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Abstract. The ability to predict what will happen next from observ-
ing the past is a key component of intelligence. Methods that forecast
future frames were recently introduced towards better machine intelli-
gence. However, predicting directly in the image color space seems an
overly complex task, and predicting higher level representations using
semantic or instance segmentation approaches were shown to be more
accurate. In this work, we introduce a novel prediction approach that
encodes instance and semantic segmentation information in a single rep-
resentation based on distance maps. Our graph-based modeling of the
instance segmentation prediction problem allows us to obtain temporal
tracks of the objects as an optimal solution to a watershed algorithm.
Our experimental results on the Cityscapes dataset present state-of-the-
art semantic segmentation predictions, and instance segmentation results
outperforming a strong baseline based on optical flow.

1 Introduction

Video prediction appears as a natural objective to develop smarter strategies
towards the acquisition of a visual common sense of machines. In the near future,
it could help for planning and robotic applications, for instance by anticipating
human behavior. Predicting future frames has known many developments in the
color space [11,14,21,25,28]. Luc et al. [20] proposed to predict future semantic
segmentations instead of color intensities. They showed that this space was more
relevant, obtaining better results and directly usable high level information.
Recently, Luc et al. [19] introduced the more challenging task of forecast-
ing future instance segmentation. In addition to the prediction of the semantic
category of every single pixel, instance level segmentation also requires the spec-
ification of an object identifier, i.e. the delineation of every object. More specifi-
cally, [19] developed a predictive model in the space of convolutional features of
the state-of-the-art Mask R-CNN segmentation approach. Although this method
leads to the first instance prediction results outperforming a strong optical flow
baseline, it has an extensive training time of about six days, and requires the
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setting of multiple hyperparameters. In addition, the predictions of this feature-
based approach are not temporally consistent, i.e. there is no matching or cor-
respondence between the object instances at time ¢t and ¢ + 1.
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Fig. 1. Our representation enables both future semantic and instance segmentation
prediction, based on distance maps from the different objects contours. For each chan-
nel of an input segmentation, corresponding to a specific class, the segmentation is
decomposed into zeros for background, ones for objects and high values for contours.
Then a convnet is trained to predict the future representation. Taking its argmax lets
us recover the future semantic segmentation, and computing a watershed from it leads
to the future instance segmentation.

We extend semantic segmentation forecasting by proposing a novel represen-
tation that encodes both semantic and instance information, with low training
requirements and temporally consistent predictions. More specifically, from Mask
R-CNN outputs and for each semantic category, we produce a map indicating
the objects’ presence at each spatial position, and boundaries of instances using
distance transforms. An arg-max on the prediction leads to the future seman-
tic segmentation, and the instance segmentation can be obtained by any seeded
segmentation approach, such as a watershed for instance. In the following, we
use “seeds” or “markers” to denote a set of pixels that mark each of the objects
to be segmented. The choice to rely on seeds to obtain the final segmentation
maps is a strength of our approach, allowing us to track the instance prediction
in time, constituting a novel feature in comparison to [19]. In this work, we show
that defining the seeds as a simple linear extrapolation of the centroids’ position
of past objects leads to satisfying results. Our approach is summarized in Fig. 1.
Our contributions are the following:

1. We introduce a simple and memory efficient representation that encodes both
the semantic and the instance-level information for future video prediction.

2. We model the prediction of the final instance segmentation as a graph opti-
mization problem that we solve with a watershed with optimality guarantees.
We show that the proposed solution produces good results compared to a
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strong optical flow baseline, and note that the formulation allows the use of
other seeded graph-based methods.

3. The use of seeds in our final instance segmentation prediction allows us to
incorporate tracking of the objects in a very natural way.

2 Related Work

We focus in this section on related work on instance and graph based segmen-
tation approaches after briefly reviewing video forecasting.

2.1 Video Forecasting

The video prediction task was originally proposed to efficiently model motion
dynamics [25] and demonstrate a utility of the learned representation for other
tasks like semi-supervised classification [28]. This self-supervised strategy was
successfully employed to improve learning abilities in video games [13,23]. Many
improvements were introduced to handle uncertainty such as adversarial training
[21], or VAE modeling [3,12,31].

