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Abstract. Pose-Invariant Face Recognition (PIFR) has been a serious
challenge in the general field of face recognition (FR). The performance
of face recognition algorithms deteriorate due to various degradations
such as pose, illuminaton, occlusions, blur, noise, aliasing, etc. In this
paper, we deal with the problem of 3D pose variation of a face. for that
we design and propose PosIX Generative Adversarial Network (PosIX-
GAN) that has been trained to generate a set of nice (high quality)
face images with 9 different pose variations, when provided with a face
image in any arbitrary pose as input. The discriminator of the GAN has
also been trained to perform the task of face recognition along with the
job of discriminating between real and generated (fake) images. Results
when evaluated using two benchmark datasets, reveal the superior per-
formance of PosIX-GAN over state-of-the-art shallow as well as deep
learning methods.
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1 Introduction

Deep learning (DL) has attracted several researchers in the field of computer
vision due to its ability to perform face and object recognition tasks with high
accuracy than the traditional shallow learning systems. The convolutional layers
present in the deep learning systems help to successfully capture the distinctive
features of the face [19,30]. For biometric authentication, face recognition (FR)
has been preferred due to its passive nature. Most solutions for FR fail to per-
form well in cases involving extreme pose variations as in such scenarios, the
convolutional layers of the deep models are unable to find discriminative parts
of the face for extracting information.

Most of the architectures proposed earlier deal with the scenarios where
the face images used for training as well as testing the deep learning models
[3,15,25] are frontal and near-frontal. Further, the recent use of convolutional
neural network (CNN) based models [6,7,15,19,23,25,29], which provide very

c© Springer Nature Switzerland AG 2019
L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11131, pp. 427–443, 2019.
https://doi.org/10.1007/978-3-030-11015-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11015-4_31&domain=pdf
http://orcid.org/0000-0001-7144-212X
http://orcid.org/0000-0003-2325-1489
http://orcid.org/0000-0002-2823-9211
https://doi.org/10.1007/978-3-030-11015-4_31


428 A. Bhattacharjee et al.

high accuracies for FR applications even in the wild scenarios, fail to provide
acceptable recognition rates in scenarios with pose variations in faces. These
models fail to perform well when the face images provided during testing are at
extreme poses due to the inability of the models to find discriminative features
in the images provided. On the contrary, our model uses a limited number of
face images at different poses to train a GAN model (PosIX-GAN), where nine
separate generator models learn to map a single face image at any arbitrary pose
to nine specific poses and the discriminator performs the task of face recogni-
tion along with discriminating a synthetic face from a real-world sample. In the
following, we present brief review of work done on face recognition using CNNs,
generative adversarial networks (GANs) as well as shallow methods for head
pose estimation and face recognition (FR).

The method proposed by [37] learns a new face representation: the face
identity-preserving (FIP) features. Unlike conventional face descriptors, the FIP
features can significantly reduce intra-identity variances, while maintaining dis-
criminativeness between identities. The work by Zhu et al. [38] proposes a novel
deep neural net, named multi-view perceptron (MVP), which can untangle the
identity and view features, and in the meanwhile infer a full spectrum of multi-
view images, given a single 2D face image. Kan et al. [14] proposed a multi-
view deep network (MvDN), which seeks for a non-linear discriminant and view-
invariant representation shared between multiple views. The method proposed
by Yin et al. [35] study face recognition as a multi-task problem where identity
classification is the main task with pose, illumination and expression estimations
being the side tasks. The goal is to leverage the side tasks to improve the perfor-
mance of face recognition. Yim et al. [34] proposes a new deep architecture based
on a novel type of multitask learning, which achieves superior performance by
rotating a face from an arbitrary pose and illumination image to a target-pose
face image (target pose controlled by the user) while preserving identity. The
method proposed by Wu et al. [32] studies a Light CNN framework to learn a
deep face representation from the large-scale data with massive noisy labels The
method makes use of a Max-Feature-Map (MFM) operation to obtain a compact
representation and perform feature filter selection. The method proposed by Tran
et al. [30] utilizes an encoder-decoder structured generator that can frontalize or
rotate a face with an arbitrary pose, even upto the extreme profile. It explicitly
disentangles the representation learning from the pose variation through the pose
code in generator and the pose estimation in discriminator. It also adaptively
fuses multiple faces to a single representation based on the learnt coefficients. The
TP-GAN method proposed by Huang et al. [13] performs photorealistic frontal
view synthesis by simultaneously perceiving global structures and local details.
It makes use of four landmark located patch networks to attend to local textures
in addition to the commonly used global encoder-decoder network. The method
proposed by Liu et al. [17] present a novel multi-task adversarial network based
on an encoder-discriminator-generator architecture where the encoder extracts
a disentangled feature representation for the factors of interest and the discrimi-
nators classify each of the factors as individual tasks. Yang et al. [33] proposes a
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novel recurrent convolutional encoder-decoder network that is trained end-to-end
on the task of rendering rotated objects starting from a single image.

