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Abstract. Relational reasoning in Computer Vision has recently shown
impressive results on visual question answering tasks. On the challenging
dataset called CLEVR, the recently proposed Relation Network (RN), a
simple plug-and-play module and one of the state-of-the-art approaches,
has obtained a very good accuracy (95.5%) answering relational ques-
tions. In this paper, we define a sub-field of Content-Based Image
Retrieval (CBIR) called Relational-CBIR (R-CBIR), in which we are
interested in retrieving images with given relationships among objects.
To this aim, we employ the RN architecture in order to extract relation-
aware features from CLEVR images. To prove the effectiveness of these
features, we extended both CLEVR and Sort-of-CLEVR datasets gener-
ating a ground-truth for R-CBIR by exploiting relational data embed-
ded into scene-graphs. Furthermore, we propose a modification of the
RN module – a two-stage Relation Network (2S-RN) – that enabled us
to extract relation-aware features by using a preprocessing stage able
to focus on the image content, leaving the question apart. Experiments
show that our RN features, especially the 2S-RN ones, outperform the
RMAC state-of-the-art features on this new challenging task.
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1 Introduction

Relational reasoning refers to a particular kind of reasoning process that is able
to understand and process relations among multiple entities. In this regard,
Krawczyk et al. [1] characterize relational reasoning as the human brain “unique
capacity to reason about abstract relationships among items in our environ-
ment”. Biological intelligence developed such reasoning capabilities during thou-
sands of years of evolution: comparing objects is indeed a critical task since it
triggers decisions that could influence the safety of the individual, hence the
survival of the species.

In Computer Vision (CV), deep architectures obtain great performance at
tasks such as classifying or recognizing objects; however, latest studies demon-
strated the difficulties of such architectures to understand a complex scene, where
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understand means catching relations among objects to compare them in a spatial
and temporal dimension, exactly as the biological intelligence would operate. In
other words, differently from biological intelligence, as of now deep architectures
can perceive with quite a good accuracy the world that surrounds us, but still
cannot understand it very well.

Starting from [2], VQA has been a very active task in the recent CV literature.
Given an image and a natural language question about the image, the task
is to provide an accurate natural language answer. Recently, a great interest
has grown around the possibility to ask relational questions. In this scenario,
questions regard the spatial arrangement of objects inside the image and the
task is called Relation-oriented VQA (R-VQA). The most relevant works in this
area have used CLEVR [3] for both training and testing.

The contribution of this paper is many-fold:

– we introduce the novel task of relation-oriented content-based image retrieval
(R-CBIR);

– we extend the CLEVR diagnostic dataset with a benchmark intended to verify
to what extent a CBIR system is able to retrieve similar images in terms of
objects spatial arrangement;

– we propose a novel two-stage Relation Network that is able to produce state-
of-the-art features on the newly defined task.

The rest of the paper is organized as follows. In Sect. 2, we review some of the
related work. In Sect. 3, we define the novel Relational-CBIR task. In Sect. 4,
we extend the CLEVR dataset in order to generate a R-CBIR ground-truth.
Details about features extraction from RN and from our novel two-stage RN
are presented in Sect. 5. In Sect. 6, we report the results of the experiments
conducted using features extracted both from the original RN architecture and
our proposed two-stage network solution. We make concluding remarks in Sect. 7.
In the Appendix, we leave some in-depth details about the two-stage network
setup.

2 Related Work

Visual Relationship Detection. Recent work has addressed the problem of visual
relationships detection (VRD) in images in the form of triplets (subject, predi-
cate, object), where subject and object are common objects present in an image,
and predicate indicates a relationship between them out of a set of possible
relationships containing verbs, prepositions, comparatives, etc.

Several datasets comprised of a large set of visual relations [4–6] have opened
the way to approaches aimed to detect those kinds of relationships in images.
In [7], a CRF model is used to ground relationships given in the form of a scene
graphs to test images for image retrieval purposes. In [8], a spatial feature map
is extracted from images through a CNN and then combined with an embedded
natural language expression in order to produce a pixel-wise segmentation output
relevant to the relational textual query.
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In [5], each pair of (subject, object) proposals is scored using a visual appear-
ance module and a language module; two CNNs are used respectively to identify
the entities into play and to predict the presence of relationships between them,
and a language prior is exploited to refine predictions using pre-trained word
embeddings. In [6], authors presented strong yet flexible visual features that
encode not only the appearance of the objects, but also explicitly encode their
spatial configuration in terms of bounding box relative translation, overlap, size,
and aspect ratio. This representation is then used together with language priors
to assign a score to every relationship triplet.