Diverse spaces of prediction have been considered besides the color intensi-
ties: for instance, flow fields [31], actions [30], poses [32], or bounding boxes of
objects [6]. Choosing the semantic segmentation space like in [20] allows us to
significantly reduce the complexity of the predictions in contrast to RGB val-
ues while reaching a very detailed level of spatial information about the scene.
Exploiting in addition instance segmentations as in [19] is semantically richer
and leads to better anticipated trajectories.

We may notice a complementarity of information arising in forecasting tasks.
For instance, the authors of [18] perform joint semantic segmentation and optical
flow future prediction. In an orthogonal direction, we leverage here the comple-
mentarity of instance and semantic segmentation tasks.

2.2 Instance Segmentation

Among different instance segmentation methods, some are based on recurrent
networks [27], others on watershed transformation [4], or on CRF's [2]. The most
successful ones are based on object proposals [17,24]. In particular, the state-
of-the-art for instance segmentation was recently set by the Mask R-CNN app-
roach proposed by He et al.[17]. Mask R-CNN essentially extends the successful
framework of Faster R-CNN for object detection [26] to instance segmentation
by adding an extra branch that segments most confidently detected objects.
Distance map based representations were employed for instance segmenta-
tion in [33] but differ from our encoding. While they compute distances from
object centroids, we instead compute distances from the object contours. Dis-
tance maps are also computed in [4], entirely from contours in semantically seg-
mented objects. Again, our case is different, as we are only keeping the distance
information in the contour area. Once provided future contour information, our
method relies on seeded graph-based segmentation, that we review below.



Joint Future Semantic and Instance Segmentation Prediction 157

2.3 Seeded Graph Based Segmentation

Given weighted graphs, Graph Cuts [7] aim to find a minimum cut between
foreground and background seeds and were extended to multi-label segmenta-
tion in [8]. Random walker relaxes the Graph Cut problem, by considering the
combinatorial Dirichlet problem [15]. Shortest Paths [5] assign each pixel to a
given label if there is a shorter path from it to this label’s seed than to any
other label seed. After links between Graph cuts, Random walker and Short-
est Paths were established by Sinop and Grady [16], and links between Graph
Cuts and watershed by [1], the unified Power watershed segmentation framework
was introduced [10]. It presents a novel watershed algorithm that optimizes an
energy function similarly to previously cited works, while having a quasi-linear
complexity and being robust to seed sizes. In this work, we take advantage of
these properties (speed, accuracy, robustness to seeds size) to compute future
instance maps as the solution to an optimization problem.

3 Joint Future Instance and Segmentation Prediction

In this section we detail the principle of our approach, after introducing how to
infer future semantic segmentation prediction as in [19].

3.1 Background: Future Semantic Segmentation Prediction

Given a sequence of images X;_, to X;, Luc et al. [19] propose a baseline for
predicting future semantic segmentation that encodes the corresponding seg-
mentations S;_, to S;, as computed by the Mask R-CNN network [17]. Given
the outputs of Mask R-CNN as lists of instance predictions, composed of a con-
fidence score, a class k, and a binary mask, a semantic segmentation label map
is created to form the inputs and targets of a convolutional network. Specifically,
the encoding S’t(k) to feed their model, denoted S2S, is built as follows: If any
instances have been detected in X, instances are sorted by order of ascending
confidence. For each instance mask, if its confidence score is high enough (in
practice above 0.5), the semantic segmentation spatial positions corresponding
to the object are updated with label k£ € {1,..., K'}. These semantic segmenta-
tion input and target maps are of resolution 128 x 256, i.e. downsampled by a
factor 8 with respect to the original input image’s resolution.

A convolutional model is then trained with 4 inputs S;_3 to S; to predict
St4+1. This model S25 constitutes a strong baseline for our work. However, this
encoding does not take advantage of the instance information.

