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Abstract. State of the art Computer Vision techniques exploit the
availability of large-scale datasets, most of which consist of images cap-
tured from the world as it is. This brings to an incompatibility between
such methods and digital data from the artistic domain, on which current
techniques under-perform. A possible solution is to reduce the domain
shift at the pixel level, thus translating artistic images to realistic copies.
In this paper, we present a model capable of translating paintings to
photo-realistic images, trained without paired examples. The idea is to
enforce a patch level similarity between real and generated images, aim-
ing to reproduce photo-realistic details from a memory bank of real
images. This is subsequently adopted in the context of an unpaired
image-to-image translation framework, mapping each image from one
distribution to a new one belonging to the other distribution. Qualita-
tive and quantitative results are presented on Monet, Cezanne and Van
Gogh paintings translation tasks, showing that our approach increases
the realism of generated images with respect to the CycleGAN approach.

1 Introduction

In recent years, the Computer Vision community has converged towards unified
approaches for image classification and understanding problems. As a matter
of fact, architectures such as VGG [22] and ResNet [5] are now the standard
de-facto for tackling most of the tasks in which an high-level understanding of
the image is needed. Nevertheless, the application of state-of-the-art techniques
to the domain of Digital Humanities and art is not trivial, as much of the devel-
opment of the recent years is also due to the availability of large annotated
datasets which consist of natural images or videos. This creates strong biases
in the trained models, which limit the applicability of current solutions to the
artistic domain [1].

A clear visualization of the domain shift between real and artistic data can be
obtained by extracting high-level convolutional features from the two domains
and visualizing them in a lower-dimensional projection which maintains the
structure of the input space, e.g. by using a t-SNE transform [15]. In Fig. 2, we

c© Springer Nature Switzerland AG 2019
L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11130, pp. 601–616, 2019.
https://doi.org/10.1007/978-3-030-11012-3_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11012-3_46&domain=pdf
https://doi.org/10.1007/978-3-030-11012-3_46


602 M. Tomei et al.

Fig. 1. A sample result from our approach. We propose a method which is capable of
generating images with photo-realistic details, preserving the content of an artwork.

show the projections of visual features extracted from VGG-19 [22] and ResNet-
152 [5] on real and artistic images which roughly describe the same visual domain
(in this case, that of landscapes). As it can be observed, even though the content
of all distributions is almost identical, features extracted from artistic images are
shifted with respect to those extracted from real images, with a distance that
increases when selecting less realistic styles, such as those of Cezanne and Van
Gogh.

Reducing the domain shift at the pixel level, i.e. transforming artistic images
to photo-realistic visualizations, is the objective of this paper (Fig. 1). The task
has been tackled recently in literature as an instance of a more general domain
translation task in unpaired settings [29]; we are not aware, however, of other
works which have specifically tackled the translation between art and real. Here,
our main source of intuition is that high model capacity is mandatory to memo-
rize the details needed to perform photo-realistic generation. Therefore, instead
of delegating the task of learning photo-realistic details exclusively to the min-
max game of a generative adversarial model, we empower our model with an
external memory of real images, and a search strategy to retrieve elements from
the memory when needed to condition the generation.

Our model builds upon a Cycle-GAN [29], which consists of two Generative
Adversarial Networks to align two unpaired domains. We extend and improve
this approach by building external memory banks of real patches, and condition-
ing the learning to maximize the similarity of generated patches with respect to
real patches. To this end, we devise a differentiable association strategy which,
given a generated patch, retrieves the most similar real patch in the external
memory. An additional loss term is then used to reduce the distance between
generated and real patches. The same strategy is applied at multiple scales, to
remove possible artifacts in the generation and increase the quality of the final
results. To reduce the computational complexity of the approach, we also build
an efficient version of our objective which is coupled with an approximated k-NN
search.
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Beyond presenting quantitative results obtained using state of the art met-
rics for image generation [6], we also perform careful perceptual experiments
conducting a user study to compare the proposed approach to common unpaired
translation models, under different settings. The experiments indicate that the
images synthesized by our model are more realistic than those generated by a
simple image-to-image translation approach.