Differently from objects-relationship concatenation carried out in previous
works, [9] exploits statistical relations between objects and relationship predi-
cates, all in a deep neural network framework.

Notwithstanding approaches that solve VRD are able to detect relationships,
they usually do not encode information about the relationships within an image
in a compact representation; instead, all possible relationships are combinato-
rially tested on prediction time. Recently, [10] implemented a large scale image
retrieval system able to map textual triplets into visual ones (object-subject-
relation inferred from the image) projecting them into a common space learned
through a modified version of triplet-loss. Unlike our work, however, this system
is unable to produce a compact relational descriptor for the entire image, since
it only encodes relations under the form of triplets.

Visual Question Answering. In contrast to VRD, in visual question answering
(VQA) relationships among objects are often implicit, making it a more challeng-
ing task. However, the potentiality of deep learning approaches has led to various
successful approaches that tackle VQA with a learnable end-to-end solution.

Early proposals simply concatenated question embeddings and visual fea-
tures. This method constitutes the main building block behind solutions like
CNN+BoW or CNN+LSTM [11]. Both methods use a CNN to analyze the
image and produce visual features.

Stacked Attention (SA) layers [12] replace the raw embeddings concatena-
tion with a simple but quite effective reasoning module, built by exploiting two
cascaded attention layers.

In [13,14] authors propose a novel architecture specialized to think in a rela-
tional way. They introduced a particular layer called Relation Network (RN),
which is specialized in comparing pairs of objects. Objects representations are
learned by means of a four-layer CNN and the question embedding is gener-
ated through an LSTM. The overall architecture composed of CNN, LSTM and
the RN can be trained fully end-to-end, and it is able to reach superhuman
performances.

Other solutions [15,16] introduce compositional approaches, able to explicitly
model the reasoning process by dynamically building a reasoning graph.

Latest proposals [17,18] used conditioning approaches: they injected question
related features into the visual pipeline. They reached the current state-of-the-
art on R-VQA.
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Work related to VQA is often far off from approaching CBIR tasks, with
respect to works developed around VRD. Unlike experimental setups in [4–6,10],
whose focus concentrates on the retrieval of specific relationships, our work aims
at evaluating a relational descriptor defined for the full scene. [19] uses a very sim-
ilar experimental setup to the one we introduced. It exploits the graph data asso-
ciated with every image in order to produce a ranking goodness metric (nDCG)
for evaluating the quality of the ranking produced for a given query.

3 Relational-CBIR

In this paper, we define a sub-field of Content-Based Image Retrieval (CBIR)
in which we are interested in retrieving images with given relationships among
objects. We call this task Relational-CBIR (R-CBIR).

Typically, CBIR is performed extracting a compact descriptor from an image,
namely feature, that is able to characterize the image. When exploiting relational
deep-learning architectures, information about relationships among objects is
internally encoded during the learning process. These stored relational concepts
could be extracted under the form of features, like the ones used in classical
CBIR systems. But, unlike classical CBIR features, R-CBIR ones are asked not
to encode shapes, corners, regions or even objects; instead, they should be able
to embed complex relational patterns. For example, two city skylines should be
compared not by matching singularly each architectonic element or finding a
similar building; instead, the exploited information should reside in the three-
dimensional arrangement of buildings and skyscrapers that uniquely identifies
that particular city.

In this work, our attention is focused on spatial relations. Hence, R-CBIR
consists in the following: given a query image, find all images in a database con-
taining elements spatially arranged in a similar way to respect the ones present
in the query.

4 A Relational-CBIR Ground-Truth

Our major contribution consists in the introduction of a novel benchmark for
the R-CBIR task, for the purpose of evaluating architectures on this novel chal-
lenge. In order to evaluate the quality of any relational feature extracted from a
relation-aware system, we compute a specific ground-truth, built by exploiting
relational knowledge embedded into graphs (scene-graphs). The generation of
the ground-truth, in fact, must rely on a formal and objective a-priori relational
knowledge of the scene.