3.2 Predicting Distance Map Based Representations

Architecture. For the previously described baseline S25 and our proposed
D2D model, we adopt the convolutional network architecture proposed in [20].
It is a single scale convnet composed of 7 layers of convolutions, three of them
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dilated, and each of them followed by a ReLLU, except for the last one. We use the
same feature map scale parameter ¢ = 1.25 that allows an efficient training. For
the prediction of multiple frames, the single frame prediction model is applied
auto-regressively, using its prediction for the previous time step as input to
predict the next time step, and so on.

Distance Based Encoding. We now introduce a new method for representing
the instance and semantic information together. As illustrated in Fig.1, our
method defines a new encoding of the semantic and instance representation at
time ¢ called D;. Our convolutional network will be trained with inputs D;_3
to D; to output the future representation Dt+1~ The algorithm to obtain our
representation ng) for class k at time ¢ is defined as follows.

We denote each boolean array forming a segmentation mask of instance m
in image X; as It(m). The instance segmentation predictions are given by Mask
R-CNN outputs, and are downsampled by a factor 8 with respect to the original
input image’s resolution, similarly to the previously described baseline.

Let us denote the size of a mask It(m) by n x p, and (x,y) the integer coordi-
nates of the image pixels. For each instance m of class k, we compute a truncated
Euclidean distance map dEk’m)(
More formally,

x,y) to the background pixels as described in [22].
d(k’m)(x ) = . N2 N2\ 3 1
i y) = min (@ =) +@—5)7%)7]. @)
i,j:0<i<n and 0<j<p and 1{™ (i,5)=0
The distance maps of all instances of same class k are merged in dik):

dgk) = max d,(gk’m). (2)
m

0 0/0j]0 0000
0 0/0/0 0|00
0 0/0/0 0|00

0 0/0/0 0|00
0 0/0/0 0|00
0 0/0{0 0 0]0/0
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Fig. 2. Illustration of different steps building our distance map based encoding D,Ek) at
time ¢ given a class k from individual instance segmentations I MW and I® for class k.

An illustration of this step is shown in Fig.2. For the special case of the
background class, the distance is computed relatively to the set of all instances.
We are mostly interested in keeping the contour information in our repre-
sentation, the distance map in the center of the objects is irrelevant for our



Joint Future Semantic and Instance Segmentation Prediction 159

task. However, the distance information in a close neighborhood of the objects
contours may be useful to introduce some flexibility in the penalization of the
prediction errors that are frequent in contours area. The smoothness introduced
by the distance information in the contour area allows small mistakes without
too much penalization. Therefore, to eliminate the unnecessary distance values
of object centers, we bound dik) to 0 to flatten the distance values located in the
centers of the instances. In practice, we set 0 = 4.

As we also want to encode the semantic segmentation information in a way
to obtain it from an argmax operation, we transform dgk) to indicate objects
by ones, and background by zeros: our final action on dgk) is therefore to invert
its value by multiplying by —1 and adding (6 + 1) in the areas of objects. In

summary, from the merged distance map dgk) of Eq. 2, our encoding is defined as

D) = —min (d™,0) + 1(dF) (0 + 1), (3)
)

where 1() is the indicator function, equal to 1 when dgk > 0 and 0 otherwise.

Fig. 3. Distance map inputs for one image. First line: last input distance maps
for classes background, car and truck. Second line: short term predictions for the
same classes. Last line: prediction of the baseline S25, distance-based prediction, and
distance-based prediction superimposed with future RGB frame.

Examples of such a representation D, are displayed in Figs.2 and 3. Given
inputs Dy, ..., Dy, the convolutional network described in the previous section
is trained to predict the future Diyq. We denote its output by D¢yq. The final
segmentation Sy41 is then retrieved by computing the argmax over the different
classes: i

Siy1 = argmax D(+)1. (4)
ke{l,..,K}

The map of maximum elements may then be exploited to lead to individual
object instance segmentations as presented in the next section.
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3.3 Forecasting Instance Segmentation

The obtained map of maxima of our distance based representation contains
object contour information as high values, resembling image gradient. As the
background class map also contains meaningful object contour information, we
add it to the map of maxima to straighten the contour map. We note this contour
map
W = ke{I{l’a}fK} Dglj_)l + Dt(z—alckground). (5)

By construction, its minima form seeds to object instances and background.
It is therefore very natural to apply a watershed algorithm on the obtained map.
Seeing the map as a topological relief, this method simulates water growing from
minima, and builds a watershed line every time different water basins merge.

