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Abstract. Reliable lane detection is crucial functionality for auto-
nomous driving. Additionally positional information of ego lanes and
side lanes is pivotal for critical tasks like overtaking assistants and path
planning. In this work we present a CNN based regression approach for
detecting multiple lanes as well as positionally classifying them. Present
deep learning approaches for lane detection are inherently CNN semantic
segmentation networks, which concentrate on classifying each pixel cor-
rectly and require post processing operations to infer lane information.
We identify that such segmentation approach is not effective for detecting
thin and elongated lane boundaries, which occupy relatively few pixels
in the scene and is often occluded by vehicles. We pose the lane detec-
tion and classification problem as CNN regression task, which relaxes
per pixel classification requirement to a few points along lane boundary.
Our networks has better accuracy than the recent CNN based segmen-
tation solution, and does not require any post processing or tracking
operations. Particularly we observe improved robustness in occlusions
and amidst shadows due to over bridge and trees. We have validated
the network on our test vehicle using Nvidia’s PX2 platform, where we
observe a promising performance of 25 FPS.

Keywords: Multilane detection · CNN regression
Multilane classification

1 Introduction

Advanced Driver Assistance Systems (ADAS) have been proven to be effective in
reducing vehicle accidents and minimizing driver injury risks [2]. Hence in recent
time, ADAS system are being rapidly adopted in modern cars [1]. Autonomous
navigation is most desired functionality among the driver assistance functions
offered by ADAS, which in turn is highly dependent on reliable and accurate
lane detection. Information of ego lane and side lane is also crucial for other
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driving assistance tasks like lane keeping, lane departure warning and overtak-
ing assistance. Camera sensor has been used extensively for lane detection task,
and has been a low cost solution over costly LiDAR sensors. Although cost effec-
tive, vision based approach incurs lot of challenges in extracting lane features
from varying driving conditions. Low light condition during dawn and dusk, and
reduced visibility in bad weather directly affects the lane detection accuracy.
Road surface may vary in appearance due to construction material used, tyre
markings and because of shadows casted by vehicles and neighboring trees, mak-
ing detection error prone. Also presence of informative road markings increases
chances of false classification. Occlusion of lane markings due to vehicles is a
usual situation which adds to the challenge of inferring lane boundaries, lane
markings may be completely occluded in heavy traffic conditions. The challenge
gets amplified for side lane detection as their visual signatures are weak due to
the road geometry ahead. As well as side lane detection is rarely studied prob-
lem in the literature since most of the methods attempts to address ego lane
detection problem.

Most of the lane detection methods employ traditional computer vision tech-
niques where a hand-crafted features are designed by arduous process of fine
tuning. Such specialized features works under a controlled environment and are
not robust enough in complex driving scenarios, hence not suitable for practi-
cal deployment. A computer vision approach designed with CNN, has potential
to provide reliable and accurate solution to lane detection. Recent lane detec-
tion solutions based on CNN semantic segmentation were impressive in their
performance [10–12]. Though impressive the CNN based segmentation methods
require post processing and model fitting operations to obtain final lane pre-
dictions. Also the potential of CNN to summarize patterns is not completely
explored in the literature. We describe the related work in Sect. 2.

Fig. 1. Example of multilane detection and classification by our network, where the out-
put is in the form of lane boundary image coordinates represented by small color circles
(best viewed on computer screen when zoomed in). Classified leftside, leftego, rightego
and rightside lane boundaries are represented by blue, green, red and white colors
respectively (best seen in color) (Color figure online)

In our work, we analyze renowned semantic segmentation CNN architec-
tures for task of lane detection. We identify that the segmentation approach is
inefficient particularly for lane detection problem as described in Sect. 3.1. The
generated lane segmentation masks appear splattered and fragmented due to
low segmentation accuracy of lane boundaries. Further requiring a post process-
ing steps like tracking and model fitting to obtain lane parameters. We pose
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the lane detection problem as regression problem (Sect. 3.2), where our network
can be trained for producing parameterized lane information in terms of image
coordinates as shown in Fig. 1. This new paradigm of using regression instead
of segmentation, produces better detection accuracy as it does not demand each
pixel to get classified accurately. We derive our dataset using TuSimple [22]
dataset (Sect. 3.3), and the dataset format enables us to train our network in
end-to-end manner. We obtain improved detection accuracy over the recent seg-
mentation based methods, without employing any post processing operations as
explained in Sect. 4.

