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Abstract. We propose a method for the weakly supervised detection
of objects in paintings. At training time, only image-level annotations
are needed. This, combined with the efficiency of our multiple-instance
learning method, enables one to learn new classes on-the-fly from glob-
ally annotated databases, avoiding the tedious task of manually marking
objects. We show on several databases that dropping the instance-level
annotations only yields mild performance losses. We also introduce a
new database, IconArt, on which we perform detection experiments on
classes that could not be learned on photographs, such as Jesus Child or
Saint Sebastian. To the best of our knowledge, these are the first exper-
iments dealing with the automatic (and in our case weakly supervised)
detection of iconographic elements in paintings. We believe that such
a method is of great benefit for helping art historians to explore large
digital databases.

Keywords: Weakly supervised detection · Transfer learning ·
Art analysis · Multiple instance learning

1 Introduction

Several recent works show that recycling analysis tools that have been developed
for natural images (photographs) can yield surprisingly good results for analysing
paintings or drawings. In particular, impressive classification results are obtained
on painting databases by using convolutional neural networks (CNNs) designed
for the classification of photographs [10,55]. These results occur in a general
context were methods of transfer learning [14] (changing the task a model was
trained for) and domain adaptation (changing the nature of the data a model
was trained on) are increasingly applied. Classifying and analysing paintings
is of course of great interest to art historians, and can help them to take full
advantage of the massive artworks databases that are built worldwide.

More difficult than classification, and at the core of many recent computer
vision works, the object detection task (classifying and localising an object) has
been less studied in the case of paintings, although exciting results have been
obtained, again using transfer techniques [11,28,52].
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Methods that detect objects in photographs have been developed thanks to
massive image databases on which several classes (such as cats, people, cars) have
been manually localised with bounding boxes. The PASCAL VOC [17] and MS
COCO [34] datasets have been crucial in the development of detection methods
and the recently introduced Google Open Image Dataset (2M images, 15M boxes
for 600 classes) is expected to push further the limits of detection. Now, there is
no such database (with localised objects) in the field of Art History, even though
large databases are being build by many institutions or academic research teams,
e.g. [16,38,39,43,44,53]. Some of these databases include image-level annota-
tions, but none includes location annotations. Besides, manually annotating such
large databases is tedious and must be performed each time a new category is
searched for. Therefore, it is of great interest to develop weakly supervised detec-
tion methods, that can learn to detect objects using image-level annotations
only. While this aspect has been thoroughly studied for natural images, only a
few studies have been dedicated to the case of painting or drawings.

Moreover, these studies are mostly dedicated to the cross depiction prob-
lem: they learn to detect the same objects in photographs and in paintings, in
particular man-made objects (cars, bottles . . . ) or animals. While these may be
useful to art historians, it is obviously needed to detect more specific objects or
attributes such as ruins or nudity, and characters of iconographic interest such
as Mary, Jesus as a child or the crucifixion of Jesus, for instance. These last
categories can hardly be directly inherited from photographic databases.

For these two reasons, the lack of location annotations and the specificity
of the categories of interest, a general method allowing the weakly supervised
detection on specific domains such as paintings would be of great interest to art
historians and more generally to anyone needing some automatic tools to explore
artistic databases. We propose some contributions in this direction:

– We introduce a new multiple-instance learning (MIL) technique that is simple
and quick enough to deal with large databases,

– We demonstrate the utility of the proposed technique for object detection on
weakly annotated databases, including photographs, drawings and paintings.
These experiments are performed using image-level annotations only.

– We propose the first experiments dealing with the recognition and detection
of iconographic elements that are specific to Art History, exhibiting both
successful detections and some classes that are particularly challenging, espe-
cially in a weakly supervised context.

We believe that such a system, enabling one to detect new and unseen cat-
egory with minimal supervision, is of great benefit for dealing efficiently with
digital artwork databases. More precisely, iconographic detection results are use-
ful for different and particularly active domains of humanities: Art History (to
gather data relative to the iconography of recurrent characters, such as the Virgin
Mary or San Sebastian, as well as to study the formal evolution of their repre-
sentations), Semiology (to infer mutual configurations or relative dimensions of
the iconographic elements), History of Ideas and Cultures (with category such
as nudity, ruins), Material Culture Studies, etc.
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In particular, being able to detect iconographic elements is of great impor-
tance for the study of spatial configurations, which are central to the reading of
images and particularly timely given the increasing importance of Semiology. To
fix ideas, we can give two examples of potential use. First, the order in which
iconographic elements are encountered (e.g. Gabriel and Mary), when reading
an image from left to right, has received much attention from art historians [20].
In the same spirit, recent studies [5] on the meaning of mirror images in early
modern Italy could benefit from the detection of iconographic elements.