By carefully choosing a distance function between graphs, we are able to
give a good estimation of the relational similarity between scenes. In order to
accomplish this task, we need some datasets that include a formal and precise
description of relations occurring inside the scene, so that a precise scene-graph
can be derived. Synthetic datasets CLEVR and Sort-of-CLEVR perfectly fit
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these needs, since they come with rendered images automatically generated using
a-priori built scene-graphs.

Besides the native availability of graph-structured data, we target synthetic
datasets since evaluating a new retrieval method on a simpler and controlled
environment is often a preferable choice than moving directly to bigger and
more challenging datasets.

4.1 CLEVR

CLEVR [3] is a synthetic dataset composed of 3D rendered scenes. There are
100k rendered images, subdivided among training (70k), validation (15k) and
test (15k) sets. The total number of questions is ∼865k, again split among train-
ing (∼700k), validation (∼150k) and test (∼15k).

The main concept behind CLEVR is the scene. A scene contains different
simple shaped objects, with mixtures of colors, materials and sizes. There are
cubes, spheres, cylinders, each one of which can have a color chosen among eight;
they can be big or small, and they can be made of one of two different materials,
metal or rubber. The scene is fully and uniquely described by a scene graph. The
scene graph describes in a formal way all the relationships between objects.

The question is formulated under the form of a functional program. The
answer to a question represented by its functional program on a scene is sim-
ply calculated by executing the functional program on the scene graph. Scene
graphs are rendered to photo-realistic 3D scenes by using Blender, a free 3D soft-
ware; instead, functional programs are converted to natural language expressions
compiling some templates embedded in the dataset and written in English.

CLEVR dataset gives us way more control on the learning phase than other
datasets present in literature. Information in each sample of the dataset is com-
plete and exclusive. This means that no common-sense awareness is needed in
order to correctly answer the questions. Answers can be given simply under-
standing the question and reasoning exclusively on the image, without needing
external concepts.

4.2 Sort-of-CLEVR

Sort-of-CLEVR consists in a simplification of the original CLEVR dataset. It is
created mainly for testing and debugging architectures that are designed to work
with CLEVR. Thus, this dataset is composed of simpler building blocks with
respect to the full CLEVR. Images, in fact, are simpler than 3D renders provided
with the original dataset; they instead carry simple 2D scenes, consisting of a
certain number of 2D shapes. Shapes can be circles or squares and come in
different colors. Every object, however, is uniquely identified by its color.

Differently from the CLEVR dataset, this one splits the questions into two
different subsets:

– relational questions, asking for the color or shape of the farthest or the
nearest object with respect to the given one; example: What is the shape of
the object that is farthest from the gray object?
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– non-relational questions, involving specific attributes that characterize a
single object, in particular the shape, or the absolute position of the object with
respect to the overall scene; example: What is the shape of the gray object?

Questions are directly encoded into 11-dimensional vectors, so there is no need
for LSTM modules processing natural language.

Even if this dataset seems extremely simple, it can help to spot out some
architectural problems that inhibit the network to think in a relational way.

4.3 Scene Graphs

The best way to formally describe relations inside a scene is by making use of
scene graphs, already available both in CLEVR and Sort-of-CLEVR. More in
details, a scene graph contains nodes, that account for objects occupying the
scene and edges, that describe relations occurring among them. Every node or
edge can be assigned a set of attributes that fully describe them.

For Sort-of-CLEVR, nodes carry information regarding objects color, shape
together with their absolute positions (left/right or up/down with respect to
the scene). An edge, instead, carries information about the kind of relation it is
describing. In Sort-of-CLEVR, an edge can refer to farthest and nearest relations.

Unlike the Sort-of-CLEVR case, CLEVR object attributes do not include
absolute positions, since CLEVR deals uniquely with relational questions.
Instead, possible attributes are the color, the shape, the material and the size.

Fig. 1. Example of scenes with associated scene-graphs
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CLEVR also includes an higher number and more detailed spatial relations: to
the left of, to the right of, in front of, behind.