2 Related Work

2.1 Traditional Approaches

The robustness of traditional lane detection techniques directly depends on reli-
able feature extraction procedure from the input road scene. An HSV based
feature is designed to adapt with the changes in lightning condition, is demon-
strated to detect lane markers in [3]. Inverse perspective mapping (IPM) tech-
nique is often used as a primary operation in lane detection. Method in [4]
apply a steerable filter on equally spaced horizontal band in the IPM of input
frame to extract lane marking feature. Accuracy of approaches using IPM is
lowered due to false positives introduced by vehicles present in the scene. A
method in [5] detect vehicle ahead in the scene using SVM classifier, and uses
this vehicle presence information to add robustness to approach in [4]. Data from
multiple sensors can be combined to improve detection accuracy. Vision based
multilane detection system [15] combines GPS information and map data. A fea-
ture derived from fusion of LiDAR and vision data statistics is use detect curb
location along the road [6]. This curb information is further used for lane detec-
tion with help of thresholding (OTSU’s), morphological operation (TopHat) and
PPHT (progressive probabilistic hough transform). Another usual approach to
produce robustness against noisy feature measurement is use of a detection and
tracking framework like particle and kalman filtering [16]. An ego lane detec-
tion method [7] makes use of multiple particle filters to detect and track of lane
boundary locations. This superparticle approach tracks lane boundary points
by propagating particles in bottom-up direction of input frame, independently
for left and right ego lane boundaries. An efficient particle filter variant [14] is
shown to identify road geometry ahead in real-time. An energy efficient named
Lanquest [9] detects ego-vehicle’s position on the lane using inertial sensor in
the smartphone, but it cannot be used to identify road turnings ahead.

2.2 CNN Based Approaches

Recent approaches incorporating CNNs for the lane marker detection [11,12]
have proven to be more robust than model based methods. A CNN used as a
preprocessing step in a lane detection system [10], helps in enhancing edge infor-
mation by noise suppression. DeepLanes [13] detects immediate sideward lane
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markings with laterally mounted camera system. Although DeepLanes achieve
real time performance with high accuracy, it cannot detect road turning ahead.
Multilane detection method in [8] makes use of CNN and regression to iden-
tify line segments that approximate a lane boundary effectively, it requires high
resolution images to work with which hampers the speed. SegNet [18] based mul-
tilane detection network [17] segment out lanes, though promising the segmented
mask are not accurate at road turnings. VPGNet [25] detects and classify lane
markings along with road informative markings, it is inspired by the human intu-
ition of identifying lane layout from global context like road structure and traffic
flow. VPGNet trains a baseline network for task of vanishing point detection
and further fine tune it for lane and road marking detection task, which helps to
improve the overall accuracy. To improve segmentation accuracy of thin and elon-
gated objects like poles and lanes boundaries, Spatial CNN (SCNN) [26] replaces
the conventional layer-by-layer convolution with slice-by-slice convolution within
feature maps. Such an arrangement provides information flow between pixels
across rows and columns, which is hypothesized to be effective for summariz-
ing the global context. A GAN framework is utilized in [27] for lane boundary
segmentation, where the discriminator network is trained using an “embedding
loss” function which iteratively helps the generator network in learning of higher
structural semantics of lanes. LaneNet [24] is a instance segmentation network
which makes use of a branched structure to output binary lane segmentation
mask and pixel localization mask, which is further used to infer lane instance
by clustering process. Apart from LaneNet, a separate network is trained for
obtaining parametric lane information form lane instance segmentation mask.

Our work mainly differs in two ways. Firstly unlike the recent network which
have complex structure (from training perspective) and specialized message pass-
ing connections, our network has relatively simple structure consisting of known
layer operations. The change of paradigm from segmentation to regression gives
performance edge to our network. Secondly, no post processing is needed to infer
lane information as our network can be trained in end-to-end way.

