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Abstract. We present Generative Adversarial Capsule Network (Cap-
suleGAN), a framework that uses capsule networks (CapsNets) instead
of the standard convolutional neural networks (CNNs) as discriminators
within the generative adversarial network (GAN) setting, while model-
ing image data. We provide guidelines for designing CapsNet discrimi-
nators and the updated GAN objective function, which incorporates the
CapsNet margin loss, for training CapsuleGAN models. We show that
CapsuleGAN outperforms convolutional-GAN at modeling image data
distribution on MNIST and CIFAR-10 datasets, evaluated on the gener-
ative adversarial metric and at semi-supervised image classification.
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1 Introduction

Generative modeling of data is a challenging machine learning problem that
has garnered tremendous interest recently, partly due to the invention of gen-
erative adversarial networks (GANs) [5] and its several sophisticated variants1.
A GAN model is typically composed of two neural networks; (1) a generator
that attempts to transform samples drawn from a prior distribution to samples
from a complex data distribution with much higher dimensionality, and (2) a
discriminator that decides whether the given sample is real or from the gener-
ator’s distribution. The two components are trained by playing an adversarial
game. GANs have shown great promise in modeling highly complex distributions
underlying real world data, especially images. However, they are notorious for
being difficult to train and have problems with stability, vanishing gradients,
mode collapse and inadequate mode coverage [4,16,19]. Consequently, there has
been a large amount of work towards improving GANs by using better objective
functions [1,2,6], sophisticated training strategies [19], using structural hyper-
parameters [15,16] and adopting empirically successful tricks2.

Radford et al. [16] provide a set of architectural guidelines, formulating a
class of convolutional neural networks (CNNs) that have since been extensively
1 https://github.com/hindupuravinash/the-gan-zoo.
2 https://github.com/soumith/ganhacks.
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L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11131, pp. 526–535, 2019.
https://doi.org/10.1007/978-3-030-11015-4_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11015-4_38&domain=pdf
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/soumith/ganhacks
https://doi.org/10.1007/978-3-030-11015-4_38


CapsuleGAN 527

used to create GANs (referred to as Deep Convolutional GANs or DCGANs) for
modeling image data and other related applications [10,17]. More recently, how-
ever, Sabour et al. [18] introduced capsule networks (CapsNets) as a powerful
alternative to CNNs, which learn a more equivariant representation of images
that is more robust to changes in pose and spatial relationships of parts of
objects in images [7] (information that CNNs lose during training, by design).
Inspired by the working mechanism of optic neurons in the human visual system,
capsules were first introduced by Hinton et al. [7] as locally invariant groups of
neurons that learn to recognize visual entities and output activation vectors that
represent both the presence of those entities and their properties relevant to the
visual task (such as object classification). The training algorithm of CapsNets
involves a routing mechanism between capsules in successive layers of the net-
work that imitates hierarchical communication of information across neurons in
human brains that are responsible for visual perception and understanding.

The initial intuition behind the design of deep neural networks was to imi-
tate human brains for modeling hierarchical recognition of features, starting from
low-level attributes and progressing towards complex entities. CapsNets capture
this intuition more effectively than CNNs because they have the aforementioned
in-built explicit mechanism that models it. CapsNets have been shown to out-
perform CNNs on MNIST digit classification and segmentation of overlapping
digits [18]. This motivates the question whether GANs can be designed using
CapsNets (instead of CNNs) to improve their performance.

We propose Generative Adversarial Capsule Network (CapsuleGAN) as a
framework that incorporates capsules within the GAN framework. In particu-
lar, CapsNets are used as discriminators in our framework as opposed to the
conventionally used CNNs. We show that CapsuleGANs perform better than
CNN-based GANs at modeling the underlying distribution of MNIST [13] and
CIFAR-10 [12] datasets both qualitatively and quantitatively using the gener-
ative adversarial metric (GAM) [9] and at semi-supervised classification using
unlabeled GAN-generated images with a small number of labeled real images.

The rest of the paper is organized as follows. Section 2 discusses related work.
In Sect. 3 we provide a brief introduction to GANs and CapsNets. Section 4
describes our CapsuleGAN framework along with implementation guidelines.
Qualitative and quantitative analyses of our model are presented in Sect. 5.
Section 6 concludes the paper and provides directions for future research.