As studied in [1,10], the watershed transform [29] may be seen as part of a
family of graph based optimization methods that includes Graph Cuts, Shortest
Paths, Random Walker. The Power watershed algorithm [10] is an optimization
algorithm for seeded segmentation that arose from these findings, gathering nice
properties: the exact optimization of a graph-based objective, robustness to small
seeds and a quasi-linear complexity. These reasons justify the use of the Power
watershed approach. In our experiments, we present results using minima as
seeds, but also propose a better strategy that allows us to track each object
instance. To that end, we identify object tracks from the two preceding instance
segmentations and linearly extrapolate their centroid positions, to obtain our
object seed.

We now describe the two steps of our instance segmentation method. The
first one consists in the extraction of seeds, and the second in graph-based opti-
mization given these seeds. The two steps are illustrated in Fig. 4.

Object Trajectory Forecasting for Seed Selection. Specifically, the cre-
ation of our list of seed coordinates z involves:

— Building a graph for the two preceding frames ¢t and ¢ — 1, where the nodes are
the objects centroids, linked by an edge when they are of the same semantic
class. Fach edge is weighted by a similarity coefficient w depending on the
sizes s and average RGB intensities, denoted ¢(!), ¢ ¢(®) of its nodes:

s~ sl >3 log(ef? — 12 + 1)

max (S, St—1) 3log(2552) (©)

We,t—1 =
Objects of similar appearance are therefore linked by an edge of small weight.
— For each object of frame ¢: compute the shortest edge to objects of frame ¢t —1
when possible. Store the matched centroids trajectory. Remove the edge and
its nodes from the graph, and repeat.
— Linear extrapolation of future centroids’ coordinates.

This procedure is illustrated in Fig. 4a.
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Fig. 4. Computing the future instances. (a) First step: compute the coordinates of
future instance centroids positions by selection of shortest paths in the blue graph
weighted by w (Eq.6). (b) Second step: computing the solution ), z(® to two sub-
problems defined in the red graph by Power-watershed optimization (Eq.7), corre-
sponding to continuous labelings of instances 1 and 2. After the computation of the
background labeling, given by z(*) = 1— (:c(l) —i—m(2))7 the final future instance prediction
is given by I; 41 = argmax (z(V, 2®,2®)). (Color figure online)

Final Segmentation Step via Seeded Graph Based Optimization. The
Power watershed algorithm is then used with its default parameters (¢ = 2,p —
00) to compute an optimal watershed segmentation map.

Formally, a new graph (V, E) is built where the set of nodes V' corresponds to
instance pixel labels to discover, and edges from E are linking neighboring nodes
in a 4 connected setting. The weights W are given by maxima of the network
prediction computed from Eq.5. Given a set of L identified instance centroids
whose node positions are stored in a vector z, L labelings () on the graph are
computed as the solution of

argmin lim Z (W; + Wj)p(xgl) - x;-l))Q, (7)

p— 00
z® e;;€EE

subject to x&? =1ifi=1and ac,(zli) = 0 for all ¢ # [. For the background
segmentation, we define background seeds by a set of two points placed at the
middle of the top and bottom halves of the frame. These seeds positions are
added to the vector z and therefore enforced in the computation of the z(V. A
solution z(t1) is computed as (1) = 1 — 21L=1 z® . An illustration is provided
in Fig.4b. The labeling of the graph leads us to our map of future predictions
jt+1 at each pixel ¢ given by

I;11(i) = § argmax aD (8)

7
l
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where § is the index of the most common class in the corresponding values of
5‘t+1. For the prediction of future semantic segmentations at multiple time steps,
because the network is trained on discrete inputs, we need to adjust the inputs
when predicting autoregressively. Instead of applying the model again on the
outputs, we discretize the output D;y; by rounding its elements and projecting
back the values between 0 and 6. This helps reducing error propagation.

