
Convolutional Photomosaic Generation
via Multi-scale Perceptual Losses

Matthew Tesfaldet1,2(B), Nariman Saftarli3(B), Marcus A. Brubaker1,2(B),
and Konstantinos G. Derpanis2,3(B)

1 Department of Electrical Engineering and Computer Science,
York University, Toronto, Canada
{mtesfald,mab}@eecs.yorku.ca

2 Vector Institute, Toronto, Canada
3 Department of Computer Science, Ryerson University, Toronto, Canada

{nsaftarli,kosta}@scs.ryerson.ca

Abstract. Photographic mosaics (or simply photomosaics) are images
comprised of smaller, equally-sized image tiles such that when viewed from
a distance, the tiled images of the mosaic collectively resemble a perceptu-
ally plausible image. In this paper, we consider the challenge of automati-
cally generating a photomosaic from an input image. Although computer-
generated photomosaicking has existed for quite some time, none have
considered simultaneously exploiting colour/grayscale intensity and the
structure of the input across scales, as well as image semantics. We pro-
pose a convolutional network for generating photomosaics guided by a
multi-scale perceptual loss to capture colour, structure, and semantics
across multiple scales. We demonstrate the effectiveness of our multi-scale
perceptual loss by experimenting with producing extremely high resolu-
tion photomosaics and through the inclusion of ablation experiments that
compare with a single-scale variant of the perceptual loss. We show that,
overall, our approach produces visually pleasing results, providing a sub-
stantial improvement over common baselines.

Keywords: Photomosaic · ASCII text · Deep learning ·
Perceptual loss · Multi-scale analysis

1 Introduction

Photographic mosaics (or simply photomosaics) are images comprised of smaller,
equally-sized image tiles (or “templates”) such that when viewed from a distance,
the tiled images of the mosaic collectively resemble a perceptually plausible
image. Although the term has existed since the 1990s (specifically for photog-
raphy), the unique art form of stitching together a series of adjacent pictures
to produce a scene has existed since the 1970s. They are inspired from tradi-
tional mosaics, an ancient art form dating back at least as far as 1500 BCE,
where scenes and patterns were depicted using coloured pieces of glass, stone or
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Fig. 1. Given an input image, (a), and a collection of template images (pictured are
8× 8 Apple emoji templates), our convolutional network generates a photomosaic, (c),
that is perceptually similar to the input. For training our model, we exploit a continuous
relaxation of the non-differentiable discrete template selection process to encourage the
“soft” outputs, (b), to be as one-hot as possible for proper evaluation by our multi-scale
perceptual metric. Zoom in for details.

other materials. Here we focus on computer-generated photomosaics. Computer-
generated photomosaicking relies on various algorithms to select suitable com-
binations of templates from a given collection to compose a photomosaic that is
perceptually similar to a target image.

In early work, Harmon and Knowlton experimented with creating large prints
from collections of small symbols or images. In their famous artwork, “Studies
in Perception I” [6], they created an image of a choreographer by scanning a
photograph with a camera and converting the grayscale values into typographic
symbols. This piece was exhibited at one of the earliest computer art exhibitions,
“The Machine as Seen at the End of the Mechanical Age”, held at the Museum of
Modern Art in New York City in 1968. Soon after, Harmon [7] investigated how
much information is required for recognizing and discriminating faces and what
information is the most important for perception. To demonstrate that very little
detail was required for humans to recognize a face, he included a mosaic render-
ing of Abraham Lincoln consisting of varying shades of gray. Based on Harmon’s
findings, Salvador Daĺı, in 1976, created the popular photomosaic, “Gala Con-
templating the Mediterranean Sea” [4]. This was among the first examples of
photomosaicking, and one of the first by a recognized artist.

Generally, there are two methods of photomosaicking: patch-wise (e.g ., [14])
and pixel-wise (e.g ., [18]). Patch-wise photomosaicking involves matching each
tiled region with a template consisting of the closest average colour. In pixel-wise
photomosaicking the matching is done on a per-pixel level between the pixels of
the target image and the templates. This is computationally more expensive but
generally produces more visually pleasing results since the per-pixel matching
allows a rudimentary matching of structure.
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Computer-generated photomosaicking has mostly been explored in the con-
text of matching colour/grayscale intensities and, in an extremely limited sense,
structures. Pixel-wise methods are limited to matching the colour of individual
pixels, while patch-wise methods typically use simple similarity metrics that may
miss important structural information, e.g ., edges, curves, etc. Both are limited
to analysis at a single scale and generally ignore overall image semantics when
producing a photomosaic. In contrast, our proposed approach involves a holistic
analysis of colour, structure, and semantics across multiple scales.

