
Deep Learning for Assistive Computer
Vision

Marco Leo1(B), Antonino Furnari2, Gerard G. Medioni3, Mohan Trivedi4,
and Giovanni M. Farinella2

1 Institute of Applied Sciences and Intelligent Systems,
National Research Council of Italy, Lecce, Italy

marco.leo@cnr.it
2 University of Catania, Catania, Italy
{furnari,gfarinella}@dmi.unict.it

3 University of Southern California, Los Angeles, USA
medioni@usc.edu

4 University of California, Oakland, USA
mtrivedi@soe.ucsd.edu

Abstract. This paper revises the main advances in assistive computer
vision recently fostered by deep learning. To this aim, we first discuss
how the application of deep learning in computer vision has contributed
to the development of assistive techinologies, then analyze the recent
advances in assistive technologies achieved in five main areas, namely,
object classification and localization, scene understanding, human pose
estimation and tracking, action/event recognition and anticipation. The
paper is concluded with a discussion and insights for future directions.
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1 Introduction

Computer vision is attracting more and more people coming from academia
and industry. In the context of Assistive Technologies (AT), researches have
already proved how computer vision algorithms can be effectively exploited to
address different user’s needs pointed by the World Health Organization (e.g.,
Mental Function, Mobility, Sensory Substitution and Assisted Living) [20]. It is
straightforward to figure out that the opportunities to address more challenging
assistive tasks depend on the speed with which the fundamentals of knowledge
evolve, as commonly happens when knowledge is transferred from theoretical to
application fields.

After a decade in which visual intelligence performances remained quite sta-
ble, over the past 5 years or so, it has been pushed up by the impact of the
application of the deep learning paradigm. This has gone from a somewhat niche
field comprised of a strict group of researchers to being mainstream and enabling
breakthrough applications of diverse areas such as image and video understand-
ing, speech recognition, medical imaging and self driving vehicles. The idea of
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deep learning dates back to the end of 80’s when Neural Networks (NN) began to
be used for mapping inputs to outputs with the aim to automatically recognize
handwritten characters.

In the mid of the 90’s, the interest of the computer vision community in NN
decreased since the architectures did not allow to be scaled to complex contexts
where other methods, such as Kernel Machines based on linear classifiers (e.g.,
SVM), were more effective in most of the application domains involving visual
recognition tasks. This scenario changed when large visual datasets and pow-
erful computational resources became available at hand, making possible the
increase of the complexity of architecture based on neural networks, as well as
the learning capabilities, thus moving the focus from shallow machine learning
to deep machine learning. Indeed, supervised deep learning methods thrive on
big datasets, which before the ImageNet era were only available for some specific
tasks (e.g., handwriting recognition). Nowadays, datasets for image understand-
ing have become big enough to train deep learning systems, and modern GPUs
allow researchers to implement effective algorithms which beat almost any record
in computer vision. This fact has gained the attention not only of the computer
vision community, but also the one of other scientific research fields.

One of the greatest advantage of deep learning is the possibility to learn effec-
tive representations of the data for a given task [14]. For this reason, deep learn-
ing is currently considered the primary candidate for any visual recognition task
[38] and it is being extended to visual reasoning [17]. This is made evident by the
availability of several books which introduce and discuss the different deep learn-
ing approaches, as well as by the number of papers describing its use in different
application fields such us medical imaging [22], health informatics [31], feature
learning [50], etc. Assistive technologies do not escape this trend since they have
been already flooded by deep learning. An up-to-date overview on different types
of deep neural networks and recent progresses is given in [23] where also appli-
cations of deep learning techniques on some selected areas (speech recognition,
pattern recognition and computer vision) are highlighted. This paper tries to
summarize instead how deep learning has been recently exploited to deal with
assistive tasks. The rest of the paper is organized as follows. Section 2 introduces
a taxonomy concerning the way in which deep learning influenced assistive tech-
nologies. Section 3 discusses recent works in the context of assistive computer
vision. Finally, Sect. 4 gives some hints for possible future directions.

2 How Deep Learning in CV Is Being Strengthening
and Improving AT

The task of automatically recognizing and locating objects is one of the primary
tasks for humans in order to survive, work and communicate. As a consequence,
the ability to automatically perform this task starting from images and videos is
fundamental to build very powerful assistive devices able to understand and/or
interact with their surroundings and, as a consequence, to help people with cog-
nitive and/or physical limitations. On the other hand, deep architectures can
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learn more complex models than shallow ones, since they learn powerful repre-
sentations of the objects without the need to perform hand design features. The
deep learning frameworks for object recognition methods can mainly be cate-
gorized into two groups: one follows the traditional object detection pipeline,
involving the generation of region proposals and the classification of each pro-
posal into different object categories. The other regards object detection as a
regression or classification problem, adopting a unified framework to achieve final
results (categories and locations) directly. Recent advances in this area can be
found in [52].