The method proposed by Gourier et al. [10] addresses the problem of esti-
mating head pose over a wide range of angles from low-resolution images. It uses
grey-level normalized face images for linear auto-associative memory where one
memory is computed for each pose using a Widrow-Hoff learning rule. Huang
et al. [12] use Gabor feature based random forests as the classification tech-
nique since they naturally handle such multi-class classification problem and are
accurate and fast. The two sources of randomness, random inputs and random
features, make random forests robust and able to deal with large feature spaces.
The method proposed by Tu et al. [31] localizes the nose-tip of the faces and
estimate head poses in studio quality pictures. After the nose-tip in the train-
ing data are manually labeled, the appearance variation caused by head pose
changes is characterized by tensor model which is used for head pose estimation.

The works proposed in [27,29,39] mainly deal with multi-stage complex sys-
tems, which take the convolutional features obtained from their model and then
use PCA (Principal Component Analysis) for dimensionality reduction, followed
by classification using SVM. Zhu et al. [39] tries to “warp” faces into a canon-
ical frontal view using a deep network, for efficient classification. PCA on the
network output in conjunction with an ensemble of SVMs is used for the face
verification task. Taigman et al. [29] propose a multi-stage approach that aligns
faces to a general 3D shape model combining with a multi-class (deep) network
which is trained to perform the FR task. The compact network proposed by Sun
et al. [26–28] uses an ensemble of 25 of these networks, each operating on a dif-
ferent face patch. The FaceNet proposed by Schroff et al. [23] uses a deep CNN
to directly optimize the embedding itself, based on the triplet loss formulated
by a triplet mining method.

Deep Convolutional GAN [20] (DCGAN) first introduced as a convolutional
architecture led to improved visual quality in Computer Vision (CV) applica-
tions. More recently, Energy Based GANs [36] (EBGANs) were proposed as a
class of GANs that aim to model a discriminator D(x) as an energy function.
This variant converges in a more stable manner and is both easy to train and
robust to hyper-parameter variations. Some of these benefits were attributed
to the larger number of targets in the discriminator. EBGAN also implements
its discriminator as an auto-encoder with a per-pixel error. While earlier vari-
ants of GAN lacked an analytical measure of convergence, Wasserstein GANs
[1] (WGANs) recently introduced a loss function that acts as a measure of con-
vergence. However, in their implementation, this comes at the expense of slow
training, but with the benefits of stability and better mode of coverage [1]. The
BEGAN model [4] utilizes a new equilibrium enforcing method paired with a
loss derived from the Wasserstein distance for training auto-encoder based Gen-
erative Adversarial Networks. It also provides a new approximate convergence
measure, fast and stable training and high visual quality.

Most of the methods of FR/FV discussed above do not show results on
Head Pose Image [9] and MultiPIE [11] datasets which have high degree of
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pose variation in the query faces. Drawbacks of recent GAN based methods
are blur, deformities as well as inaccuracy in the synthesis process, as well as
instability during training. The contribution of our work on PosIX-GAN model
includes synthesis of face images at various poses given an input face image
at any arbitrary pose, without much of the aforementioned drawbacks. Apart
from this, the proposed model simultaneously performs face recognition with
high accuracy. Results are reported using 2 benchmark face datasets with pose
variation.

In the rest of the paper, Sect. 2 gives an overview of Generative Adversarial
Networks (GANs), Sect. 3 describes the proposed network architecture, along
with details about the loss functions used for training. Section 4 provides infor-
mation about the various datasets used for evaluation of our model. Section 5
reports quantitative as well as qualitative results obtained from experiments
performed and observations. Finally, Sect. 6 concludes the paper.