Jetchev et al . [8] experimented with using convolutional networks (ConvNets)
to form a perceptually-based mosaicking model; however, their approach was
limited to a texture transfer process and consequently was not true photomo-
saicking, i.e., their outputs did not consist of tiled images. Furthermore, their
approach did not account for matching colours between the input and output,
only structure, and only at a single scale.

In this paper, we propose a perceptually-based approach to generating pho-
tomosaics from images using a ConvNet. We rely on a perceptual loss [9] for
guiding the discrete selection process of templates to generate a photomosaic.
Inspired by previous work [17], we extend the perceptual loss over multiple scales.
Our approach is summarized in Fig. 1.

We make the following contributions. Given a discrete set of template images,
we propose a feed-forward ConvNet for generating photomosaics. To the authors’
knowledge, we are the first to demonstrate a ConvNet for photomosaicking that
utilizes a perceptual metric. We demonstrate the effectiveness of our multi-scale
perceptual loss by experimenting with producing extremely high resolution pho-
tomosaics and through the inclusion of ablation experiments that compare with
a single-scale variant of the perceptual loss. We show that, overall, our approach
produces visually pleasing results with a wide variety of templates, providing a
substantial improvement over common baselines.

2 Technical Approach

Given an RGB input image, X ∈ R
H×W×3, our goal is to generate a photo-

mosaic, Y ∈ R
H×W×3, where H and W denote the image height and width.

For every non-overlapping tiled region in the image, we learn a distribution of
weightings (or coefficients) for selecting templates. This is represented using a
map of one-hot encodings, denoted by C ∈ [0, 1](H/HT )×(W/WT )×NT , where HT ,
WT , and NT denote the template height, template width, and the number of
templates, respectively. Each spatial position on this map contains a one-hot
encoding denoted by cr,c, where r and c correspond to its row and column
position on the map. RGB templates, T ∈ R

HT ×WT ×3NT , are given and fixed
between training and testing. In Sect. 2.1, we outline our encoder-decoder Con-
vNet architecture. Section 2.2 describes how we exploit a continuous relaxation of
the argmax function to make training differentiable. Finally, Sect. 2.3 describes
our multi-scale perceptual loss which is used to train the decoder portion of the
function.
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2.1 Encoder-Decoder Architecture

Our ConvNet is designed as an encoder-decoder network that takes X as input
and produces Y as the photomosaic output. We adopt the VGG-16 [16] ConvNet
pre-trained on the ImageNet dataset [15] as the encoder portion of our network,
which is kept fixed. For the purpose of photomosaicking, we find using the layers
up to pool3 of VGG-16 to be sufficient. Our decoder is as follows: a 1 × 1× 256
(corresponding to height × width × num filters) convolution, a ReLU activa-
tion, a 3 × 3 × NT convolution (3× 3 to encourage template consistency among
neighbours), and a channel-wise softmax to produce the template coefficients.
To keep the range of activations stable, we use layer normalization [2] after each
convolution in the decoder. In all convolutional layers we use a stride of 1.

For each tiled region, yr,c, of the final output, Y, let cr,c(i) be the i-th
coefficient of the one-hot encoding corresponding to that region and T(i) ∈
R

HT ×WT ×3 the i-th template of RGB templates T. The output yr,c is generated
by linearly combining the templates for that region by their respective template
coefficients,

yr,c =
NT∑

i=1

cr,c(i)T(i). (1)

The final output, Y, is a composition of each tiled output yr,c.