2 Related Work

GANs were originally implemented as feedforward multi-layer perceptrons, which
did not perform well on generating complex images like those in the CIFAR-
10 dataset [12]. They suffered from mode collapse and were highly unstable to
train [16,19]. In an attempt to solve these problems, Radford et al. [16] presented
a set of guidelines to design GANs as a class of CNNs, giving rise to DCGANs,
which have since been a dominant approach to GAN network architecture design.
Im et al. [8] later proposed the use of Recurrent Neural Networks instead of CNNs
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as generators for GANs, creating a new class of GANs referred to as Generative
Recurrent Adversarial Networks or GRANs. On a related note, Odena et al. [15]
proposed an architectural change to GANs in the form of a discriminator that
also acts as a classifier for class-conditional image generation. This approach for
designing discriminators has been a popular choice for conditional GANs [14]
recently. Our work is similar in line with [15] in the sense that we propose an
architectural change to discriminators. We propose to transition from designing
GAN discriminators as CNNs to formulating them as CapsNets, creating a new
class of GANs called CapsuleGANs. This idea can be extended to encoder-based
GANs like BiGAN [3] where the encoder can be modeled as a CapsNet also.

3 Preliminaries

3.1 Generative Adversarial Networks

Goodfellow et al. [5] introduced GANs as a framework for generative modeling
of data through learning a transformation from points belonging to a simple
prior distribution (z ∼ pz) to those from the data distribution (x ∼ pdata). The
framework is composed of two models that play an adversarial game: a generator
and a discriminator. While the generator attempts to learn the aforementioned
transformation G(z), the discriminator acts as a critic D(·) determining whether
the sample provided to it is from the generator’s output distribution (G(z) ∼ pG)
or from the data distribution (x ∼ pdata), thus giving a scalar output (y ∈ {0, 1}).
The goal of the generator is to fool the discriminator by generating samples that
resemble those from the real data while that of the discriminator is to accurately
distinguish between real and generated data. The two models, typically designed
as neural networks, play an adversarial game with the objective as shown in Eq. 1.

min
G

max
D

V (D,G) = Ex∼pdata(x) [log D(x)] + Ez∼pz(z) [log(1 − D(G(z)))] (1)

3.2 Capsule Networks

The concept of capsules was first introduced by Hinton et al. [7] as a method
for learning robust unsupervised representation of images. Capsules are locally
invariant groups of neurons that learn to recognize the presence of visual enti-
ties and encode their properties into vector outputs, with the vector length
(limited to being between zero and one) representing the presence of the entity.
For example, each capsule can learn to identify certain objects or object-parts
in images. Within the framework of neural networks, several capsules can be
grouped together to form a capsule-layer where each unit produces a vector
output instead of a (conventional) scalar activation.

Sabour et al. [18] introduced a routing-by-agreement mechanism for the inter-
action of capsules within deep neural networks with several capsule-layers, which
works by pairwise determination of the passage of information between capsules
in successive layers. For each capsule h

(l)
i in layer l and each capsule h

(l+1)
j in
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the layer above, a coupling coefficient cij is adjusted iteratively based on the
agreement (cosine similarity) between hi’s prediction of the output of hj and its
actual output given the product of cij and hi’s activation. Thus, the coupling
coefficients inherently decide how information flows between pairs of capsules.
For a classification task involving K classes, the final layer of the CapsNet can
be designed to have K capsules, each representing one class. Since the length of
a capsule’s vector output represents the presence of a visual entity, the length of
each capsule in the final layer (‖vk‖) can then be viewed as the probability of
the image belonging to a particular class (k). The authors introduce a margin
loss LM for training CapsNets for multi-class classification, as show in Eq. 2:

LM =
K∑

k=1

Tk max(0,m+ − ‖vk‖)2 + λ(1 − Tk)max(0, ‖vk‖ − m−)2 (2)

where Tk represents target labels, m+ = 0.9, m− = 0.1 and λ = 0.5, a down-
weighting factor for preventing initial learning from shrinking the lengths of
the capsule outputs in the final layer. The authors also add regularization to
the network in the form of a weighted image reconstruction loss, where the
vector outputs vk of the final layer are presented as inputs to the reconstruction
network.