2 Related Work

Object Recognition and Detection in Artworks. Early works on cross-
domain (or cross-depiction) image comparisons were mostly concerned with
sketch retrieval, see e.g. [12]. Various local descriptors were then used for com-
paring and classifying images, such as part-based models [46] or mid-level dis-
criminative patches [2,9]. In order to enhance the generalisation capacity of these
approaches, it was proposed in [54] to model object through graphs of labels.
More generally, it was shown in [25] that structured models are more prone to
succeed in cross-domain recognition than appearance-based models.

Next, several works have tried to transfer the tremendous classification capac-
ity of convolutional neural networks to perform cross-domain object recognition,
in particular for paintings. In [10], it is shown that recycling CNNs directly
for the task of recognising objects in paintings, without fine-tuning, yields sur-
prisingly good results. Similar conclusions were also given in [55] for artistic
drawings. In [32], a robust low rank parametrized CNN model is proposed to
recognise common categories in an unseen domain (photo, painting, cartoon or
sketch). In [53], a new annotated database is introduced, on which it is shown
that fine-tuning improves recognition performances. Several works have also suc-
cessfully adapted CNNs architectures to the problem of style recognition in art-
works [3,31,36]. More generally, the use of CNNs opens the way to other artwork
analysis tasks, such as visual links retrieval [45], scene classification [19], author
classification [51] or possibly to generic artwork content representation [48].

The problem of object detection in paintings, that is, being able to both
localise and recognise objects, has been less studied. In [11], it is shown that
applying a pre-trained object detector (Faster R-CNN [42]) and then selecting
the localisation with highest confidence can yield correct detections of PASCAL
VOC classes. Other works attacked this difficult problem by restricting it to a
single class. In [22], it is shown that deformable part model outperforms other
approaches, including some CNNs, for the detection of people in cubist artworks.
In [40], it is shown that the YOLO network trained on natural images can, to
some extend, be used for people detection in cubism. In [52], it is proposed
to perform people detection in a wide variety of artworks (through a newly
introduced database) by fine-tuning a network in a supervised way. People can
be detected with high accuracy even though the database has very large stylistic
variations and includes paintings that strongly differs from photographs in the
way they represent people.
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Weakly supervised detection refers to the task of learning an object
detector using limited annotations, usually image-level annotations only. Often,
a set of detections (e.g. bounding boxes) is considered at image level, assuming
we only know if at least one of the detection corresponds the category of interest.
The corresponding statistical problem is referred to as multiple instance learning
(MIL) [13]. A well-known solution to this problem through a generalisation of
Support Vector Machine (SVM) has been proposed in [1]. Several approximations
of the involved non-convex problem have been proposed, see e.g. [21] or the recent
survey [6].

Recently, this problem has been attacked using classification and detection
neural networks. In [47], it is proposed to learn a smooth version of an SVM on
the features from R-CNN [23] and to focus on the initialisation phase which is
crucial due to the non-convexity of the problem. In [41], it is proposed to learn
to detect new specific classes by taking advantage of the knowledge of wider
classes. In [4] a weakly supervised deep detection network is proposed based on
Fast R-CNN [24]. Those works have been improved in [50] by adding a multi-
stage classifier refinement. In [8] a multi-fold split of the training data is proposed
to escape local optima. In [33], a two step strategy is proposed, first collecting
good regions by a mask-out classification, then selecting the best positive region
in each image by a MIL formulation and then fine-tuning a detector with those
propositions as “ground truth” bounding boxes. In [15] a new pooling strategy
is proposed to efficiently learn localisation of objects without doing bounding
boxes regression.

Weakly supervised strategies for the cross domain problem have been much
less studied. In [11], a relatively basic methodology is proposed, in which for
each image the bounding box with highest (class agnostic) “objectness” score is
classified. In [28], it is proposed to do mixed supervised object detection with
cross-domain learning based on the SSD network [35]. Object detectors are learnt
by using instance-level annotations on photographs and image-level annotations
on a target domain (watercolor, cartoon, etc.). We will perform comparisons of
our approach with these two methods in Sect. 4.