2.2 Learning a Discrete Selection of Templates

Key to our approach is the discrete selection of templates at each tiled region.
This is necessary to produce a photomosaic. During training, however, using
an argmax to select the template with the maximal coefficient is not possible
because the argmax function is non-differentiable. Instead, we exploit a con-
tinuous relaxation of the argmax by annealing the softmax that produces the
coefficients. In particular, we gradually upscale the softmax inputs during train-
ing by 1/τ , where τ is the “temperature” parameter that is gradually “cooled”
(i.e., reduced) as training progresses. In the limit as τ → 0, the softmax func-
tion approaches the argmax function and Eq. 1 becomes nearly equivalent to a
discrete sampler, as desired. Specifically, the softmax distribution of coefficients
nears a one-hot distribution. This encourages the network to select a single tem-
plate for each tiled region. During inference, however, instead of linearly com-
bining templates by their respective coefficients, each tiled region output, yr,c,
can be generated by selecting the template corresponding to the argmax of the
distribution of coefficients, cr,c.

2.3 Multi-scale Perceptual Loss

So-called “perceptual losses” have previously been used as a representation of
salient image content for image stylization tasks, e.g ., image style transfer [5,9].
Instead of generating images based on differences between raw colour pixel
values, perceptual losses are used to enable high quality generation of images
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based on differences between low-level to high-level image feature representa-
tions extracted from the convolutional layers of a pre-trained ConvNet. To that
end, we use a perceptual loss [9] to guide the network to produce photomosaics
that are perceptually similar to the input. Specifically, the perceptual loss mea-
sures the difference between low-level features (e.g ., visual content such as edges,
colours, curves) to high-level features (e.g ., semantic content such as faces and
objects) computed on the input image and the output photomosaic. Like our
encoder, we use the VGG-16 [16] ConvNet pre-trained on the ImageNet dataset
[15]. However, here it is used as a perceptual metric and layers conv1 1, conv2 1,
conv3 1, conv4 1, and conv5 1 are used for computing the perceptual loss. For-
mally, let φl(X) be the activations of the l-th layer of VGG-16 when processing
input X. The perceptual loss is computed as the average Mean Squared Error
(MSE) between feature representations of X and Y,

L(X,Y) =
1
L

∑

l

||φl(X) − φl(Y)||22, (2)

where L is the number of layers used for computing the perceptual loss.
To produce visually accurate photomosaics, we require the objective to con-

sider the content within each tiled region as well as the content spanning multiple
tiled regions. This necessitates analysis across multiple scales. Motivated by prior
work [10,17], we compute the perceptual loss (Eq. 2) on a Gaussian pyramid [3]
of the input and output. This guides the decoder to select templates that closely
match the content within each tiled region, as well as collectively match the
overall content of the input. To mitigate the influence of seams between tiled
regions, we blur the photomosaic output before feeding it into the loss. Our final
objective is as follows:

L(X, B(Y)) =
1

SL

∑

s

∑

l

||φl(Xs) − φl(B(Ys))||22 , (3)

where input Xs is taken from the s-th level of a Gaussian pyramid, B(Ys) is
the blurred photomosaic output taken from the same level, and S is the number
of scales used for the pyramid.

Training. For training the weights of our decoder, we use the images from
the Microsoft COCO dataset [13]. We train on a merger of the train, test, and
validation splits of COCO. We resize each image to 512 × 512 and train with
a batch size of 12 for 2,000 iterations. We use the Adam optimizer [11] with
a learning rate of 6e−3 that is exponentially decayed every 100 iterations at
a rate of 0.96. We follow a temperature cooling schedule starting from τ = 1
and gradually decreasing τ every 10 iterations until τ = 0.067. Our network is
implemented using TensorFlow [1]. Training roughly takes 20 min on an NVIDIA
Titan V GPU. Figure 2 shows results using various 8 × 8 templates on a 512 × 512
input.
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Fig. 2. Photomosaic results using 8× 8 “glyphs” as templates. (left-to-right) Input,
Apple emoji icons, sprites from “Super Mario Bros.”, ASCII characters, text characters
from “The Matrix”. Zoom in for details.

3 Experiments

To evaluate our approach, we perform two experiments: a baseline qualitative
comparison using nearest neighbour with both a simple L2 metric and with a
Structural SIMilarity (SSIM) [19] metric, which is a perception-based metric that
attempts to address shortcomings of L2 by taking the local image structure into
account; and a qualitative comparison between using a single scale and multiple
scales for the perceptual loss. Finally, we experiment with producing extremely
high resolution photomosaics. For our full photomosaic results, collection of tem-
plates used, and source code, please refer to the supplemental material on the
project website: ryersonvisionlab.github.io/perceptual-photomosaic-projpage.