4 Generative Adversarial Capsule Networks

GANs have been mostly used for modeling the distribution of image data and
associated attributes, as well as for other image-based applications like image-
to-image translation [10] and image synthesis from textual descriptions [17].
The generator and the discriminator have conventionally been modeled as deep
CNNs following the DCGAN guidelines [16]. We follow this convention in design-
ing the CapsuleGAN generator as a deep CNN. However, motivated by the
stronger intuition behind and the superior performance of CapsNets with respect
to CNNs [18], we design the proposed CapsuleGAN framework to incorporate
capsule-layers instead of convolutional layers in the GAN discriminator, which
fundamentally performs a two-class classification task.

The CapsuleGAN discriminator is similar in architecture to the CapsNet
model presented in [18]. CapsNets, in general, have a large number of param-
eters because, firstly, each capsule produces a vector output instead of a single
scalar and, secondly, each capsule has additional parameters associated with all
the capsules in the layer above it that are used for making predictions about
their outputs. However, it is necessary to keep the number of parameters in
the CapsuleGAN discriminator low due to two reasons: (1) CapsNets are very
powerful models and can easily start harshly penalizing the generator early on
in the training process, which will cause the generator to either fail completely
or suffer from mode collapse, and (2) current implementations of the dynamic
routing algorithm are slow to run. It is important to note that first reason for



530 A. Jaiswal et al.

keeping the number of parameters of the CapsNet low falls in line with the pop-
ular design of convolutional discriminators as relatively shallow neural networks
with low numbers of relatively large-sized filters in their convolutional layers.

The final layer of the CapsuleGAN discriminator contains a single capsule,
the length of which represents the probability whether the discriminator’s input
is a real or a generated image. We use margin loss LM instead of the conventional
binary cross-entropy loss for training our CapsuleGAN model because LM works
better for training CapsNets. Therefore, the objective of CapsuleGAN can be
formulated as shown in Eq. 3.

min
G

max
D

V (D,G)

= Ex∼pdata(x) [−LM (D(x),T = 1)] + Ez∼pz(z) [−LM (D(G(z)),T = 0)] (3)

In practice, we train the generator to minimize LM (D(G(z)),T = 1) instead
of minimizing −LM (D(G(z)),T = 0). This essentially eliminates the down-
weighting factor λ in LM when training the generator, which does not contain
any capsules.

5 Experimental Evaluation

We evaluate the performance of CapsuleGANs at randomly generating images
through a series of experiments as described below, in which we compare Cap-
suleGANs with convolutional GANs both qualitatively and quantitatively. We
implement both the GAN models with the same architecture for their genera-
tors. Both convolutional GAN and the proposed CapsuleGAN models are imple-
mented using the publicly available keras-adversarial3 and CapsNet-Keras4

packages.

5.1 Data

We provide results of our experiments on MNIST and CIFAR-10 datasets. The
MNIST dataset consists of 28 × 28 sized grayscale images of handwritten digits.
The CIFAR-10 dataset contains 32 × 32 color images grouped into ten classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

5.2 Visual Quality of Randomly Generated Images

We qualitatively compare images generated randomly using both GAN and
CapsuleGAN. Figures 1a and b show images generated using the standard
convolutional-GAN and CapsuleGAN, respectively, on the MNIST dataset.
Qualitatively, both CapsuleGAN and the standard convolutional-GAN produce
crisp images of similar quality, that sometimes do not resemble any digit. How-
ever, the image-grid generated using GAN seems to have less diversity in terms
3 https://github.com/bstriner/keras-adversarial.
4 https://github.com/XifengGuo/CapsNet-Keras.

https://github.com/bstriner/keras-adversarial
https://github.com/XifengGuo/CapsNet-Keras
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(a) Convolutional GAN (b) CapsuleGAN

Fig. 1. Randomly generated MNIST images

of generated classes of digits. Figures 2a and b show the results of this experi-
ment on the CIFAR-10 dataset. Both the models produce diverse sets of images
but images generated using CapsuleGAN look cleaner and crisper than those
generated using convolutional-GAN. We provide results of our quantitative eval-
uation in the following subsections for deeper analyses of the image generation
performance.