3 Weakly Supervised Detection by Transfer Learning

In this section, we propose our approach to the weakly supervised detection of
visual category in paintings. In order to perform transfer learning, we first apply
Faster R-CNN [42] (a detection network trained on photographs) which is used
as a feature extractor, in the same way as in [11]. This results in a set of candidate
bounding boxes. For a given visual category, the goal is then, using image-level
annotations only, to decide which boxes correspond to this category. For this,
we propose a new multiple-instance learning method, that will be detailed in
Sect. 3.1. In contrast with classical approaches to the MIL problem such as [1]
the proposed heuristic is very fast. This, combined with the fact that we do not
need fine-tuning, permits a flexible on-the-fly learning of new category in a few
minutes.
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Figure 1 illustrates the situation we face at training time. For each image, we
are given a set of bounding boxes which receive a label +1 (the visual category of
interest is present at least once) or −1 (the category is not present in this image).

Fig. 1. Illustration of positive and negative sets of detections (bounding boxes) for the
angel category.

3.1 Multiple Instance Learning

The usual way to perform MIL is through the resolution of a non-convex energy
minimisation [1], although efficient convex relaxations have been proposed [29].
One disadvantage of these approaches is their heavy computational cost. In what
follows, we propose a simple and fast heuristic to this problem.

For simplicity of the presentation, we assume only one visual category.
Assume we have N images at hand, each of which contains K bounding boxes.
Each image receives a label y = +1 when it is a positive example (the cate-
gory is present) and y = −1 otherwise. We denote by n1 the number of positive
examples in the training set, and by n−1 the number of negative examples.

Images are indexed by i, the K regions provided by the object detector are
indexed by k, the label of the i-th image is denoted by yi and the high level
semantic feature vector of size M associated to the k-th box in the i-th image
is denoted Xi,k. We also assume that the detector provides a (class agnostic)
“objectness” score for this box, denoted si,k.

We make the (strong) hypothesis that if yi = +1, then there is at least one of
the K regions in image i that contains an occurrence of the category. In a sense,
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we assume that the region proposal part is robust enough to transfer detections
from photography to the target domain.

Following this assumption, our problem boils down to the classic multiple-
instance classification problem [13]: if for image i we have yi = +1, then at least
one of the boxes contains the category, whereas if yi = −1 no box does. The goal
is then to decide which boxes correspond to the category. Instead of the classical
SVM generalisation proposed in [1] and based on an iterative procedure, we look
for an hyperplan minimising the functional defined below. We look for w ∈ RM ,
b ∈ R achieving

min(w,b)L(w, b) (1)

with

φ(w, b) =
N∑

i=1

−yi

nyi

Tanh

{
max

k∈{1..K}
(
wT Xi,k + b

)}
(2)

and
L(w, b) = φ(w, b) + C ∗ ||w||2, (3)

where C is a constant balancing the regularisation term. The intuition behind
this formulation is that minimising L(w, b) amounts to seek a hyperplan sepa-
rating the most positive element of each positive image from the least negative
element of the negative image, sharing similar ideas as in MI-SVM [1] or Latent-
SVM [18]. The Tanh is here to mimic the SVM formulation in which only the
worst margins count. We divide by nyi

to account for unbalanced data. Indeed
most example images are negative ones (n−1 � n1)).

The main advantage of this formulation is that it can be realised by a simple
gradient descent, therefore avoiding costly multiple SVM optimisation. If the
dataset is too big to fit in the memory, we switch to a stochastic gradient descent
by considering random batches in the training set.

As this problem is non-convex, we try several random initialisation and we
select the couple w, b minimising the classification function φ(w, b). Although
we did not explore this possibility it may be interesting to keep more than one
vector to describe a class, since one iconographic element could have more that
one specific feature, each stemming from a distinctive part.

In practice, we observed consistently better results when modifying slightly
the above formulation by considering the (class-agnostic) “objectness” score
associated to each box (as returned by Faster R-CNN). Therefore we modify
function φ to

φs(w, b) =
N∑

i=1

−yi

nyi

Tanh

{
max

k∈{1..K}
(
(si,k + ε)

(
wT Xi,k + b

))}
(4)

with ε ≥ 0. The motivation behind this formulation is that the score si,k, roughly
a probability that there is an object (of any category) in box k, provides a
prioritisation between boxes.

