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Abstract. In this paper, we propose a fully automatic magnetic reso-
nance image (MRI)-based computer aided diagnosis (CAD) system which
simultaneously performs both prostate segmentation and prostate can-
cer diagnosis. The system utilizes a deep-learning approach to extract
high-level features from raw T2-weighted MR volumes. Features are then
remapped to the original input to assign a predicted label to each pixel.
In the same context, we propose a 2.5D approach which exploits 3D
spatial information without a compromise in computational cost. The
system is evaluated on a public dataset. Preliminary results demonstrate
that our approach outperforms current state-of-the-art in both prostate
segmentation and cancer diagnosis.

1 Introduction

According to a recent study by the American Cancer Society, prostate cancer
(CaP) is the second leading cause of cancer deaths in the United States [1].
Several screening and diagnostic tests are used in daily clinical routines to ensure
early detection and treatment. Besides its non-invasive nature, MR screening is
favored among other diagnostic tests due to its relatively high potential in CaP
detection and diagnosis. However, the exploitation of the full potential of MR
images is still limited, due to the fact that analyzing these volumetric images
is time consuming, subjective, and requires specialized expertise. These facts
fueled the need for developing an accurate automatic MRI-based CaP detection
system.

Multiple CAD systems were proposed in the last decade [6,7,10]. Most of
the research on these systems used carefully hand-crafted features from a com-
bination of MR modalities. In response to the breakthrough of Convolutional
Neural Networks (CNNs) [4], a shift from systems that use hand-crafted low-
level features, to those that learn descriptive high-level features has gradually
taken place in the area of medical image analysis. To date, the most successful
medical image analysis systems rely on CNNs [8].
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L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11132, pp. 734–739, 2019.
https://doi.org/10.1007/978-3-030-11018-5_66

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11018-5_66&domain=pdf
https://doi.org/10.1007/978-3-030-11018-5_66


A 2.5D Deep Learning-Based Approach for Prostate Cancer Detection 735

Surprisingly, a recent comprehensive review [5] of more than 40 prostate
MRI CAD systems reports no use of deep-learning-based approaches for this
specific application. While a more recent review of deep learning in medical
image analysis [8] reports only very few attempts to employ deep architectures
for the task of CaP detection and diagnosis.

Lemaitre et al. [6], proposed a multi-stage multi-parametric MRI CAD for
CaP system. In their final model, they selected 267 out of 331 features extracted
from four modalities and used them to train a random forest classifier. They
validated their system on data from 19 patients from a publicly available dataset.
On the other hand, Kiraly et al. [3] proposed another approach that uses deep
learning for slice-wise detection of CaP in multi-parametric MR images. They
reformulated the task as a semantic segmentation problem and use a SegNet-like
architecture to detect possible lesions. They achieved an average area under the
receiver operating characteristic of 0.834 on data from 202 patients.

In contrast to [3], our work differs from several perspectives. First, we explic-
itly exploit 3D spatial contextual information to guide the segmentation process
which eventually improves the overall system performance. Second, we simulta-
neously perform anatomical segmentation and lesion detection in MR images.
Third, unlike [3] our work relies on input data from only one modality (T2W).
We thus highlight the potential of extracting sufficiently meaningful information
from a single modality. In fact, this also has a significant clinical advantage, as
it reduces the time and cost of screening and eliminates the need of contrast
agent injection. Finally, and most importantly, this work implements a deeper
convolutional architecture compared to the one used in [3] and, to the best of
our knowledge, is the first to assess CNNs performance on the public dataset
of [5].

2 Proposed Method

To address the trade-off between 2D and 3D image processing approaches, we
propose a 2.5D method which exploits important 3D features without a compro-
mise in the computational complexity. This is achieved by extending the dimen-
sion of the lowest resolution of the input MR volume into the RGB dimension.
This fusion approach has several advantages. First, it enables us to exploit the
3D spatial information of the middle slice with no extra computational cost.
Second, this technique allows to transform gray-level volumetric images to col-
ored images with embedded 3D information. Finally, this approach copes with
the problem of inter- and intra-patient variability which mainly results from
variable prostate size and scanner resolution, respectively.

Although, the term 2.5D is previously used in [9] to refer to fusing three
orthogonal views of an input image, we use it here to refer to a sub-volume of
dimensions x× y × 3 where x and y are the slice dimensions (see Fig. 1).
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Fig. 1. (a) Illustration of sliding a 3D window across the input volume. (b) The archi-
tecture of the deep convolutional encoder-decoder network presented in [2]

2.1 Network Design and Training

We reformulate the problem of CaP detection and diagnosis as a multi-class
segmentation problem. We first define four classes from the raw data includ-
ing: Non-prostatic tissues (background), PZ, CG and CaP. These four classes
are well distinguished in the T2w [5]. We utilize a deep convolutional encoder-
decoder network similar to [2]. The network architecture is illustrated in Fig. 1.
The encoder part consists of thirteen convolutional layers that are topologically
identical to those in vgg16. Each encoder block has a corresponding decoder
which mainly consists of deconvolutional layers. Pooling indices are communi-
cated between the encoder and the decoder to perform non-linear upsampling
[2]. Finally, a multi-class SoftMax layer is placed at the end of the network fol-
lowed by a pixel classification layer. To assess the benefit of our 2.5D approach,
we trained the same network using gray-level slices. Each slice was replicated
three times in order to fit in the input RGB channels. Throughout this paper,
we refer to this method as M1, while we refer to our 2.5D method as M2.

