI 2017 (2017)

52. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

53. Zhu, L., Xu, Z., Yang, Y., Hauptmann, A.G.: Uncovering the temporal context for
video question answering. IJCV 124(3), 409–421 (2017)

54. Zhu, Y., et al.: Visual semantic planning using deep successor representations.
CoRR abs/1712.05474 (2017)

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

	Deep Execution Monitor for Robot Assistive Tasks
	1 Introduction
	2 Related Work
	3 Deep Execution Monitoring
	4 Vision Interpretation
	5 The seq2seq Architecture for Deep Monitoring
	6 Experiments and Results
	7 Conclusions
	References