Once the best couple (w�, b�) has been found, we compute the following score,
reflecting the meaningfulness of category association:

S(x) = Tanh{(s(x) + ε)
(
w�T x + b�

)} (5)
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At test time, each box with a positive score (5) (where s(x) is the objectness
score associated to x) is affected to the category. The approach is then straight-
forwardly extended to an arbitrary number of categories, by computing a couple
(w�, b�) per category. Observe, however, that this leads to non-comparable scores
between categories. Among all boxes affected to each class, a non-maximal sup-
pression (NMS) algorithm is then applied in order to avoid redundant detections.
The resulting multiple instance learning method is called MI-max.

3.2 Implementation Details

Faster R-CNN. We use the detection network Faster R-CNN [42]. We only keep
its region proposal part (RPN) and the features corresponding to each proposed
region. In order to yield and efficient and flexible learning of new classes, we
choose to avoid retraining or even fine-tuning. Faster R-CNN is a meta-network
in which a pre-trained network is enclosed. The quality of features depends on
the enclosed network and we compare several possibility in the experimental
part.

Images are resized to 600 by 1000 before applying Faster R-CNN. We only
keep the 300 boxes having best “objectness” scores (after a NMS phase), along
with their high-level features1. An example of extracted boxes is shown in Fig. 2.
About 5 images per second can be obtained on a standard GPU. This part can
be performed offline since we don’t fine-tune the network.

As mentioned in [30], residual network (ResNet) appears to be the best archi-
tecture for transfer learning by feature extractions among the different ImageNet
models, and we therefore choose these networks for our Faster R-CNN versions.
One of them (denoted RES-101-VOC07) is a 101 layers ResNet trained for the
detection task on PASCAL VOC2007. The other one (denoted RES-152-COCO)
is a 152 layers ResNet trained on MS COCO [34]. We will also compare our app-
roach to the plain application of these networks for the detection tasks when
possible, that is when they were trained on classes we want to detect. We refer
to these approaches as FSD (fully supervised detection) in our experiments.

For implementation, we build on the Tensorflow2 implementation of Faster
R-CNN of Chen et al. [7]3.

MI-max. When a new class is to be learned, the user provides a set of weakly
annotated images. The MI-max framework described above is then run to find a
linear separator specific to the class. Note that both the database and the library
of classifiers can be enriched very easily. Indeed, adding an image to the database
only requires running it through the Faster R-CNN network and adding a new
class only requires a MIL training.

For training the MI-max, we use a batch size of 1000 examples (for smaller
sets, all features are loaded into the GPU), 300 iterations of gradient descent

1 The layer fc7 of size M = 2048 in the ResNet case, often called 2048-D.
2 https://www.tensorflow.org/.
3 Code can be found on GitHub https://github.com/endernewton/tf-faster-rcnn.

https://www.tensorflow.org/
https://github.com/endernewton/tf-faster-rcnn
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Fig. 2. Some of the regions of interest generated by the region proposal part (RPN) of
Faster R-CNN.

with a learning rate of 0.01 and ε = 0.01 (4). The whole process takes 750 s for 20
classes on PASCAL VOC07 trainval (5011 images) with 12 random start points
per class, on a consumer GPU (GTX 1080Ti). Actually the random restarts are
performed in parallel to take advantage of the presence of the features in the
GPU memory since the transfer of data from central RAM to the GPU memory
is a bottleneck for our method. The 20 classes can be learned in parallel.

For the experiments of Sect. 4.3, we also perform a grid search on the hyper-
parameter C (3) by splitting the training set into training and validation sets. We
learn several couples (w, b) for each possible value of C (different initialisation)
and the one that minimises the loss (4) for each class is selected.

4 Experiments

In this section, we perform weakly supervised detection experiments on different
databases, in order to illustrate different assets of our approach.

In all cases, and besides other comparisons, we compare our approach
(MI-max) to the following baseline, which is actually the approach chosen for
the detection experiments in [11] (except that we do not perform box expan-
sion): the idea is to consider that the region with the best “objectness” score is
the region corresponding to the label associated to the image (positive or neg-
ative). This baseline will be denoted as MAX. Linear-SVM classifier are learnt
using those features per class in a one-vs-the-rest manner. The weight parame-
ter that produces the highest AP (Average Precision) score is selected for each
class by a cross validation method4 and then a classifier is retrained with the
best hyper-parameter on all the training data per class. This baseline requires
to train several SVMs and is therefore costly.

4 We use a 3-fold cross validation while [11] use constant training and validation set.
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At test time, the labels and the bounding boxes are used to evaluate the
performance of the methods in term of AP par class. The generated boxes are
filtered by a NMS with an Intersection over Union (IoU) [17] threshold of 0.3
and a confidence threshold of 0.05 for all methods.