2 Generative Adversarial Network (GAN)

Generative Adversarial Networks (GAN) [8] are based on the adversarial training
of two CNN-based models: (i) a generative model (G), which captures the true
data distribution, pdata and generates images sampled from a distribution pz,
the distribution of the training data provided as input; and (ii) a discriminator
model (D), which discriminates between the original images, sampled from pdata,
and the images generated by G. G maps pz from a latent space to the data
distribution pdata of interest, while D discriminates between instances from pdata
and those generated by G. The adversarial training adopted for GAN, derived
from Schmidhuber [22], involves the formulation of an optimization function G to
maximize the error in D (i.e., “fool” D by producing novel synthesized instances
that appear to have come from pdata). Thus the adversarial training procedure
followed for GAN, resembles a two player minimax gaming strategy between
D and G of a zero-sum game [5] with the value function V (G,D). The overall
objective function minimized by GANs [8], is given as:

min
G

max
D

V (G,D) = Ex∼pdata
[log D(x)] + Ex∼pz

[log(1 − D(G(z)))] (1)

To learn pz over data x, a mapping to data space is represented as G(z; θg),
where G is a differentiable function represented by a CNN with parameter set
θg. Another CNN based deep network represented by D(x; θd) outputs a single
scalar [0/1]. D(x) represents the probability that x is generated from the true
data rather than pz.

The major drawback of such an adversarial system is that GANs fail to
capture the categorical information, when all the pixels of the image samples
obtained from two distributions, pdata and pz are largely different from each
other. We aim to overcome the two drawbacks specified above, in addition to
the severe degradation in performance of the FR algorithms under severe pose
variations, thus forming the underlying motivation of the work presented in this
paper.
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3 The Proposed Network

The proposed architecture of PosIX-GAN deals with generating faces at nine
different poses from an input face (at any arbitrary pose), along with the task
of pose invariant face recognition (PIFR) with the help of nine categorical dis-
criminators which produce an output vector ∈ R

N+1 for every image where N
signifies the number of categories and 1 signifies whether the input to the net-
work Di is real or fake. For experimentation, we resized the images across all
datasets to 64 × 64 pixels, to be provided as input to the generator module of
PosIX-GAN. The overall architecture is detailed in Fig. 1, with the individual
generator (G) and the discriminator (D) are illustrated in Figs. 2 and 3.

Fig. 1. The proposed architecture of PosIX-GAN, used in our work for PIFR. GE
denotes the shared encoder of the generator network, GDi; i = {1, 2, . . . , 9} denotes
nine decoder networks connected to GE. Fi and Ri refers to the set of fake and original
images. ID refers to the class IDs generated by the set of nine discriminator Di; i =
{1, 2, . . . , 9} which also generates 0/1 to indicate a real or fake image. (best viewed in
color)
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3.1 Architecture Details

Figure 1 shows an overview of the architecture of PosIX-GAN. The network
consists of two parts, generator and discriminator. The generator itself has two
components: a shared encoder network GE and nine decoder networks GDi;
i = {1, 2, . . . , 9} and Gi is defined as (GE+GDi). The components are described
as follows:

The encoder is a deep-CNN based architecture, shown in Fig. 2(a), which
takes input images with resolution of 64×64 pixels and outputs a vector ∈ R

256.
This encoder architecture has been adopted from that proposed in BEGAN
model [4]. The encoder maps the input images to a latent space to produce an
encoded vector, which acts as an input to each of the nine decoder networks.

The proposed PosIX-GAN model consists of nine decoder modules (Fig. 2(b))
which are attached to a single encoder network. The output from the encoder is
fed as the input to each of the decoder networks. The decoder output Fi is then
used along with a separate batch of real images Ri with distinct poses angles
(different for every decoder network), while also preserving class information, to
evaluate and minimize the patch-wise MSE loss described later in Algorithm 1.
This helps the decoder module to learn to generate images at a specific pose
given any image with an arbitrary pose.