3 Coordinate Network

3.1 Issues with Segmentation Approach

Though the recent CNN semantic segmentation approaches have been proven
to be effective, they are still an inefficient way for detecting lane boundaries.
Semantic segmentation network carry out multiclass classification for each pixel,
producing a dense pixel mask as output. Thus the segmentation paradigm is
too exacting in nature as the emphasis is on obtaining accurate classification
per pixel, instead of identifying a shape. Moreover the lane boundaries appear
as a thin and elongated shapes in the road scene, unlike cars and pedestrian
which appear blob shaped. A small loss in segmentation accuracy can signifi-
cantly degrade the segmentation mask of lane boundaries, rendering them frag-
mented and splattered as shown in Fig. 2. Additional post processing operations
like model fitting and tracking are needed to infer lane boundaries from these
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Fig. 2. Segmentation mask generated by ENet [20] and FCN [19] network show frag-
mentation and splattering issues

noisy segmentation lane masks. In order to overcome these issues, we pose the
lane detection problem as CNN regression task. We devise a network to output
parameterized lane boundaries in terms of image coordinate. Unlike the segmen-
tation approach, this new approach is less demanding as it does not rely on each
pixel to get classified correctly, and does not require any post processing stage
as well. Also the format of our derived dataset enables to train a network in an
end-to-end fashion.

3.2 Network Architecture

For implementing the regression approach for lane detection and classification,
we develop a CNN model which outputs four lane coordinate vectors representing
the predicted positions of lane boundaries in the given road scene. The four
lane coordinate vector corresponds to four lane boundary types (classes) i.e.
rightego, leftego, rightside and leftside. A single lane coordinate vector consist of 15
points (x, y) on the image plane, representing the sampled locations of the lane
boundary. The predicted points may lie outside the image plane and are treated
to be invalid (see Fig. 3). The usual structure of semantic segmentation network
consist of an encoder, followed by a decoder which expands the feature map to
a denser segmentation map. Unlike the segmentation network, our network has
just the encoder followed by four bifurcating branches of fully connected layers.
Where each of the branch outputs a lane coordinate vector corresponding to
one of the lane boundary type as shown in Fig. 4. The encoder operates on an
image of resolution 256× 480 and comprises of five sections, where each section

Fig. 3. Coordinate network outputs four lane vectors corresponding to four lane bound-
ary types, each containing 15 locations along the predicted lane boundary
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Fig. 4. Network architecture

consist of two convolutional layer followed by a max-pooling layer (max-pooling
is excluded for last section) as shown in Fig. 4. Two fully connected layers are
added back-to-back for each lane type (class), giving the network a branched
structure. Such branched arrangement minimizes misclassifications of predicted
lane points (coordinates). The network details are given in Table 1.

3.3 Dataset Preparation and Network Training

In order to train our network for lane detection and classification task, we derive
a dataset from TuSimple [22] dataset published for lane detection challenge. The
challenge dataset consist of 3626 images of highway driving scenes, along with
their corresponding lane annotations. These images are of 720× 1280 resolution
and are recorded in medium to good weather conditions during daytime. The
lane annotation information consist a list of the column position (index) for the
lane boundaries corresponding to a fixed row positions (indexes). Figure 5(a)
shows the visualization of an example from TuSimple dataset. On an average
there are four lanes annotated per image, marking the left and right ego lane
boundaries and the left and right side lane boundaries. Lanes which are occluded
by vehicles, or cannot be seen because of abrasion are also retained.

Fig. 5. (a) Example from TuSimple dataset (b) Derived dataset for training coordinate
network which has positional as well as lane type information (best seen in color) (c)
Derived dataset for training segmentation networks (LaneNet and UNet) (d) Derived
dataset for analyzing lane detection abilities of segmentation networks (ENet and FCN)
(Color figure online)
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Table 1. Network description

Layer name Type Kernel Stride Padding

Conv1 1 Convolution (3 × 3) (1 × 1) 1

Conv1 2 Convolution (3 × 3) (1 × 1) 1

Pool1 Max-pooling (2 × 2) (2 × 2) 1

Repeat above sequence for encoder Sects. 2, 3 and 4

Conv5 1 Convolution (3 × 3) (1 × 1) 1

Conv5 2 Convolution (3 × 3) (1 × 1) 1

Structure of a single branch

FC 1 Fully connected layer Outputs vector of 90 feature - -

FC 2 Fully connected layer Outputs vector of 30 values - -

The TuSimple dataset does not distinguish between the lane boundary type
i.e. ego right, ego left, side right and side left (see Fig. 5(a)). So we derive a
dataset which has the lane boundary position as well as lane type information
(see Fig. 5(b)) and has images of 256 × 480 resolution. In order to compare our
approach with the segmentation approach, we are required to train and evaluate
semantic segmentation networks for the task of lane detection and classification
as well. Hence we also derive a second dataset for semantic segmentation task
by fitting curves over the lane points (coordinates) from the derived dataset of
the coordinate network (see Fig. 5(c)). All the curves drawn in the ground truth
images are of 8 pixels in thickness. As shown in Fig. 5(d), we also derive a third
dataset which contains just the lane positional information for analyzing the
segmentation capability of ENet [20] and FCN [19] (refer Fig. 2).