Fig. 3. Baseline comparisons. Given an input image, (a), photomosaics are generated
using nearest neighbour (NN) with an L2 metric, (b), NN with a SSIM metric, (c), and
our convolutional approach, (d). From (b) to (d), the top row of photomosaics consist
of Apple emoji templates and the bottom row of photomosaics consist of oriented edge
templates. Zoom in for details.

http://ryersonvisionlab.github.io/perceptual-photomosaic-projpage
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Fig. 4. Photomosaic outputs when using a single vs multi-scale perceptual loss. (left-
to-right) Input, single-scale at a fine scale, single-scale at a coarse scale, multi-scale at
both fine and coarse scales. Zoom in for details.

Baselines. To demonstrate that our approach improves upon common baselines
in capturing colour, structure, and semantics across multiple scales, we compare
against nearest neighbour with L2 and SSIM for template selection on two sets of
templates: the complete set of emojis from Apple, and a specially-designed set of
templates of oriented edges at varying thicknesses and rotations. Photomosaics
are generated as follows: for each tiled region, the template with the lowest L2
loss or highest SSIM when compared with the underlying image content (in raw
colour pixel values) is selected. Figure 3 shows our results. Nearest neighbour
with L2 (Fig. 3b) completely fails in retaining both the colour and structure of
the input. With SSIM (Fig. 3c), some structure of the input is preserved, albeit
only at small scales, while colour accuracy is generally lacking. Moreover, both
methods do not preserve the semantics of the input, such as the subject’s hair,
nose, and eyes. In contrast, our approach (Fig. 3d) reliably captures the colour,
structure, and semantics of the image.

Single vs. Multi-scale. We perform an ablation study on our multi-scale
perceptual loss to present the individual contributions of each scale (i.e., fine and
coarse) and to motivate the benefit of incorporating information across multiple
scales. When the perceptual loss is operating on a single scale, it is restricted to
scrutinizing the photomosaic output at that scale. As shown in Fig. 4, when the
scale is only at a fine level, the output fails to preserve larger structures like the
outline around the subject’s jawline and ears. At a coarse level, the reduction in
resolution prevents finer details from being captured, such as the orientation of
edges in the input image, resulting in a noisier output. However, when using the
multi-scale perceptual loss operating on both fine and coarse scales, the output
reliably preserves both the finer details and the coarse structure of the image.

High Resolution. To demonstrate the effectiveness of using a multi-scale
perceptual loss, we experiment with generating extremely high resolution pho-
tomosaics, as shown in Fig. 5. The input is a 5,280× 3,960 image of Vincent
Van Gogh’s painting, “Starry Night”, and the output is a visually compelling
10,560× 7,936 photomosaic. The multi-scale perceptual loss enables the model
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Fig. 5. High resolution photomosaics. (left) A 5,280× 3,960 input and (right) a
10,560× 7,936 photomosaic using 32× 32 templates from a collection of 17,500 rotated
and colour-shifted images taken from the top-100 images from the Hubble Space Tele-
scope [12]. Shown are the downsampled versions of the images to save space; please see
the supplemental for the full resolution images.

to capture both the coarse scale and fine scale features of the input. For exam-
ple, the input image content spanning multiple tiled regions (e.g ., the large
black tower and the stars) are reliably captured in the photomosaic through the
appropriate composition of templates, while the input image content within tiled
regions are reliably captured through the appropriate selection of templates that
match the underlying image structure, such as the orientation and colour of the
brush strokes.

4 Conclusion

In this paper, we presented a ConvNet for generating photomosaics of images
given a collection of template images. We rely on a multi-scale perceptual loss to
guide the discrete selection process of templates to generate photomosaics that
best preserve colour, structure, and semantics of the input across multiple scales.
We show that our approach produces visually pleasing results with a wide variety
of templates, providing a substantial improvement over common baselines. We
demonstrate the benefits of a multi-scale perceptual loss through the inclusion
of ablation experiments and by experimenting with generating extremely high
resolution photomosaics.
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