In Fig. 1, we report an example image for each dataset together with the
associated scene-graphs. Note that, although CLEVR graph is complete, half
of the edges can be removed without losing information, since to the right of
implies an opposite edge to the left of and in front of implies an opposite edge
behind.

4.4 Ground-Truth Generation

We define a ground-truth for retrieving images with similar relations among
objects relying on the similarity between scene graphs. Two scene graphs should
be similar if they can depict almost the same relations between the same objects.
However, evaluating the similarity between two graphs is not trivial; it is often
a subjective task, since there are aspects of the graph (e.g., the attributes asso-
ciated to nodes) that weight differently, depending on the specific application.

Although many solutions have been proposed in literature for defining dis-
tances between graph-structured data [20], concerning this particular use-case,
we decided to employ the graph edit-distance (GED), that is an extension of the
well-known edit-distance working on strings.

Differently from strings, edit operations on graphs include delete, insert, sub-
stitute for both nodes and edges, for a total of 6 edit operations. The problem
is faced as an optimization problem. Since the GED problem is known to be
computationally hard, in this work we will employ two different implementa-
tions [21,22]. [21] is an exact, non-approximated version of the GED algorithm.
We will reference it as Exact-GED. While execution times are acceptable for
Sort-of-CLEVR graph data, they become easily unworkable on CLEVR, even
if removing the redundant behind and left edges. For this reason, [22] is able
to perform an efficient approximation of the algorithm. We will refer to this
as Approx-GED. Approx-GED does not consider the entire span of solutions.
Instead, it looks for a tiny subset of edit sequences, obtained by first matching
similar nodes using linear assignment and then matching edges on the ruled node
pairing. Nevertheless, during experimentation, we measured that the resulting
approximated ground-truth is perfectly comparable with the exact one.

Both implementations allow for the customization of the node-edge edit
costs on the basis of their attributes. We applied the following policies for our
application:

– nodes-edges insertion or deletion has always a cost of 1;
– edge substitution cost is 1 if edges do not belong to the same kind of relation,

0 otherwise;
– node substitution cost can be driven by two different policies:

• soft-match: all attributes of a node weight equally during a substitution.
So, considering a total of 4 attributes, if three attributes match the sub-
stitution cost is 3/4 = 0.75. This is the fairest and most neutral solution
since it does not prefer any attribute over all the others;
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• hard-match: the cost is 1 if at least one attribute value differs. It is 0 only
if all attributes match.

To clarify GED algorithm functioning using our cost policies, we report below an
example on CLEVR with soft-match. This instance of GED computation trans-
forming the upper image into the below one will return a cost of 1.5.

Steps Cost

1. Substitute node small-cyan-metal-cylinder with big-
cyan-metal-sphere (change 2 attributes)

0.5

2. Substitute edge small-cyan-metal-cylinder behind
small-blue-rubber-cylinder with big-cyan-metal-
sphere in front of small-blue-rubber-cylinder

1.0

In the light of this, given a query, we compute the ground-truth ranking of
the dataset by sorting all scenes using computed GED distances between scene
graph of the query image and graphs from all the others.

Given an image ranking produced by an arbitrary relation-aware system, a
rank correlation metric is computed against the ground-truth ranking. In this
work we will use the Spearman-Rho correlation index, that is a common ranking
similarity measure often employed in information retrieval scenarios [23].

5 R-CBIR Features from Relation Network

5.1 RN Overview

We build upon the Relation Network (RN) module proposed in [13] in order to
extract state-of-the-art features for the newly defined R-CBIR task.

RN obtained impressive results on relational tasks and in particular on
CLEVR. RN modules combine input objects forming all possible pairs and
applies a common transformation to them, producing activations aimed to store
information about possible relationships among input objects.

For the specific task of VQA, authors used a four-layer CNN to learn visual
object representations, that are then fed to the RN module and combined with
the textual embedding of the question produced by an LSTM, conditioning the
relationship information on the textual modality. The core of the RN module is
given by the following:

r =
∑

i,j

gθ(oi, oj , q) (1)

where gθ is a parametric functions whose parameters θ can be learned during
the training phase. Specifically, it is a multi-layer perceptrons (MLP) network. oi

and oj are the objects forming the pair under consideration and q is the question
embedding vector obtained from the LSTM module.
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The overall architecture composed of CNN, LSTM and the RN can be trained
fully end-to-end and it is able to reach superhuman performances.