4.1 Experiments on PASCAL VOC

Before proceeding with the transfer learning and testing our method on paint-
ings, we start with a sanity check experiment on PASCAL VOC2007 [17]. We
compare our weakly supervised approach, MI-max, to the plain application of the
fully supervised Faster R-CNN [42] and to the weakly supervised MAX proce-
dure recalled above. We perform the comparison using two different architectures
(for the three methods), RES-101-VOC07 and RES-512-COCO, as explained in
the previous section.

Table 1. VOC 2007 test Average precision (%) Comparison of the Faster R-CNN
detector (trained in a fully supervised manner: FSD) and our MI-max algorithm
(trained in a weakly supervised manner) for two networks RES-101-VOC07 and RES-
152-COCO.

Net Method aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv mean
RES- FSD [26] 73.6 82.3 75.4 64.0 57.4 80.2 86.5 86.2 52.7 85.2 66.9 87.0 87.1 82.9 81.2 45.7 76.8 71.2 82.6 75.5 75.0
101- MAX 20.8 47.0 26.1 20.2 8.3 41.1 44.9 60.1 31.7 54.8 46.4 42.9 62.2 58.7 20.9 21.6 37.6 16.7 42.0 19.8 36.2

VOC07 MI-maxa 63.5 78.4 68.5 54.0 50.7 71.8 85.6 77.1 52.7 80.0 60.1 78.3 80.5 73.5 74.7 37.4 71.2 65.2 75.7 67.7 68.3 ± 0.2
RES- FSD [26] 91.0 90.4 88.3 61.2 77.7 92.2 82.2 93.2 67.0 89.4 65.8 88.0 92.0 89.5 88.5 56.9 85.1 81.0 89.8 85.2 82.7
152- MAX [11] 58.8 64.7 52.4 8.6 20.8 55.2 66.8 76.1 19.4 66.3 6.7 59.7 56.4 43.3 15.5 18.3 80.3 7.6 71.8 32.6 44.1

COCO MI-maxa 88.0 90.2 84.3 66.0 78.7 93.8 92.7 90.7 63.7 78.8 61.5 88.4 90.9 88.8 87.9 56.8 75.5 81.3 88.4 86.1 81.6 ± 0.3

aIt is the average performance on 100 runs of our algorithm.

As shown in Table 1 our weakly supervised approach (only considering anno-
tations at the image level5) yields performances that are only slightly below the
ones of the fully supervised approach (using instance-level annotations). On the
average, the loss is only 1.1% of mAP when using RES-512-COCO (for both
methods). The baseline MAX procedure (used for transfer learning on paintings
in [10]) yields notably inferior performances.

4.2 Detection Evaluation on Watercolor2k and People-Art
Databases

We compare our approach with two recent methods performing object detection
in artworks, one in a fully supervised way [52] for detecting people, the other
using a (partly) weakly supervised method to detect several VOC classes on
watercolor images [28]. For the learning stage, the first approach uses instance-
level annotations on paintings, while the second one uses instance-level annota-
tions on photographs and image-level annotations on paintings. In both cases, it
5 However, observe that since we are relying on Faster R-CNN, our system uses a

subpart trained using class agnostic bounding boxes.
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is shown that using image-level annotations only (our approach, MI-max) only
yields a light loss of performances.

Experiment 1: Watercolor2k. This database, introduced in [28], and avail-
able online6, is a subset of watercolor artworks from the BAM! database [53]
with instance-level annotations for 6 classes (bike, bird, dog, cat, car, person)
that are included in the PASCAL VOC, in order to study cross-domain transfer
learning. On this database, we compare our approach to the methods from [28]
and from [4], to the baseline MAX discussed above, as well as to the classical
MIL approach MI-SVM [1] (using a maximum of 50 iterations and no restarts).

In [28], a style transfer transformation (Cycle-GAN [56]) is applied to natural
images with instance-level annotation. The images are transferred to the new
modality (i.e. watercolor) in order to fine-tune a detector pre-trained on natural
images. This detector is used to predict localisation of objects on watercolor
images annotated at the image level. The detector is then fine-tuned on those
images in a fully supervised manner. Bilen and Vedaldi [4] proposed a Weakly
Supervised Deep Detection Network (WSDDN), which consists in transforming a
pre-trained network by replacing its classification part by a two streams network
(a region proposal stream and a classification one) combined with a weighted
MIL pooling strategy.