5.3 Generative Adversarial Metric

Im et al. [9] introduced the generative adversarial metric (GAM) as a pairwise
comparison metric between GAN models by pitting each generator against the
opponent’s discriminator, i.e., given two GAN models M1 = (G1,D1) and M2 =
(G2,D2), G1 engages in a battle against D2 while G2 against D1. The ratios of
their classification errors on real test dataset and on generated samples are then
calculated as rtest and rsamples. Following their implementation5, in practice,
the ratios of classification accuracies are calculated instead of errors to avoid
numerical problems, as shown in Eqs. 4 and 5

rsamples =
A(DGAN (GCapsuleGAN (z)))
A(DCapsuleGAN (GGAN (z)))

(4)

rtest =
A(DGAN (xtest))

A(DCapsuleGAN (xtest))
(5)

Therefore, for CapsuleGAN to win against GAN, both rsamples < 1 and
rtest � 1 must be satisfied. In our experiments, we achieve rsamples = 0.79

5 https://github.com/jiwoongim/GRAN/battle.py.

https://github.com/jiwoongim/GRAN/battle.py
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(a) Convolutional GAN (b) CapsuleGAN

Fig. 2. Randomly generated CIFAR-10 images

Table 1. Results of semi-supervised classification - MNIST

Model Error rate

n = 100 n = 1,000 n = 10,000

Convolutional GAN 0.2900 0.1539 0.0702

CapsuleGAN 0.2724 0.1142 0.0531

and rtest = 1 on the MNIST dataset and rsamples = 1.0 and rtest = 0.72 on
the CIFAR-10 dataset. Thus, on this metric, CapsuleGAN performs better than
convolutional GAN on the MNIST dataset but the two models tie on the CIFAR-
10 dataset.

5.4 Semi-supervised Classification

We evaluate the performance of the convolutional GAN and the proposed Cap-
suleGAN on semi-supervised classification. In this experiment, we randomly
generate 50, 000 images using both GAN and CapsuleGAN. We use the Label
Spreading algorithm [20] with the generated images as the unlabeled exam-
ples and n real labeled samples, with n ∈ {100, 1000, 10000}. We use the
scikit-learn6 package for these experiments. Table 1 shows the results of our
experiments on MNIST while Table 2 shows those on CIFAR-10. The error rates
are high in most experimental settings because we provide raw pixel values as fea-
tures to the classification algorithm. However, this allows us to more objectively
compare the two models without being biased by feature extraction methods.

6 http://scikit-learn.org/.

http://scikit-learn.org/
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Table 2. Results of semi-supervised classification - CIFAR-10

Model Error rate

n = 100 n = 1,000 n = 10,000

Convolutional GAN 0.8305 0.7587 0.7209

CapsuleGAN 0.7983 0.7496 0.7102

The results show that the proposed CapsuleGAN consistently outperforms con-
volutional GAN for all the tested values of n with a margin of 1.7−3.97% points
for MNIST and 0.91−3.22% points for CIFAR-10. Thus, CapsuleGAN generates
images that are more similar to real images and more diverse than those gener-
ated using convolutional GAN, leading to better semi-supervised classification
performance on the test dataset.

6 Discussion and Future Work

Generative adversarial networks are extremely powerful tools for generative mod-
eling of complex data distributions. Research is being actively conducted towards
further improving them as well as making their training easier and more stable.
Motivated by the success of CapsNets over CNNs at image-based inference tasks,
we presented the generative adversarial capsule network (CapsuleGAN), a GAN
variant that incorporates CapsNets instead of CNNs as discriminators when
modeling image data. We presented guidelines for designing CapsuleGANs as
well as an updated objective function for training CapsuleGANs. We showed
that CapsuleGANs outperform convolutional-GANs on the generative adversar-
ial metric and at semi-supervised classification with a large number of unla-
beled generated images and a small number of real labeled ones, on MNIST
and CIFAR-10 datasets. This indicates that CapsNets should be considered as
potential alternatives to CNNs for designing discriminators and other inference
modules in future GAN models.

We plan to conduct theoretical analysis of the use of margin loss within
the GAN objective. We purposefully did not incorporate many GAN training
tricks to fairly evaluate our contributions. The results presented in this paper
motivate the use of CapsNets as opposed to CNNs for encoders in GAN variants
like BiCoGAN [11]. We see this as an important direction for future research.
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