Relation-aware features useful for R-CBIR should be extracted from a stage
inside the network still not conditioned to the question. Hence, valid CBIR
features can be extracted from the original RN module only at the output of the
convolutional layer, since, after that, questions condition entirely the remaining
pipeline. Inspired by the state-of-the-art works on CBIR [24,25], we obtain an
overall description for the image aggregating all object pair features in output
from the CNN.

More in details, we considered extracting Hi,j([oi, oj ]), where oi is a vector
extracted from the i-th position of the last flattened convolutional layer, [·, ·]
denotes concatenation and Hi,j(·) is an arbitrary aggregation function over all
object pairs. However, in this paper, we aim at producing an R-CBIR baseline for
the introduced benchmark by exploiting only two simple aggregations, namely
maxi,j(·) and avgi,j(·). It can be noticed that for these aggregations the following
property holds: Hi,j([oi, oj ]) = [Hi(oi),Hj(oj)]. This reveals that the resulting
vector is constructed by concatenating two identical aggregated representations.
This is mainly because these simple aggregation functions process each single
object descriptor component independently. Hence, in this scenario, we can sim-
ply discard half of the vector and consider only the aggregation Hi(oi). This,
in the end, consists in simply taking the global max/avg pooling from the last
layer of the convolutional module.

We will show in Sect. 6 that these features already embed relational knowl-
edge able to defeat state-of-the-art CBIR solutions on this task. Also, we will
use these features as baseline for evaluating the novel two-stage approach we are
introducing.

5.2 Two-Stage RN (2S-RN)

The two-stage pipeline is aimed at decoupling visual relationships processing
(first-stage) from the question elaboration (second-stage) so that activations
from a layer in the first stage can be employed as visual relation-aware features.

Our contribution consists in the following: first, we consider all possible rela-
tions between objects gθ(oi, oj) in the image. This is what we denoted as first-
stage. The output from this stage is a representation of the relationships between
objects in the image not conditioned on the question. Then, we combine the
obtained relational representations ri,j = gθ(oi, oj) with the query embedding q
as follows:

r =
∑

i,j

hψ(ri,j , q) =
∑

i,j

hψ(gθ(oi, oj), q) (2)

where hψ is the second-stage. It is a multi-layer perceptron network with param-
eters ψ. Using this solution, we constrained the network to learn relational
concepts without considering the questions, at least during the first stage, before
the hψ(·) function evaluation. Hence, relation-aware features for the images can
potentially be extracted from the output of any layer of the gθ(·) function.
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Fig. 2. The proposed two-stage Relation Network module and the whole architecture.
This figure show the difference with respect to the original architecture shown in [13].

The overall new architecture, named 2S-RN, is shown in Fig. 2. For training,
we stick to the procedure reported in [13]. Detailed configurations for 2S-RN
on both CLEVR and Sort-of-CLEVR are reported in Appendix A. With the
proposed architecture, we obtain a representation ri,j for each pair of objects i, j.
In Sect. 6, we report the results we obtained with max and average aggregations
approaches, obtained by computing respectively avgi,j(ri,j) and maxi,j(ri,j).

6 Experiments

We evaluate both convolutional and 2S-RN features against the generated
ground-truth. In our experiments, features from 2S-RN are extracted from the
last layer of gθ(·). We generate image rankings from relational features by calcu-
lating the Euclidean distance between the query feature and all the others, and
then sorting the entire dataset by using this distance as score. Spearman-Rho is
used to give a score to the obtained ranking, as explained in Sect. 4.4.

As a baseline for convolutional features from the original RN, we choose the
ranking obtained with one of the state-of-the-art non-relational image descriptors
for image instance retrieval, namely the RMAC descriptor [24]. This descriptor
encodes and aggregates several regions of the image in a dense and compact
global image representation exploiting a pre-trained fully convolutional net-
work for feature map extraction. The aggregated descriptor is obtained by max-
pooling the feature map over different regions and scales, and summing them
together, followed by an l2-normalization. A similarity score between two images
is obtained by computing the cosine similarity between their RMAC descriptors.
In our experiments, we adopted the RMAC descriptor extracted from the trained
model proposed in [25].