As the number of images in challenge dataset is low to effectively train the
CNN variants, we adopt data augmentation and transfer learning strategies to
improve the learning result. Data augmentation is a technique to synthetically
extend a given dataset by applying different image processing operations. Effec-
tive application of data augmentation can increase the size of a training set
10-fold or more. Additionally, data augmentation adds immunity against over-
fitting of the network. To extend our derived dataset to 11196 images, we used
operations like cropping, mirroring, adding noise and rotating the images around
varying degrees. Similar procedure is followed for augmenting all the derived
datasets, and for generating test dataset from TuSimple test images. During
transfer learning we borrow the weights of the encoder section of UNet [23],
trained on Cityscape Dataset [21]. Later our network is fine-tuned with the
derived dataset. During network training, we used stochastical gradient descent
optimizer with learning rate of 0.001. The batch size was kept to 1 and training
was done for 75 epochs. We used following L1 loss function:

Loss =
15∑

i=1

| xpi − xgi | +
15∑

i=1

| ypi − ygi | (1)
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where (xpi, ypi) are predicted lane coordinates, and (xgi, ygi) are the correspond-
ing ground truth coordinates.

Fig. 6. Metric illustration. Left hand side figure illustrates MIoU metric components
where the background, ego lane left boundary and ego lane right boundary have class
id as 0, 1 and 2 respectively. The right hand side figure shows the Euclidean error
vector between the predicted and ground truth coordinates

4 Evaluation

The coordinate network is devised to be an improvement over the recent lane
detection approaches those which primarily perform semantic segmentation.
Hence in order to compare our network, we choose the LaneNet [24] which is an
instances segmentation network developed as a lane detection and classification
solution. LaneNet makes use of discriminative loss function [24] which gives it a
performance edge over semantic segmentation networks. Since the weights of our
network’s encoder section are borrowed from UNet [23] (trained on CityScape
dataset [21]), we choose UNet as a second network for comparison in our work.
We train UNet and LaneNet as a five-class semantic segmentation network using
our derived segmentation dataset with IoU (Intersection over Union) and dis-
criminative loss [24] functions respectively. The four lane boundaries are identi-
fied by four distinct classes and background forms the fifth class.

4.1 Quantitative Analysis

Most common metrics for evaluating segmentation accuracy are based on simi-
larity measures between predicted and ground truth pixels. Hence our coordinate
network cannot be directly compared with LaneNet and UNet, as our network
outputs image coordinates (xpi, ypi) instead of a dense pixel-wise prediction. To
make the performance of the coordinate network comparable to the LaneNet
and UNet, the output of our network is adapted. We generate the lane segmen-
tation image (mask) by fitting the curve on the predicated lane coordinates.
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The drawn lanes have the width consistent to the lane width used for generating
the ground truth images of the derived segmentation dataset. The predictions
of all the networks are then compared to the ground truth in the test dataset
using the MIoU (mean intersection over union) metric. The MIoU metric for a
single test image is defined as follows:

MIoU =
1

1 + k

k∑

i=0

TPii∑k
j=0 FNij +

∑k
j=0 FPji − TPii

(2)

where k is number of classes (k = 5 in our case i.e. rightego, leftego, rightside, leftside
and background). TP, FN and FP are pixel counts of true positive, false negative
and false positive regions respectively as illustrated in Fig. 6.