The proposed model also consists of nine separate discriminator networks
Di; i = {1, 2, . . . , 9}, shown in Fig. 3, which performs two tasks, recognizing fake
images (Fi) generated by GDi from original images (Ri) along with classifying
input images into separate categories. Thus, the discriminator minimizes three
loss components, the loss occurred when an original image is classified as a fake
image, loss incurred due classification of generated image as real image and the
categorical cross entropy loss which ensures correct classification of the input
images.

It may be noted that as the model consists of nine discriminator modules, it
may produce nine class-ids for the same input image. Thus, to evaluate the final
class-id for a given image during test time, we deploy the Max-Voting mechanism
[16]. It is to be noted that as the images provided to the decoder networks have
a small variation in pose and the model has already been trained sufficiently to
discriminate between different classes with varied tilt and pan angles, a group
of decoder networks always vote for the same class, which helps to perform
max-voting.

3.2 Loss Functions

The loss functions which have been employed in the proposed PosIX-GAN model
are defined as follows:

Patch-Wise MSE Loss. Patch-wise MSE (PMSE) loss is derived from the
mean-squared error between two images. Let p1 and p2 be the two patches
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Algorithm 1. Conceptual steps for Patch-wise MSE loss evaluation
function pmse(im1, im2)

// PATCH SIZE ← 11 × 11 px

// stride ← 3 × 3 px

mse(1) ← 0; mse(2) ← 0; mse(3) ← 0
foreach patch {p1, p2} in {im1, im2} do

mse(1) := mse(1) + MSE(p
(1)
1 , p

(1)
2 )

mse(2) := mse(2) + MSE(p
(2)
1 , p

(2)
2 )

mse(3) := mse(3) + MSE(p
(3)
1 , p

(3)
2 )

// α(i) ← ith channel of α
// MSE(a, b): as in equation 2

loss := 0.2989 × mse(1) + 0.5870 × mse(2)0.1141 × mse(3)

P avgloss := loss
|p1|

// |pi| ← total number of patches

return P avgloss

extracted from a pair: image1 and image2. The PMSE between image1 and
image2, is calculated as:

Lpmse(image1, image2) =
|C|∑

i=1

λi

|p|
|p|∑

j=1

‖p
(i,j)
1 − p

(i,j)
2 ‖2 (2)

where, |C| & |p| specifies the number of channels and patches in the image, while
the subscript k in pk represents the image from which the patch is extracted and
λi’s are the weights of each channel in the image (λ = {0.2989, 0.5870, 0.1141}
as used in our experimentations). A weighted linear combination of the three
MSE’s components is then used to estimate the overall MSE for each patch as
given in Algorithm 1. PMSE is the average MSE over all the patches.

Categorical Cross Entropy Loss. Categorical cross-entropy [24] is a loss
function used effectively in the field of deep learning (DL) for multi-class classi-
fication problems and sigmoid output units. The loss function is given as:

Lcce(X,Y ) = − 1
n

n∑

i=1

y(i) ln a(x(i)) (3)

where, X =
{
x(1), . . . , x(n)

}
is the set of input examples in the training dataset,

and Y =
{
y(1), . . . , y(n)

}
is the corresponding set of labels for those input exam-

ples. The function a(x) represents the output of the neural network (perceptron)
given input x.
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3.3 Training using Multi-objective Adversarial Loss Function

Adversarial training has been used for the training of PosIX-GAN, which min-
imizes the loss functions within generator (Ladv

G ) and discriminator (Ladv
D ).

The encoder network transforms the input image into a 256-dimensional vector
which is then fed to each of the nine decoder networks, producing nine 64 × 64
px. images at different poses. Thus, the adversarial loss corresponding to G is
given as:

Ladv
G = Lcce(D(G(IB)),1) + Lcce(D(G(IB)), y) + Lpmse(IBr , G(IB)) (4)

where, IB are the real-world face images and B indicates the batch, while r
represents nine specific pose angles (see Sect. 4 for further details.), y are the class
labels. Lpmse and Lcce are defined earlier in Eqs. 2 and 3. The three components
of Eq. 4 are described subsequently. To ensure that the generated images are
similar to the original image, the first component is formulated as:

Lcce(D(G(IB)),1) =
9∑

i=1

Lcce(Di(Gi(IB)),1) (5)

The following loss function captures the class information and helps to ensure
that the generated images resemble the real images of the same class:

Lcce(D(G(IB)), y) =
9∑

i=1

Lcce(Di(Gi(IB)), y) (6)

Finally, the PMSE loss function is given as:

Lpmse(IBr , G(IB)) =
9∑

i=1

Lpmse((IBr )i, Gi(IB)) (7)

It is to be noted that (IBr )i corresponds to Ri as shown in Fig. 1, for each
decoder GDi. Each of the decoder modules of the generator is fed with the
generated images. The decoder modules make use of corresponding real images
of the same class at a predefined pose along with these generated images to find
a mapping between any arbitrary image and the generated image at a certain
pose, while also preserving class-information by minimizing the patch-wise MSE
loss which is described in Sect. 3.2.