We employ features extracted from the convolutional layer of the original RN
as baseline for evaluating features from the first-stage of our novel two-stage app-
roach. Table 1 reports values of Spearman-Rho for the two considered datasets.



496 N. Messina et al.

Table 1. Spearman-Rho correlation index for existing features and our novel two-stage
extracted features (2S-RN), both using CLEVR and Sort-of-CLEVR. We report the
95% confidence intervals for the mean over 500 queries.

GT policy Sort-of-CLEVR CLEVR

soft-match hard-match soft-match hard-match

RMAC [25] 0.49,0.03 0.07,0.03 −0.15,0.02 −0.18,0.02

RN [13] max 0.36,0.02 0.14,0.03 −0.24,0.02 −0.25,0.03

RN [13] avg 0.64,0.02 0.34,0.04 0.08,0.05 0.06,0.05

2S-RN max 0.70,0.02 0.58,0.03 −0.19,0.03 −0.21,0.03

2S-RN avg 0.24,0.02 0.18,0.02 0.15,0.04 0.13,0.04

CLEVR results can be reproduced using the code publicly available on GitHub1.
Spearman-Rho correlations are relative to the two generated ground-truths, soft-
match and hard-match obtained by ranking images using Approx-GED. Exact-
GED could have been employed only for Sort-of-CLEVR, due to unacceptable
computational times if applied on CLEVR graphs. Spearman-Rho correlation
between rankings obtained with exact and approximated versions on Sort-of-
CLEVR dataset over 500 queries gives a value of 0.89, using the soft-match policy.
Hence, we can empirically claim that this approximation is legitimate in this par-
ticular scenario. In light of this, we decided to use Approx-GED for both datasets
in order to produce a fair comparison.

Correlation index has been evaluated over multiple rankings, generated using
500 query images, in order to produce statistically meaningful results. As it can
be noticed, with a 95% confidence interval on the mean, convolutional relational
features definitely defeat RMAC features on this relational task. Furthermore,
relational features extracted from the two-stage RN are noticeably better than
convolutional relational features. These results are reasonable since the origi-
nal RN presents problems reasoning on the image alone, while RMAC tends to
retrieve images containing the very same objects present in the query disregard-
ing relative size, order or position.

Depending on the dataset, different aggregation methods can produce diverse
optimal results. In particular, max aggregation seems working better on Sort-of-
CLEVR dataset, while average obtain the best results on CLEVR. The average
aggregation keeps into consideration the number of identical relations happening
inside the scene; and number of relations involved among objects having same
attributes is quite important when considering CLEVR, since, unlike Sort-of-
CLEVR, in CLEVR there is a better overall randomness and multiple instances
of the same relationship could emerge (multiple relations insisting on similar
objects). Hence, discriminating them by their cardinality becomes a must for an
overall better ranking. Moreover, the max aggregation becomes unstable and sen-
sible to outliers when the number of samples increases; a single huge activation

1 https://github.com/mesnico/learning-relationship-aware-visual-features.

https://github.com/mesnico/learning-relationship-aware-visual-features
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in one of the 4,096 features in CLEVR can significantly affect the aggregation
results. This is in line with findings in aggregation techniques for CNN features
[24,25], where sum (and similarly avg) aggregation is preferred. Relations in
Sort-of-CLEVR are significantly less and easily encoded in the feature space.

Fig. 3. Top 10 Sort-of-CLEVR images using our solution (2S-RN) and RMAC against
our ground-truth for a given query (on top).

Fig. 4. Top 7 CLEVR images using our solution (2S-RN) and RMAC against our
ground-truth for a given query (on top).

Even if it is quite difficult to give an objective evaluation of RN features
and RMAC ones by only looking at the first 10 more relevant images, visual
evaluation reported in Figs. 3 and 4 are useful for giving an intuition beyond
statistics. On our paper website rcbir.org you can find an interactive browsing
system for viewing R-CBIR results for different query images.
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7 Conclusions and Future Work

State-of-the-art methods for relational reasoning evaluate their capabilities on
VQA tasks. In this work, we defined the sub-task of R-CBIR in which retrieved
images should be similar to the query in terms of relationships among objects.
This was motivated by the fact that current image retrieval systems, perform-
ing traditional CBIR, are not able to infer relations among the query and the
retrieved images.