Table 2. Lane detection accuracy measured as MIoU metric

Network MIoU

UNet (semantic segmentation) 64.5

LaneNet (instance segmentation) 65.7

Ours (regression) 67.2

We evaluate all the networks on the 1000 test images, with their performance
summarized in Table 2. Although LaneNet demonstrate better accuracy (MIoU)
over UNet, our coordinate model outperform LaneNet as can be seen from the
Table 2. As the CNN regression approach seems most promising both in visual
examination and in terms of MIoU metric, we investigate the coordinate net-
work more thoroughly. In Table 3, we summarize the performance of coordinate
network on the four lane types. We compute the mean error between predicted
lane coordinates with the corresponding ground truth values as a Euclidean dis-
tance (in terms of pixels), for each lane type and over entire test dataset. The
mean prediction error for single lane boundary class is defined as follows and
illustrated in Fig. 6.

Mean Prediction Error =
1
15

15∑

i=1

√
(xpi − xgi)2 + (ypi − ygi)2 (3)

where (xpi, ypi) are predicted lane coordinates, and (xgi, ygi) are the correspond-
ing ground truth coordinates. From prediction error statistics in Table 3 and
it can observe that the mean error is relatively low for ego lane boundaries as
compared to side lane boundaries. Particularly for side lane boundaries, we also
record the count of missed lanes i.e. lanes that were present in the ground truth
but were completely missed-out by the network. Similarly we note the count of
“Over-predicted” lanes as those lanes that were predicted by the network but
were not present in the ground truth. From Table 3, it can be observed that the
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missed lane count is low compared to the falsely predicted side lane boundaries.
Also it can be observed that the mean error values for ego lane boundaries are
within the thickness of ground truth lane boundary (i.e. 8 pixels), justifying the
improved MIoU metric.

Fig. 7. Multilane detection and classification on different road driving scenarios. Out-
put of our network is adapted for visualization. Classified leftside, leftego, rightego and
rightside lane types are represented by green, orange, red and blue colors respectively
(best seen in color) (Color figure online)

Table 3. Prediction error statistics in terms of pixels computed for 256× 480 image
resolution

Lane type Mean
prediction
error [pixels]

Maximum
[pixels]

Minimum
[pixels]

Missed lanes “Over-
predicted”
lanes

rightego 6.05 30 0.61 - -

leftego 6.54 32.05 0.95 - -

rightside 8.99 100.4 1.38 1 3

leftside 9.94 94.26 1.13 2 7

4.2 Qualitative Analysis

In order to visually compare the coordinate network’s output with rest of the
segmentation networks, we fit and plot the curves using the predicted lane image
coordinates. We obtain predictions of all the networks on driving scenarios like
occlusions due to vehicles, poorly lane marked roads and high contrast illumi-
nations due to over bridge shadows. As can be seen form Fig. 7, the coordinate
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Fig. 8. Stable and consistent detection and classification observed during highway test
drive, without utilizing any tracking framework

model is more reliable in detecting and classifying of multiple lanes when com-
pared to other two networks. Particularly UNet and LaneNet fail in detecting
lane boundaries in high contrast images arising in the scenario of under pass,
and also performs poorly during occlusions due to vehicles. Moreover we observe
that UNet and LaneNet tend to confuse between lane boundary types for lane
markings those are away from the camera, which get manifested as broken lane
boundaries in predicted segmentation mask. Coordinate network on the other
hand has better detection accuracy in occlusions, and particularly in scenarios
like shadows casted by over bridge. We validated the coordinate network in our
test vehicle using Nvidia’s PX2 platform. We observe a consistent and stable
detection without using any tracking framework during highway test drive, as
shown in Fig. 8.

5 Conclusions

We presented a CNN based regression network for reliably detecting multiple
lanes as well as classifying them based on position, where our network produces
parameterized lane information in terms of image coordinates. Unlike the recent
CNN segmentation based methods which produces dense pixel masks, our regres-
sion approach removes the stringent criterion of classifying each pixel correctly.
Thereupon improving the detection accuracy of both the ego lane and side lane
boundaries. The convenient format of our derived dataset enables training of the
network in an end-to-end fashion, thus eliminating any need of post-processing
operations. We found our network performing better than LaneNet and UNet
during evaluation, particularly in high contrast scenes formed due to over bridge
shadow and in situation where lane markings are occluded by vehicles. Moreover
our network is relatively better in identifying distant lane markings, which are
often misclassified by segmentation based methods. We validated the network
on our test vehicle under usual highway driving conditions, where we observed
a consistent and stable detection and classification of lane boundaries without
employing any tracking operation. Our network attains a promising performance
of 25 FPS on Nvidia’s PX2 platform.
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