Post generation of images by Gi, the discriminators Di (shown in Fig. 3)
perform two tasks: (a) it discriminates the images that are generated by G from
the original images, and (b) also classifies the images to provide their class-IDs.
The training of D is also based on the adversarial loss, described as:

Ladv
D = Lcce(D(IBr ),1) + Lcce(D(G(IB)),0) + Lcce(D(G(IB)), y) (8)

where, Lcce(D(G(IB)), y) is the categorical cross-entropy loss. The three terms
of Eq. 8 are further described subsequently. The first loss component helps the
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Fig. 2. The architecture of the Generator module Gi which contains a (a) shared
encoder module, and a set of nine (b) decoder modules (best viewed in color). (Color
figure online)

Fig. 3. The architectural details of a single Discriminator module (Di) (see Fig. 1)
(best viewed in color). (Color figure online)

discriminator network to learn to correctly classify the original images as real,
given as:

Lcce(D(IBr ),1) =
9∑

i=1

Lcce(Di(IBr ),1) (9)

The following loss component ensures that the images generated by the gener-
ator network are correctly identified as fake images by the discriminator network:

Lcce(D(G(IB)),0) =
9∑

i=1

Lcce(Di(Gi(IB)),0) (10)

Finally, the last term of the loss function (Eq. 8) given below helps the dis-
criminator network to correctly classify each face image.

Lcce(D(G(IB)), y) =
9∑

i=1

Lcce(Di(Gi(IB)), y) (11)
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The introduction of the class-IDs reinforces stabilization during adversarial
training of PosIX-GAN, facilitating a faster convergence [21] of the network to
an equilibrium. As the nine discriminators produce nine labels for the same input
image, we use max voting mechanism [16] to ascertain the class label for a certain
image during testing.

4 Datasets Used for Experimentation

We have used two datasets for experimentation purposes, viz. Head pose Image
Database (HPID) [9] and the Multi-PIE dataset [11]. The dataset statistics are
described below:

4.1 Head Pose Image Database (HPID)

The head pose image database is a benchmark of 2790 monocular face images of
15 persons with variations of pan and tilt angles from −90 to +90◦. Two series of
images were captured for each person, having 93 images (each having a distinct
pose) in each series. The purpose of having 2 series per person is to be able to
train and test algorithms on known and unknown faces. People in the database
wear glasses or not and have various skin color. Background is willingly neutral
and uncluttered in order to focus on face operations. Figure 4 shows the pose
variations present in the dataset where the values represented as (·, ·) on top of
the images indicate the (tilt, pan) angles.

Fig. 4. A few samples from the Head Pose Image Dataset (HPID) [10] showing the pose
variations that are present in the dataset (best viewed in color). The values represented
as (·, ·) on top of the images indicate the (tilt, pan) angles.

For the purpose of our experimentation, we make use of the complete series
1 and 40% of series 2 for training the PosIX-GAN and use the rest for testing
purposes. For the patch-wise MSE loss, we separate a few images per subject
from the training set itself and group them into nine sets by the nine tilt angles
present across the dataset while clubbing together images at different pan angles
under each category, as shown above in Fig. 4. These faces are then utilized by
the decoder network to evaluate the patch-wise MSE loss.

4.2 Multi-PIE Dataset

To systematically capture images with varying poses and illuminations a system
of 15 cameras and 18 flashes connected to a set of Linux PCs was used. Thirteen
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cameras were located at head height, spaced at 15◦ intervals, and two additional
cameras were located above the subject, simulating a typical surveillance view.
During a recording session 20 images were captured for each camera: one image
without any flash illumination, 18 images with each flash firing individually,
and then another image without any flash. Taken across all cameras a total
of 300 images was captured within 0.7 seconds. Figure 5 shows a few samples
from the Multi-PIE dataset where the values on top of the images indicate the
corresponding pan angles.