Given the novelty of the proposed task, we had to generate a benchmark.
To this aim, we extended both CLEVR and Sort-of-CLEVR considering scene
graphs of their images and generating a ground-truth for the R-CBIR task.
We also proposed to employ the RN module, a state-of-the-art architecture for
Relational VQA for extracting relational features suitable for the novel R-CBIR
task. Experiments we conducted on this benchmark show that features extracted
from the RN module are able to outperform state-of-the-art R-MAC features on
this specific task.

We also proposed an extension to the RN module, called two-stage RN. This
modification aims at decoupling visual relationships processing (first-stage) from
the question elaboration (second-stage) so that layers in the first stage are uncon-
ditioned to the question and can be consequently used as candidate extraction
points for obtaining good visual relation-aware features. We proved that fea-
tures from our two-stage RN are able to encode relationships between objects
in the image that neither traditional visual features nor features extracted from
original RN formulation are able to detect.

Moving from these promising results to a scenario in which relationships
between objects in real photos are encoded in features pose the same issues
ongoing research on relational reasoning is facing on Relational VQA. To this
aim, we will have to move from artificial images (CLEVR) to photos (e.g., Visu-
alGenome). Also, we plan to learn the aggregation by placing a differentiable
aggregation function inside the network. This is an important step toward the
production of a compact yet powerful feature.
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A Detailed Configuration

Hyper-parameters for the 2S-RN architecture have been tuned starting from the
configurations given in [13]. We first replicated experiments from [13], so that
we were able to get a solid starting point. Training with these configurations we
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obtained an overall accuracy of 93.6% on CLEVR and 94.0% on Sort-of-CLEVR,
quite enough to use the learned weights from the first stage as a feature. Code
for training CLEVR architecture is made publicly available here:

https://github.com/mesnico/RelationNetworks-CLEVR.

A.1 2S-RN on CLEVR

Hyper-parameters for 2S-RN architecture working on CLEVR are the following:

– CNN is composed of 4 convolutional layers each with 24 kernels, ReLU non-
linearities and batch normalization;

– gθ, hψ and fφ are multilayer perceptrons each composed of 2 fully-connected
layers, 256 neurons each and ReLU non-linearities;

– a final linear layer with 29 units produces logits for a softmax layer over the
answers vocabulary;

– dropout with 50% dropping probability is inserted after the penultimate layer
of fφ;

– the gradient norm is clipped to 50;
– the learning rate follows an exponential step increasing policy, that doubles

it every 20 epochs, from 5e-6 up to 5e-4.

A.2 2S-RN on Sort-of-CLEVR

Hyper-parameters for 2S-RN architecture working on Sort-of-CLEVR are the
following:

– CNN is composed of 4 convolutional layers each with 24 kernels, ReLU non-
linearities and batch normalization;

– gθ is a multi-layer perceptron composed of 4 fully-connected layers, containing
respectively 2048, 1024, 512, and 256 neurons with ReLU non-linearities;

– hψ is a single-layer perceptron with 256 neurons and ReLU non-linearities;
– fφ is a multi-layer perceptron composed of 2 fully-connected layers, 256 neu-

rons each and ReLU non-linearities;
– a final linear layer with 10 units produces logits for a softmax layer over the

answers vocabulary;
– a dropout with 50% dropping probability is inserted after the penultimate

layer of fφ;
– the learning rate is set to 1e-4.