A strictly related task is the one so called scene understanding, i.e. the ability
not only to identify the targets (as object recognition does), but also to under-
stand the other properties of the observed scene. In other words, this task entails
recognizing the semantic constituents of a scene and the complex interactions
that occur between them. Humans have no difficulty with these tasks and can
associate semantic information with the scene at different levels. This challenging
task can be approached in different ways. At a very high level, the approaches
can be divided into two main categories: using low-level features, and using
object recognition. However, many other techniques are integrated into each of
these approaches, including probabilistic, and/or fuzzy techniques, in order to
deal with the uncertainty which often attends the result of image understanding.
Convolutional Neural Networks (CNNs) can be really useful also to solve this
task. A recent approach to address the aforementioned challenge consists in using
the convolutional patch networks, which are CNNs trained to distinguish differ-
ent image patches giving the possibility to perform pixel-wise labeling [5]. One
of the bottlenecks in training for better representations is the amount of avail-
able per-pixel ground truth data that is required for core scene understanding
tasks such as semantic segmentation, normal prediction, and object boundary
detection. To address this problem, a number of works proposed using synthetic
data and some of them also provide a systematic study of how such synthetic
data is generated [51].

Many assistive technologies aim at assisting people in overcoming physical
and cognitive barriers by tracking their body pose or by recognizing their activity
and their actions. Different approaches using deep learning have been recently
proposed and, among all, the one based on ensemble of models, each of which
is optimized for a limited variety of poses, is capable of modeling a large vari-
ety of human body configurations [19]. Alternative approaches rely on inferring
the dependencies between human joints that are modelled via a max-margin
structured learning framework [18]. However tracking multiple people in real-
istic videos is still an open research area in which the introduction of new
large-scale benchmarks is helping to build increasingly performing models [3].
A related research topic concerns the recognition of an event that is a concep-
tually higher semantic problem that could capture the complex behavior of a
group of people, interacting with multiple objects, and taking place in a specific
environment. Transferring deep object and scene representations for event recog-
nition is a very smart solution recently proposed in [46]. The recognition and
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understanding of these tasks are fundamental in human-robot interactions, where
there is also a need for the machine to make decisions based on the understanding
of the near future, i.e to anticipate the next event [7] or object [12]. This ability
comes naturally to us and we make use of it subconsciously. Almost all human
interactions rely on this action-anticipation capability. The ability to anticipate
the action of other individuals is essential for our social life and even survival.
Therefore, it is critical to transfer these abilities to computers, and these chal-
lenging tasks have been strongly pushed forward in knowledge thanks to Deep
Learning. By using CNNs it is possible to predict human actions only observing
a few frames of a video containing an action [34]. Exploiting an encoder-decoder
recurrent neural network to address the action prediction problem, it is possible
to predict multiple and variable-length action sequences [36]. Of course there are
many other areas of computer vision that are receiving a strong impact from the
development of the deep learning paradigm. However, the tasks just mentioned
are the foundations for many assistive frameworks, as we will see in the next
section, and therefore in this paper we will limit the discussion to them.

3 Recent Advances in at Exploiting DL Strategies

In the following subsections we will analyze how the recent deep learning based
advances in computer vision tasks, described in Sect. 2, have been exploited
to improve AT frameworks. As already anticipated, the following tasks will be
considered:

– Object localization and recognition;
– Scene understanding;
– Human pose estimation and tracking;
– Action and event recognition;
– Anticipation.

3.1 Object Localization and Recognition

Object Localization and Recognition is one of the areas of computer vision that
is maturing very rapidly thanks to deep learning. Nowadays, there is a plethora
of pre-trained deep learning models which can be used for this task, so it only
takes a small amount of effort to build a system able to detect most of the objects
in an image or video even in the presence of multiple overlapping objects and
different backgrounds. In addition to detecting even multiple objects in a scene,
recent deep learning based architectures are also able to precisely identify their
boundaries and relations to one another. This is achieved by deep structured
learning which, for example, can learn relationship by using both feature, geom-
etry, label [53] and, even physics and inferences about the abstract properties of
the whole system [4].

The recent advantages in object localization and recognition have been
already employed in different AT applications. For instance CNNs are effec-
tively exploited to improve the performance in the autonomous navigation [8].
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In [25] the YOLOv2 engine [32], which is one of the fastest strategies for object
detection, is used to improve interaction with other subjects within an indoor
navigation system that guides a user from point A to point B with high accu-
racy. The Yolov2 engine was recently used also in [16] to build a multimodal
computer vision framework for human assistive robotics with the purpose of
giving accessibility to persons with disabilities. Recently, object detection and
recognition has been exploited to build a marker-less model for motion-aware
gait assessment by localizing feet in egocentric videos [26].