Fig. 5. A few samples from the Multi-PIE dataset [11] showing the pose variations
present in the dataset (best viewed in color). The values on top of the images indicate
the corresponding pan angles. (Color figure online)

Subjects were seated in front of a blue background in close proximity of
the camera. The resulting images are 3072 × 2048 in size with the inter-pupil
distance of the subjects typically exceeding 400 pixels. The part of the dataset
with neutral expression was only used for experimentation purposes.

Images across Sessions 1–4 with neutral facial expressions was used for exper-
imentation purposes. As our method does not deal with low illumination images,
we only used well illuminated face images (file names ending with 06–09) at all
pose variations, except Sections 08 1 and 19 1, for experimentation. The fil-
tered data, thus obtained, was randomly partitioned into training (70%) and
test (30%) data. As in the case of HPID, a few samples were seperated out from
the training set (specifically, from the following nine Sections 04 1, 05 0, 05 1,
08 0, 09 0, 13 0, 14 0, 19 0, 20 0; for the nine decoder networks) and divided
into the nine pan angles as shown above in Fig. 5. These nine set of images were
then provided as input to the nine decoder networks in G for evaluation of the
PMSE loss, thus enabling each of the networks to learn a mapping between any
arbitrary pose to a predefined pose (separate for every decoder GDi).

5 Experimental Results and Observations

The experimentations are performed on a machine with Dual-Xeon processor
and 256 GB RAM, having 4 GTX-1080 Ti GPUs. The implementations are all
coded in Keras platform using tensorflow-backend. The model weights were
all randomly initialized and was trained on GPU for 5–6 hours. The batch size
was kept to 10 and the input size of the network is kept to 64 × 64 pixels.

In the following sections, we report the quantitative results (using Rank-1
recognition rates) as well as qualitative results (faces generated at various poses).
We also provide with results where patch-wise MSE loss is not incorporated using
the training phase to show the effectiveness of the PMSE loss to obtain crisp
result.
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Table 1. Rank-1 Recognition Rate for different state-of-the-art methods on the Multi-
PIE [11] dataset (in %). Results in bold shows the best performance. All the results
except the last row (ours) have been directly reported from [13,30,32].

Sl. Algorithm ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦

1 Zhu et al. [37] 90.7 80.7 64.1 45.9 - -

2 Zhu et al. [38] 92.8 83.7 72.9 60.1 - -

3 Kan et al. [14] 100 100 90.6 85.9 - -

4 Yin et al. [35] 99.2 98.0 90.3 92.1 - -

5 Yim et al. [34] 76.64 79.1 78.4 79.2 - -

6 Wu et al. [32] 100 99.9 99.6 95.0 32.3 9.0

7 Tran et al. [30] 94.0 90.1 86.2 83.2 - -

8 Liu et al. [17] 95.3 89.7 87.9 84.1 - -

9 Huang et al. [13] 98.7 98.0 95.4 87.7 77.4 64.6

10 Ours 100 100 100 97.8 85.3 80.6

5.1 Quantitative Results

Table 1 reports the experimental findings of our proposed method, com-
pared with eight state-of-the-art methods, using the Multi-PIE dataset [11].
All the images were cropped using Chehra [2] to discard the background.
The Rank-1 recognition rates of the methods listed in Table 1 have been directly
reported from [13,30,32] for the dataset. The missing values in the table are
not reported by the respective authors in their paper. Although, for lower pose
variations the method proposed by Wu et al. [32] performs the 2nd best, but it
fails at major pose variations like ±75 − 90◦, where the TP-GAN [13] performs
the 2nd best. Comparing all the results reported in Table 1, it may be noted that
our method outperforms all other techniques by a considerable margin.

Experiments have also been carried out on the Head Pose Images Dataset
[9] where the dataset partition strategy mentioned in Sect. 4.1 has been followed
for evaluating the proposed method. The preprocessing procedure in this case
remains the same as that done for Multi-PIE dataset. Table 2 reports the Rank-1
recognition rates of the proposed method along with a few classical methods on
this dataset. From Table 2, it can be seen that our method outperforms all other
compared methods by a large margin. The method proposed by Huang et al. [13]
again provides the 2nd best performance.