Table 1. Results of multi-class segmentation on prostate-contained slices

Mean BF score Recall

M1 M2 M1 M2

CG 0.783 0.799 0.815 0.836

PZ 0.825 0.855 0.901 0.886

Non prostate 0.974 0.980 0.980 0.986

CaP 0.879 0.891 0.916 0.928
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3 Experiments and Results

We performed our experiments on the public dataset released by [5], which is
acquired from a cohort of patients with higher-than-normal level of PSA. All
patients were screened using a 3 T whole body MRI scanner (Siemens Magnetom
Trio TIM, Erlangen, Germany). The dataset is composed of a total of 19 patients
of which 17 have biopsy proven CaP and 2 are healthy with negative biopsies. An
experienced radiologist segmented the prostate organ on T2w-MRI, as well as
the prostate zones (i.e. PZ and CG), and CaP. Three-dimensional T2w fast spin-
echo (TR: 3600 ms, TE: 143 ms, ETL: 109, slice thickness:1.25 mm) images are
acquired in an oblique axial plane. The nominal matrix and field of view (FOV)
of the 3D T2w fast spin-echo images are 320mm×256mm and 280mm×240mm,
respectively. The network was trained on 60% of the samples using a GPU. The
weights of the encoder were initialized using a pre-trained vgg16. We set a con-
stant learning rate of 0.001, a momentum of 0.9, and a maximum number of
ephocs to 100. We evaluated the segmentation performance of each class using
the mean boundary F1 (BF) score, and recall. These metrics were calculated for
all prostate-contained images. The average of each metric is presented in Table 1.
Notably, CaP segmentation performance is significantly improved by the intro-
duced approach with respect to all metrics. Figure 2 compares the heatmaps
generated by projecting the activations of the SoftMax layer for the two alterna-
tive methods explained above, and the output of the CAD system proposed by
[6]. Clearly, better performance is achieved using a deep learning based semantic
segmentation architecture compared to the standard handcrafted features-based
learning used in [6]. Also, the performance of the same architecture is improved
by the employment of the 3D sliding window approach (Fig. 2 (d), (h)). With
respect to the prostate segmentation task, Fig. 2 qualitatively demonstrates the
gains achieved by using the proposed approach.

Fig. 2. (i) (a, e) Ground truth of case 1 and 2, respectively. White contour shows the
radiologist segmentation of the prostate, while blue contour is the ground truth lesion.
Heatmaps generated by [6] (b, f), using M1 (c, g), and using M2 (d, h). (ii) Prostate
segmentation results of M1 and M2. The first row shows examples of segmentation
performed using M1. The corresponding segmentation of M2 on the same slices is
shown in the second row. (Color figure online)
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We also quantitatively assess and compare the performance of our system for
the detection and diagnosis of malignant lesions against other recently proposed
systems, as can be realized in Table 2. Clearly, our approach outperforms the
more traditional pattern recognition and machine learning approach presented
by Lemaitre et al. [6] method by more that 15% average AUC. The proposed
architecture also outperforms [3] by a significant margin. Note that Kiraly et al.
[3] used similar but shallower architecture, with only 5 convolutions in each of
the decoder and encoder. Expectedly, the system performance is boosted as a
result of adding more convolutional layers. Results suggest that our hybrid 2.5D
approach outperforms M1 pipeline which uses the same CNN architecture.

Table 2. Comparison of CPM of CaP results with the literature

Lemaitre et al. [6] kiraly et al. [3] M1 M2

Average AUC 0.836 0.834 0.997 0.995

Accuracy - - 0.876 0.894

4 Conclusions

A simple, yet efficient, deep learning-based approach for joint prostate segmen-
tation and CaP diagnosis on MRI was presented in this paper. From our exper-
iments, we draw two general conclusions. First, the incorporation of 3D spa-
tial information through the RGB channels is possible, potentially beneficial,
and generally applicable to similar medical images with no extra computational
cost. Second, the use of a deep convolutional encoder-decoder network for the
segmentation of volumetric medical images yields superior results compared to
other state-of-the-art approaches. Due to the limited access to fully annotated
datasets for simultaneous prostate segmentation and cancer detection, a fair com-
parison was thus limited. Accordingly, future work will focus on re-validating the
state-of-the-art approaches on the public dataset to guarantee a more rational
evaluation.
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