4 Experiments

We now demonstrate that we are able to predict instance and semantic segmen-
tation with an increase in performance for the latter task.

Our experiments are performed on the Cityscapes dataset [9], that contains
2975 videos for training, 500 for validation and 1525 for testing. As only the 20th
frame of video contains annotations, and to be consistent with previous work,
we aim to predict this frame in two settings. Short term predictions consist in
predicting frame 20 using frames 8,11, 14,17 and mid term, computing frames
14,17,20 from 2, 5, 8, 11. The mid term prediction setting is therefore more
challenging, as it aims to forecast a 0.5s future. As in [19,20], our models are
validated using the IoU SEG metric on the validation set, which corresponds
to the mean Intersection over Union computed between the predictions and the
segmentation obtained via Mask R-CNN. As Mask R-CNN is an object-based
segmentation method, it only outputs segmentations for the 8 classes that cor-
respond to moving object instances: person, rider, car, truck, bus, train, motor-
cycle, and bicycle. We also report results of the same copy and flow baseline.
The copy approach simply provides the last input as future segmentation. The
flow baseline is based on pixel warping using optical flow computed between
the last two frames. D2D was trained using stochastic gradient descent with a
momentum of 0.9, and a learning rate of 0.02.

The semantic segmentation accuracy is computed via the mean intersection
over union with the ground truth. The instance segmentation accuracy is pro-
vided by computing the AP and AP-50. As our instance predictions are not
associated with classifiers scores, we set the confidence equal to 1 everywhere.
Mask R-CNN, F2F [19], and the optical flow baseline all produce a list of instance
maps that may overlap with each other. As argued in [2], the AP measures favor
this category of methods to the detriment of approaches that output a unique
answer at each spatial position. Since the former methods in fact eventually
threshold their results at the confidence parameter 0.5 for visualization pur-
poses, we compute AP and AP-50 on the segments formed by a non-overlapping
segmentation map.

Specifically, for each method, we compute a superimposition of instance seg-
ments by filling a map with segments ranked by ascending confidence. In the AP
and AP-50 computations, there is a step where segment proposals are matched
with ground truth segments. For each proposal segment, if less than half of
their pixels overlap with any object of the superimposed map, this segment is
discarded in the evaluation. Then we compute AP and AP-50 scores on ground
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truth segments and remaining segments. We note the obtained scores “Non Over-
lapping AP”: NO-AP and NO-AP-50. In the particular case of our D2D results,
AP and NO-AP are equivalent.

Table 1. Short and mid term semantic segmentation of moving objects (8 classes)
performance on the Cityscapes validation dataset.

Short term (0.17s) | Mid term (0.50s)
IoU IoU

Oracle [20] | 64.7 64.7

S2S [20] | 55.3 40.8

Oracle [19] | 73.3 73.3

Copy [19] |45.7 29.1

Flow [19] |58.8 41.4

S2S[19] | 55.4 424

FoF [19] | 61.2 41.2

D2D 56.0 43.0

Fig. 5. Mid term future instance segmentation results. The flow baseline produces large
distortions of objects subject to large displacements.

Our future semantic segmentation performance is reported in Table 1. While
the F2F and flow baseline results lead to high mean IoU in the short term, their
performance are lower than D2D in the mid term term setting. D2D also slightly
improves over the 525 baseline that was state-of-the-art for future semantic
segmentation prediction.

We compare our results with the S2S5 baseline, optical flow baseline and the
F2F approach in Figs.6 and 5. We observe that our method is fairly accurate
in a number of situations where F2F and the Flow baseline meet difficulties for
mid term predictions.
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Mid term semantic segmentation predictions
S28 F2F D2D (ours)

Mid term instance segmentation predictions
F2F D2D (ours)

T

Mid term semantic segmentation predictions
S28 FaF D2D (ours)

Mid term instance segmentation predictions
Flow FaF D2D (ours)

Mid term semantic segmentation predictions
S28 Far D2D (ours)