3.2 Scene Understanding

At low level, this concerns the detection of structures of the scene, such as
the task of finding edges arising from the physical surfaces of a scene. The
extraction of useful scene information can underpin many computer vision tasks
such as sketch recognition and 3D scene reconstruction, and is important for
conveying knowledge for assistive navigation systems. This is also a key task
in retinal implants. Improving the recovery of structural edges using RGB-D
input was addressed in [10] with an end-to-end fully convolutional neural net-
work approach. At the higher level, scene understanding concerns the ability of
vision systems to infer and describe the content of the scene. As example, in
[48] it is proposed a visual question answering system based on DL designed
around spoken questions asked by blind people about their surroundings using a
mobile phone camera picture. Another example of high level scene understanding
regards the ability of a vision system to recognize locations of interest for a user
in order to perform temporal segmentation of videos for lifelogging applications
[11]. Scene understanding also plays a key role in automatic story comprehen-
sion that trough CNN can provide effective solutions for the visually impaired
or cognitive robotics [42].

3.3 Human Pose Estimation and Tracking

The estimation of the articulated motion of the human body is useful for a
number of real world applications including medical rehabilitation, human-robot
interaction and in general to create smart environments suitable to understand
people behaviours.

Pose estimation is generally pursued by detecting and extracting the posi-
tions of the joints of the human body from different sources such as a single
image, a sequence of images, and RGB-D data. The main goal is to reconstruct
the skeletal structures of the people in the scene and hence provide information
about their body posture, the motion of the body, and human gestures. Under-
standing human poses from images is considered one of the major challenges in
the field of Computer Vision and has been intensively studied in the last few
decades by the research community. A propulsion in this research field has been
given by the work reported in [43], where the problem of pose estimation is for-
mulated as a regression problem to infer the position of the joints of the body
in a Deep Neural Network framework. In the context of assistive technologies,
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monitoring the pose of a child over time could reveal important information
both during clinical trials [21] or natural behaviors [40]. Human pose estimation
methods have been tested on a variety of challenging conditions, but few studies
to highlight performance specifically on children’s poses have been done. Infants,
toddlers and children are not only smaller than adults, but also significantly dif-
ferent in anatomical proportions. In [37] is proposed a study in which different
deep learning based approaches for human pose estimation are compared when
subjects are children. Results reveal that accuracy of the state of art meth-
ods drops significantly, opening new challenges for the research community. The
pose of humans can be also used to understand emergency situations, such as
unintended falls of an elderly person which lives alone. Fall recognition can be
treated as a binary classification problem to obtain frame-wise semantic labels,
so that fall recognition and its localization in time can be addressed simultane-
ously. In the recent literature different methods based on convolutional neural
networks using both, RGB and RGB-D data have been proposed to address the
fall recognition problem [15].

3.4 Action and Event Recognition

The action recognition task is related to the identification of the different possible
actions performed by a human from a sequence of frames, where the actions
may or may not be performed throughout the entire duration of the video.
Generally speaking an action can be regarded to as a temporal evolution of some
visual features. Hence the task becomes to model this evolution to recognize the
occurrence of actions.

Common examples of actions to be recognized are “answer phone”, “shake
hands” (Short actions), “make sandwich”, “do homework” (Activities/events
with one actor), “birthday party”, “parade” (Activities/events involving sev-
eral persons), but also facial actions such as “smile”. Current state-of-the-art
approaches for spatio-temporal action localization [45] rely on detections at
the frame level and model the temporal context with 3D ConvNets. Advanced
approaches model spatio-temporal relations to capture the interactions between
human actors, relevant objects and key scene elements to discriminate among
human actions [41].

Action recognition in first person vision (proprioceptive activity recognition)
is a new frontier of research with a series of additional challenges with respect
to classic action recognition.

First-person vision (FPV) activity recognition involves the use of wearable
cameras and is greatly beneficial for assisted living, life-logging and summariza-
tion [27]. In this context, motion representations which use stacked spectrograms
have been proposed in [1]. These spectrograms were generated over temporal
windows from mean grid-optical-flow vectors and the displacement vectors of
the intensity centroid. The stacked representation enables the system to use
2D convolutions to learn and extract global motion features. Moreover, a long
short-term memory (LSTM) network was used to encode the temporal depen-
dency among consecutive samples recursively.



Deep Learning for Assistive Computer Vision 9

In [30], a deep learning model useful to predict the next action task to be
performed by a robot is proposed. The model exploits both, the recognition of
objects and their relations. The preconditions and effects of the robot actions are
modeled through symbolic language, and the next goal state learning is obtained
with a multi-layered LSTM architecture fed by the predicates with terms verified
by vision.