Table 2. Watercolor2k (test set) Average precision (%). Comparison of the pro-
posed MI-max method to alternative approaches.

Net Method bike bird car cat dog person Mean

VGG WSDDN [4]a 1.5 26.0 14.6 0.4 0.5 33.3 12.7

SSD DT+PL [28]a 76.5 54.9 46.0 37.4 38.5 72.3 54.3

RES-152-COCO MAX [11] 74.0 34.5 26.8 17.8 21.5 21.0 32.6

MI-SVM [1] 66.8 23.5 6.7 13.0 8.4 14.1 22.1

MI-max [our]b 85.2 48.2 49.2 31.0 30.0 57.0 50.1 ± 1.1
aThe performance come from the original paper [28].
bStandard deviation computed on 100 runs of the algorithm.

From Table 2, one can see that our approach performs clearly better than
the other ones using image-level annotations only ([4], MAX, MI-SVM). We
also observe only a minor degradation of average performances (54.3% versus
48.9%) with respect to the method [28], which is retrained using style transfer
and instance-level annotations on photographs.

Experiment 2: People-Art. This database, introduced in [52], is made of
artistic images and bounding boxes for the single class person. This database
is particularly challenging because of its high variability in styles and depic-
tion techniques. The method introduced in [52] yields excellent detection perfor-
mances on this database, but necessitates instance-level annotations for training.

6 https://github.com/naoto0804/cross-domain-detection.

https://github.com/naoto0804/cross-domain-detection
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The authors rely on Fast R-CNN [24], of which they only keep the three first
layers, before re-training the remaining of the network using manual location
annotations on their database.

In Table 3, one can see that our approach MI-max yields detection results
that are very close to the fully supervised results from [52], despite a much
lighter training procedure. In particular, as already explained, our procedure can
be trained directly on large, globally annotated database, for which manually
entering instance-level annotations is tedious and time-costly.

Table 3. People-Art (test set) Average precision (%). Comparison of the proposed
MI-max method to alternative approaches.

Net Method Person

Fast R-CNN (VGG16) Fine tuned [52]a 59

RES-152-COCO MAX [11] 25.9

MI-SVM [1] 13.3

RES-152-COCO MI-max [our] 55.4 ± 0.7
aThe performance come from the original paper.

4.3 Detection on IconArt Database

In this last experimental section, we investigate the ability of our approach to
learn and detect new classes that are specific to the analysis of artworks, some
of which cannot be learnt on photographs. Typical such examples include iconic
characters in certain situations, such as Child Jesus, the crucifixion of Jesus,
Saint Sebastian, etc. Although there has been a recent effort to increase open-
access databases of artworks by academia and/or museums workforce [10,16,
31,36–38,44,48], they usually don’t include systematic and reliable keywords.
One exception is the database from the Rijkmuseum, with labels based on the
IconClass classification system [27], but this database is mostly composed of
prints, photographs and drawings. Moreover, these databases don’t include the
localisation of objects or characters.

In order to study the ability of our (and other) systems to detect iconographic
elements, we gathered 5955 painting images from Wikicommons7, ranging from
the 11th to the 20th century, which are partially annotated by the Wikidata8

contributors. We manually checked and completed image-level annotations for
7 classes. The dataset is split in training and test sets, as shown in Table 4. For
a subset of the test set, and only for the purpose of performance evaluation,
instance-level annotations have been added. The resulting database is called

7 https://commons.wikimedia.org/wiki/Main Page.
8 https://www.wikidata.org/wiki/Wikidata:Main Page.

https://commons.wikimedia.org/wiki/Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
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IconArt9. Example images are shown in Fig. 3. To the best of our knowledge, the
presented experiments are the first investigating the ability of modern detection
tools to classify and detect such iconographic elements in paintings. Moreover,
we investigate this aspect in a weakly supervised manner.

Table 4. Statistics of the IconArt database

Class Angel Child
Jesus

Crucifixion Mary nudity ruins Saint
Sebastian

None Total

Train 600 755 86 1065 956 234 75 947 2978

Test for classification 627 750 107 1086 1007 264 82 924 2977

Test for detection 261 313 107 446 403 114 82 623 1480

Number of instances 1043 320 109 502 759 194 82 3009

Fig. 3. Example images from the IconArt database. Angel on the first line, Saint Sebas-
tian on the second. We can see some of the challenges posed by this database: tiny
objects, occlusions and large pose variability.