Mid term instance segmentation predictions
FaF D2D (ours)

Fig. 6. Additional mid term comparative results. The flow baseline produces large
distortions of small objects, in particular pedestrians. The F2F predictions may be
very inaccurate for large objects.
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Table 2 provides quantitative results of instance segmentation accuracies of
proposed methods. Our D2D approach does not compare favorably with the
other baselines for short term predictions. However, for mid term ones, it clearly
outperforms the copy baseline, and performs slightly better than the flow base-
line. We experiment using three different sets of seeds for model D2D: minima
of the predictions S , extrapolated object centroids, and centroids of the oracle
future segmentation, to provide an upper bound for our method’s performance.
We observe that F2F does lead to superior results, but at a much higher training
cost. Learning in the pyramidal feature space of Mask R-CNN requires indeed
to train and then finetune four networks, fixing each time an adequate learning
rate. As summarized in Table 3, our approach is much lighter with less than 1M
parameters, leads to superior semantic segmentation results, and comprises a
built-in object tracking mechanism.

Table 2. Instance segmentation performance on the Cityscapes validation dataset,
in terms of “Non-overlapping” AP measures. To avoid the bias of the standard AP
and AP-50 measure in favor of proposal based methods, where several overlapping
solutions are evaluated, we propose the “Non-overlapping” AP metrics, which consists
in AP with a specific change in the matching step with ground truth segments. We
first create a superimposed map for each proposal based methods (here the oracle,
copy, F2F, optical flow baselines). For each proposal segment, if less than half of their
pixels overlap with any object of the superimposed map, this segment is discarded in
the evaluation. Then we compute AP and AP-50 scores on ground truth segments and
remaining segments.

Short term Mid term

NO-AP-50 | NO-AP | NO-AP-50 | NO-AP
Mask R-CNN oracle 57.7 33.0 57.7 33.0
Copy last input 19.8 8.9 5.8 1.5
Optical flow baseline 30.8 14.1 9.5 3.6
FaF 30.8 15.5 16.1 6.6
D2D future centroids (oracle) | 18.9 8.8 11.7 44
D2D pred. (seeds: minima) 14.2 6.5 7.1 2.9
D2D linear extrapolation 14.9 6.7 10.2 3.7

Figure 7 presents mid term segmentation results that illustrate the effective-
ness of the proposed built-in tracking strategy of instances.
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Table 3. Comparative overview of future segmentation methods based on Mask R-
CNN. Our D2D approach cumulates state-of-the-art semantic segmentation perfor-
mance, inference and training speed, and temporally consistent results.

Feature based | Optical Distance based
F2F Flow baseline D2D (ours)
Mid term sem. segm (IoU) 41.2 41.4 43.0
Mid term inst. segm (NO-AP-50) | 16.1 9.5 10.2
Tracking included No Yes Yes
Training time 6 days - 1.5 day
Network size 65M - 0.8M
Training hyperparam. to tune 8 - 2
Inference time Some sec. 2 min Some sec.
Post-processing Threshold Hole filling, thresh. | Optimization

* e ) RN ..I" 1 . e aalw e

Our prediction of frame 14 Our prediction of frame 17 Our prediction of frame 20

Fig. 7. Mid term instance segmentation results produced by our D2D model. Most
forecasted instances are consistent in a 0.5s future.

5 Conclusion

We introduced a novel approach for predicting both future instance and seman-
tic segmentation. Our distance map based encoding allows us to recover both
information by a simple argmax or a graph-based optimization algorithm.

We improve in term of mean IoU over the state-of-the-art method for future
semantic segmentation prediction while also allowing future instance prediction
efficiently. While obtaining a lower performance in terms of instance segmenta-
tion performance compared to feature level prediction, we improve over a strong
optical flow baseline. Furthermore, relying on seeded segmentation allows us to
incorporate tracking into our results and obtain an optimal solution.
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Ultimately, we hope to employ our representation as a light, simple and
effective building block to develop more sophisticated and better performing
forecasting methods.

Acknowledgment. We thank Piotr Dollard and anonymous reviewers for their pre-
cious comments.
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