References

1. Krawczyk, D.C., McClelland, M.M., Donovan, C.M.: A hierarchy for relational
reasoning in the prefrontal cortex. Cortex 47, 588–597 (2011)

2. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 2425–2433 (2015)

https://github.com/mesnico/RelationNetworks-CLEVR


500 N. Messina et al.

3. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick,
R.: CLEVR: a diagnostic dataset for compositional language and elementary visual
reasoning (2017)

4. Krishna, R., et al.: Visual genome: connecting language and vision using crowd-
sourced dense image annotations (2016)

5. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with
language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016,
Part I. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46448-0 51

6. Peyre, J., Laptev, I., Schmid, C., Sivic, J.: Weakly-supervised learning of visual
relations. In: ICCV 2017 - International Conference on Computer Vision 2017,
Venice, Italy, October 2017

7. Johnson, J., et al.: Image retrieval using scene graphs. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3668–3678 (2015)

8. Hu, R., Rohrbach, M., Darrell, T.: Segmentation from natural language expres-
sions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part I.
LNCS, vol. 9905, pp. 108–124. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46448-0 7

9. Dai, B., Zhang, Y., Lin, D.: Detecting visual relationships with deep relational
networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3298–3308. IEEE (2017)

10. Zhang, J., Kalantidis, Y., Rohrbach, M., Paluri, M., Elgammal, A.M., Elhoseiny,
M.: Large-scale visual relationship understanding. CoRR abs/1804.10660 (2018)

11. Zhou, B., Tian, Y., Sukhbaatar, S., Szlam, A., Fergus, R.: Simple baseline for visual
question answering. CoRR abs/1512.02167 (2015)

12. Yang, Z., He, X., Gao, J., Deng, L., Smola, A.J.: Stacked attention networks for
image question answering. CoRR abs/1511.02274 (2015)

13. Santoro, A., et al.: A simple neural network module for relational reasoning. CoRR
abs/1706.01427 (2017)

14. Raposo, D., Santoro, A., Barrett, D.G.T., Pascanu, R., Lillicrap, T.P., Battaglia,
P.W.: Discovering objects and their relations from entangled scene representations.
CoRR abs/1702.05068 (2017)

15. Hu, R., Andreas, J., Rohrbach, M., Darrell, T., Saenko, K.: Learning to reason:
end-to-end module networks for visual question answering. CoRR abs/1704.05526
(2017)

16. Johnson, J., et al.: Inferring and executing programs for visual reasoning. CoRR
abs/1705.03633 (2017)

17. Perez, E., de Vries, H., Strub, F., Dumoulin, V., Courville, A.C.: Learning visual
reasoning without strong priors. CoRR abs/1707.03017 (2017)

18. Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.C.: FiLM: visual
reasoning with a general conditioning layer. CoRR abs/1709.07871 (2017)

19. Belilovsky, E., Blaschko, M.B., Kiros, J.R., Urtasun, R., Zemel, R.: Joint embed-
dings of scene graphs and images. In: ICLR (2017)

20. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding:
problems, techniques and applications. CoRR abs/1709.07604 (2017)

21. Abu-Aisheh, Z., Raveaux, R., Ramel, J.Y., Martineau, P.: An exact graph edit
distance algorithm for solving pattern recognition problems 1 (2015)

22. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009). 7th IAPR-
TC15 Workshop on Graph-based Representations (GbR 2007)

https://doi.org/10.1007/978-3-319-46448-0_51
https://doi.org/10.1007/978-3-319-46448-0_51
https://doi.org/10.1007/978-3-319-46448-0_7
https://doi.org/10.1007/978-3-319-46448-0_7


Learning Relationship-Aware Visual Features 501

23. Melucci, M.: On rank correlation in information retrieval evaluation. SIGIR Forum
41(1), 18–33 (2007)

24. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-
pooling of CNN activations. arXiv preprint arXiv:1511.05879 (2015)

25. Gordo, A., Almazan, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual
representations for image retrieval. arXiv preprint arXiv:1610.07940 (2016)

http://arxiv.org/abs/1511.05879
http://arxiv.org/abs/1610.07940

	Learning Relationship-Aware Visual Features
	1 Introduction
	2 Related Work
	3 Relational-CBIR
	4 A Relational-CBIR Ground-Truth
	4.1 CLEVR
	4.2 Sort-of-CLEVR
	4.3 Scene Graphs
	4.4 Ground-Truth Generation

	5 R-CBIR Features from Relation Network
	5.1 RN Overview
	5.2 Two-Stage RN (2S-RN)

	6 Experiments
	7 Conclusions and Future Work
	A  Detailed Configuration
	A.1  2S-RN on CLEVR
	A.2  2S-RN on Sort-of-CLEVR

	References