To fix ideas on the difficulty of dealing with iconographic elements, we start
with a classification experiment. For this, we use the same classification app-
roach as in [10], using InceptionResNetv2 [49] as a feature extractor10. We also
perform classification-by-detection experiments, using the previously described
MAX approach (as in [11]) and our approach, MI-max. In both cases, for each
class, the score at the image level is the highest confidence detection score for
this class on all the regions of the image. Results are displayed in Table 5. First,
we observe that classification results are very variable depending on the class.
9 The database is available online https://wsoda.telecom-paristech.fr/downloads/

dataset/IconArt v1.zip.
10 Only the center of the image is provided to the network and extracted features are

1536-D.

https://wsoda.telecom-paristech.fr/downloads/dataset/IconArt_v1.zip
https://wsoda.telecom-paristech.fr/downloads/dataset/IconArt_v1.zip
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Classes such as Jesus Child, Mary or crucifixion have relatively high classifica-
tion scores. Others, such as Saint Sebastian, are only scarcely classified, probably
due to a limited quantity of examples and a high variability of poses, scales and
depiction styles. We can also observe that, as mentioned in [11], the classifica-
tion by detection can provide better scores than global classification, possibly
because of small objects, such as angels in our case. Observe that these classi-
fication scores can probably be increased using multi-scale learning (as in [51]),
augmentation schemes and an ensemble of networks [11].

Table 5. IconArt classification test set classification average precision (%).

Net Method angelJCchildcrucifixionMarynudityruinsStSebMean

InceptionResNetv2 [49] 44.1 77.2 57.8 81.1 77.4 74.6 26.8 62.7

MAX [11] 49.3 74.7 30.3 67.5 57.4 43.2 7.0 47.1

RES-152-COCO MI-max [our] 57.4 60.7 79.9 70.4 65.3 45.9 17.0 56.7 ± 1.0

MI-max-C [our]61.0 68.9 80.2 71.4 66.3 51.7 14.8 59.2 ± 1.2

Next, we evaluate the detection performance of our method, first with a
restrictive metric: AP per class with an IoU � 0.5 (as in all previous detection
experiments in this paper), then with a less restrictive metric with IoU � 0.1.
Results are displayed in Table 6. Results on this very demanding experiment are a
mixed-bag. Some classes, such as crucifixion, and to a less extend nudity or Jesus
Child are correctly detected. Others, such as angel, ruins or Saint Sebastian,
hardly get it up to 15% detection scores, even when using the relaxed criterion
IoU � 0.1. Beyond a relatively small number of examples and very strong scale
and pose variations, there are further reasons for this:

– The high in-class depiction variability (for Saint Sebastian for instance)
– The many occlusions between several instances of a same class (angel)
– The fact that some parts of an object can be more discriminative than the

whole object (nudity).

Illustrations of successes and failures are displayed, respectively on Figs. 4
and 5. On the negative examples, one can see that often a larger region than

Table 6. IconArt detection test set detection average precision (%). All methods
based on RES-152-COCO.

Method Metric angel JCchild crucifixion Mary nudity ruins StSeb Mean

MAX [11] AP IoU� 0.5 1.4 3.9 7.4 2.8 3.9 0.3 0.9 2.9

AP IoU� 0.1 10.1 36.2 28.2 18.4 14.0 1.6 2.8 15.9

MI-max [our] AP IoU� 0.5 0.3 0.9 37.3 3.8 21.2 0.5 10.9 10.7 ± 1.7

AP IoU� 0.1 6.4 25.3 74.4 44.6 30.9 6.8 17.2 29.4 ± 1.7

MI-max-C [our] AP IoU� 0.5 3.0 17.7 32.6 4.8 23.5 1.1 9.6 13.2 ± 3.1

AP IoU� 0.1 12.3 41.2 74.4 46.3 31.2 13.6 16.1 33.6 ± 2.2
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the element of interest is selected or that a whole group of instances is selected
instead of a single one. Future work could focus on the use of several couples
(w, b) instead of one to prevent those problems.

Fig. 4. Successful examples using our MI-max-C detection scheme. We only show boxes
whose scores are over 0.75.

Fig. 5. Failure examples using our MI-max-C detection scheme. We only show boxes
whose scores are over 0.75.

5 Conclusion

Results from this paper confirm that transfer learning is of great interest to
analyse artworks databases. This was previously shown for classification and fully
supervised detection schemes, and was here investigated in the case of weakly
supervised detection. We believe that this framework is particularly suited to
develop tools helping art historians, because it avoids tedious annotations and
opens the way to learning on large datasets. We also show, in this context,
experiments dealing with iconographic elements that are specific to Art History
and cannot be learnt on natural images.