5.2 Qualitative Results

In this section, we show a few synthetic images generated by PosIX-GAN and also
compare our performance with a hybrid BEGAN [4] model implemented without
the PMSE loss. Figure 6 shows the generated result by our proposed model
PosIX-GAN. The second set of images shown in Fig. 7, which are generated
without the use of PMSE loss, exhibit lack the crispness compared to that in
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Table 2. Rank-1 Recognition Rate for different state-of-the-art methods on the Head
Pose Image Dataset [9] dataset. Results in bold shows the best performance. All the
results except the last row (ours) have been directly reported from [12].

Sl. Algorithm Classification accuracy

Gourier experimental settings see Table 2 of [18]

1 Human Performance [10] 59.0

2 Associative Memories [10] 43.9

3 VRF+LDA [12] 66.9

Jilin Tu experimental settings see Table 2 of [18]

4 High-order SVD [31] 54.8

5 PCA [31] 57.9

6 LEA [31] 50.6

7 VRF+LDA [12] 62.6

Proposed experimental settings (see Sect. 4.1)

8 Huang et. al [13] 81.8

9 Ours 92.1

Fig. 6. The first set of images have good clarity and are closer to the ground
truth compared to the second of images which are blurry with aliasing effects
throughout. The numerical values at the end of each row in Figs. 6 and 7 indicate
the average PSNR/SSIM values for those in each row.

Further, we also compare the synthesis results of DR-GAN [30], MTAN [17]
and RNN [33] methods with the proposed PosIX-GAN. Figures 8 and 9 show a
few face images generated along with the corresponding PSNR and SSIM values
for every image (grayscale version used here) compared w.r.t. ground truth given
in top row.

The PSNR/SSIM values estimated for the images indicates the supe-
riority of our method compared to the existing state-of-the-art methods.
A noticeable drawback among all methods is their inability to produce crisp
images without deformities at extreme poses. The faces generated by PosIX-
GAN are devoid of any such deformities and are quite crisp even at extreme
pose.

The images generated by the DR-GAN method [30], shown in Fig. 8, exhibit
deformities as well as inaccuracies in the generated faces (beard not present
in the generated images of Multi-PIE [11], while being present in the ground-
truth). The output generated by the MTAN method [17] (Fig. 9; right) is blurry
and the quality of synthesis deteriorates with larger values of the pan angle as
evident from the PSNR/SSIM values. The RNN method [33] performs the 2nd

best in face generation task, which can be verified visually, as well as, from
the PSNR/SSIM values reported for each image in Fig. 9 (left). However, this
method can only generate images upto a pan angle of ±45◦.
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Fig. 6. Images generated by our proposed PosIX-GAN model along with the
PSNR/SSIM values (best viewed in color). The numerical values at the end of each row
indicate the average PSNR/SSIM values for the complete row. (Color figure online)

Fig. 7. Images generated by the hybrid BEGAN model (without PMSE loss) along
with the PSNR/SSIM values for each image (best viewed in color). The numerical
values at the end of each row indicate the average PSNR/SSIM values for the complete
row. (Color figure online)

Fig. 8. Comparison of images generated with DR-GAN [30] with the proposed PosIX-
GAN for Multi-PIE dataset [11] (best viewed in color). (Color figure online)
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Fig. 9. Comparison of images generated with RNN [33] (left) and MTAN [17] (right)
with the proposed PosIX-GAN for Multi-PIE dataset [11] (best viewed in color). (Color
figure online)

6 Conclusion

This paper proposes a single-encoder, multi-decoder based generator model as
a modified GAN boosted by multiple supervised discriminators for generating
face images at different poses, when presented with a face at any arbitrary pose.
The supervised PosIX GAN can act as a pre-processing tool for 3-D face syn-
thesis. The qualitative as well as the quantitative results reveal the superiority
of our proposed technique over few recent state-of-the-art techniques, using two
benchmark datasets for PIFR. The PosIX model is capable of handling extreme
pose variations for generation as well as recognition tasks, which most of the
state-of-the-art techniques fail to achieve. This method also provides a basis for
multiple image 3D face reconstruction, which can be explored in the near future
for generating faces with dense set of pose values.
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