One of the main problems with the use of assistive visual monitoring systems
in the wild is the requirement of a large amount of training data for each new
environment, as models trained in one location tend not to generalize well to
others. If improvements could be found by leveraging existing data to circumvent
or at least speed the training process in new environments, the deployment of
such systems could become faster and easier, enabling more widespread use and
providing robust results. In [29], the issue of transfer learning for frame-based
event classification using RNNs was tackled.

3.5 Anticipation

The ability to anticipate future events is a desirable capability for assistive tech-
nologies. Algorithms to anticipate future events in order to support automated
decisions and assist the user have been recently investigated by the computer
vision research community. Some efforts have focused on the use of egocentric
cameras, which allow to acquire video from the point of view of the user, in
order to infer their future actions. Among these works, in [39] it is proposed a
method able to anticipate the next action likely to be performed by a user from
egocentric video and infer whether that action is correct in the work-flow. The
authors of [28] used CNNs to predict the future location of the camera wearer in
an egocentric video. The study in [49] designed a method based on Generative
Adversarial Networks (GAN) to infer the gaze of the user in future frames (e.g.,
to infer what the user will observe next). In [9] it is proposed a deep learning
architecture to anticipate the position of specific objects and hands in future
frames, whereas the study reported in [33] used inverse reinforcement learning
to understand the user’s goal and anticipate the next location and object they
will be interested in. The authors of [7] proposed the task of anticipating future
actions performed by the camera wearer on a newly proposed large dataset of
videos of egocentric activities in kitchens.

Other works investigated anticipation tasks in the context of third person
vision. For instance, in [44] it is proposed to use deep convolutional networks
to anticipate multiple future representation from the current frame of a video.
The anticipated representations were then used to forecast future actions and
objects. In [13] it is proposed an encoder-decoder LSTM architecture capable of
anticipating future representation and predict future actions. The study in [24]
describes a systems to predict future actions and their starting time. The authors
of [2] investigated two deep models to predict multiple future actions and their
duration from video.



10 M. Leo et al.

4 Future Directions

The possible topics most likely to be explored thanks to deep learning will be ori-
ented towards the effective modeling of human behaviors and cognition. Indeed,
these aspects are essential to build adaptation and personalization mechanisms
for assistive systems. Since eye gaze has been frequently studied in interactive
intelligent systems as a cue for inferring user’s internal states and to have priors
about the user intent, a significant body of works could investigate the relation-
ships between eye movements and cognitive processes to provide an understand-
ing into memory recall, cognitive load, interest, the level of domain knowledge,
problem solving, desire to learn, and strategy use in reasoning. A contribution in
this direction has already been proposed in [6], where a CNN-based method was
trained to estimate user’s gaze fixations on the tablet screen (while answering
a question) to automatically gather a set of eye movement features useful to
discriminate users knowing the correct answer with respect to the others.

Another very promising research line concerns the ability to automatically
discover properties and affordances of regions of scenes (e.g., the affordance of
objects), which indicate their relevance for a certain functional interaction with
the user. Segmenting affordance regions, however, is more difficult than classical
semantic image segmentation, where the focus in more on the objects present
in the scene. This means that affordance segmentation requires to predict a
set of labels per pixel since an object region might contain multiple affordance
types. A weakly supervised semantic image segmentation approach based on
deep learning was recently proposed in [35], where it is exploited an adaptive
approach for binarizing the predictions of a convolutional neural network.

Anticipation methods will evolve to incorporate long term relationship
between the observed events to perform better predictions of the future. This
research area will allow to build proactive assistive systems and improve human-
machine as well as help to anticipate the interactions between a human and the
surrounding objects [12].

For some assistive tasks, the application of deep learning strategies has not
yet happened, even if it would be highly required to standardize some critical
procedures such as support to early diagnosis or assessment of neurodevelop-
mental disorders. This is manly due to the lack of publicly available datasets.
For example in [47] a dataset containing RGB-D data related to real infant
movements with varying realistic textures, shapes and backgrounds has been
proposed in order to speed-up the medical infant motion analysis based on the
training of deep learning approaches.

Acknowledgments. This research has been supported by Piano della Ricerca 2016–
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Leal-Taixé, L., Roth, S. (eds.) ECCV 2018 Workshops. LNCS, vol. 11134, pp. 128–
143. Springer, Cham (2019)

26. Nouredanesh, M., Li, A.W., Godfrey, A., Hoey, J., Tung, J.: Chasing feet in the
wild: a proposed egocentric motion-aware gait assessment tool. In: Leal-Taixé, L.,
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