In future works, we plan to use localisation refinement methods, to further
study how to avoid poor local optima in the optimisation procedure, to add
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contextual information for little objects, and possibly to fine-tune the network
(as in [15]) to learn better features on artworks. Another exciting direction is
to investigate the potential of weakly supervised learning on large databases
with image-level annotations, such as the ones from the Rijkmuseum [44] or the
French Museum consortium [43].
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43. Réunion des Musées Nationaux-Grand Palais: Images d’Art (2018). https://art.
rmngp.fr/en

44. Rijksmuseum: online collection catalogue - research (2018). https://www.
rijksmuseum.nl/en/research/online-collection-catalogue

45. Seguin, B., Striolo, C., diLenardo, I., Kaplan, F.: Visual link retrieval in a database
of paintings. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 753–
767. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0 52

46. Shrivastava, A., Malisiewicz, T., Gupta, A., Efros, A.A.: Data-driven visual sim-
ilarity for cross-domain image matching. ACM Trans. Graph. (ToG) 30(6), 154
(2011)

47. Song, H.O., Girshick, R., Jegelka, S., Mairal, J., Harchaoui, Z., Darrell, T.: On
learning to localize objects with minimal supervision. In: Xing, E.P., Jebara, T.
(eds.) Proceedings of the 31st International Conference on Machine Learning. Pro-
ceedings of Machine Learning Research, PMLR, Bejing, China, pp. 1611–1619, No.
2, 22–24 June 2014, http://proceedings.mlr.press/v32/songb14.html

48. Strezoski, G., Worring, M.: OmniArt: multi-task deep learning for artistic data
analysis. arXiv:1708.00684 [cs], August 2017

49. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: AAAI, p. 4 (2017)

50. Tang, P., Wang, X., Bai, X., Liu, W.: Multiple instance detection network with
online instance classifier refinement. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3059–3067 (2017)

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1145/3123266.3123405
https://www.metmuseum.org/about-the-met/policies-and-documents/image-resources
https://www.metmuseum.org/about-the-met/policies-and-documents/image-resources
http://pharosartresearch.org/
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://art.rmngp.fr/en
https://art.rmngp.fr/en
https://www.rijksmuseum.nl/en/research/online-collection-catalogue
https://www.rijksmuseum.nl/en/research/online-collection-catalogue
https://doi.org/10.1007/978-3-319-46604-0_52
http://proceedings.mlr.press/v32/songb14.html
http://arxiv.org/abs/1708.00684


Weakly Supervised Detection in Artworks 709

51. van Noord, N., Postma, E.: Learning scale-variant and scale-invariant features for
deep image classification. Pattern Recogn. 61, 583–592 (2017). https://doi.org/10.
1016/j.patcog.2016.06.005

52. Westlake, N., Cai, H., Hall, P.: Detecting people in artwork with CNNs. In: ECCV
Workshops (2016)

53. Wilber, M.J., Fang, C., Jin, H., Hertzmann, A., Collomosse, J., Belongie, S.: BAM!
The behance artistic media dataset for recognition beyond photography. In: IEEE
International Conference on Computer Vision (ICCV). IEEE (2017)

54. Wu, Q., Cai, H., Hall, P.: Learning graphs to model visual objects across different
depictive styles. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8695, pp. 313–328. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10584-0 21

55. Yin, R., Monson, E., Honig, E., Daubechies, I., Maggioni, M.: Object recognition in
art drawings: transfer of a neural network. In: 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2299–2303. IEEE (2016)

56. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: 2017 IEEE International Confer-
ence on Computer Vision (ICCV) (2017)

https://doi.org/10.1016/j.patcog.2016.06.005
https://doi.org/10.1016/j.patcog.2016.06.005
https://doi.org/10.1007/978-3-319-10584-0_21
https://doi.org/10.1007/978-3-319-10584-0_21

	Weakly Supervised Object Detection in Artworks
	1 Introduction
	2 Related Work
	3 Weakly Supervised Detection by Transfer Learning
	3.1 Multiple Instance Learning
	3.2 Implementation Details

	4 Experiments
	4.1 Experiments on PASCAL VOC
	4.2 Detection Evaluation on Watercolor2k and People-Art Databases
	4.3 Detection on IconArt Database

	5 Conclusion
	References