(a) VGG-19 (b) ResNet-152

Fig. 2. Domain shift visualization between real images and artistic paintings of differ-
ent artists. Visualization is obtained by extracting visual features from both real and
artistic images and by running the t-SNE algorithm on top of that. To encode images,
we extract visual features from layer fc7 of the VGG-19 [22] and from the final average
pooling layer of the ResNet-152 [5]. To ensure a fair comparison, images are taken
from roughly the same distribution of paintings: both represent landscapes. Best seen
in color.

2 Related Work

The literature for image-to-image translation can be roughly categorized into
style transfer [2] approaches and methods based on Generative Adversarial Net-
works (GANs) [4]. In the first case, the rationale is to synthesize a novel image
by combining features of one image with features of another image, extracted
at different semantic levels [2,3,9,25]. In the seminal work of Gatys et al. [2], a
realistic input image was modified by minimizing a cost function aiming to pre-
serve the content of the original image, and the style of a target artistic image,
encoded via the Gram matrix of activations of a lower CNN layer.

Johnson et al. [9], on the same line, proposed the use of perceptual loss func-
tions for training feed-forward encoders for the style-transfer task. Their method
showed very similar qualitative results with respect to previous approaches, and
significantly reduced the computational cost. The same problem of improving the
overall computational efficiency of [2,3] was addressed in [25], in which a com-
pact feed-forward network was designed to transfer the style of a given image to
another one using complex and expressive loss functions. While these approaches
have been successful in transferring the global texture properties of artworks to
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realistic images, mimicking the appearance of the brush strokes, they are not
well suited for transferring from the artistic to the real domain, as texture prop-
erties are generally encoded in a translation invariant manner, and generating
photo-realistic details by inverting CNN activations remains difficult.

On a different note, GANs [4] generate realistic images by aligning the dis-
tributions of real and generated images. They have been adopted for conditional
image generation problems such as text to image synthesis [19], image inpaint-
ing [18] and future frame prediction [16], and have been successfully applied to
other domains like videos [27] and 3D data [28].

A large set of existing methods exploit GANs to translate an image to a dif-
ferent representation of the image itself, as for example generating photographs
from sketches [21]. In this context, Isola et al. [7] proposed a conditional GAN
for learning a mapping from input to output images demonstrating the appli-
cability of their network to a wide variety of image-to-image translation tasks.
The main drawback of this kind of approaches is the need of paired training data
(i.e. paired images before and after the translation). To overcome this problem,
several methods have addressed the unpaired setting, where the goal is to trans-
late images from a domain to another without leveraging on paired data to learn
the corresponding translation. In particular, Liu et al. [14] introduced a cou-
pled generative adversarial network that, thanks to a weight sharing strategy, is
able to learn a joint distribution of multi-domain images. An extension of this
work for unpaired image-to-image translation was presented in [13], exploiting
a combination of variational autoencoders and GANs.

Zhu et al. [29] instead proposed CycleGAN, a model based on generative
adversarial networks that, given two unpaired image collections, automatically
translates an image from one domain to the other and vice versa. This is achieved
by forcing the translation to be cycle consistent in the sense that if an image is
translated from a domain to another, and translated back to the original domain,
the result should be consistent with the original image. This cycle consistency
criterion has been demonstrated to be effective for several tasks where paired
training data does not exist, including style transfer, object transfiguration, sea-
son transfer, and photo enhancement.

3 Proposed Approach

Given an input painting, our goal is to generate a photo-realistic image repre-
senting the same content, without leveraging paired training data. In contrast
to style transfer approaches [2], the objective is not to transfer a specific artistic
style to an image, but rather to remove any artistic style from the painting,
bringing the content back to a photo-realistic visualization. In other words, our
model tries to show what reality the artist was observing or imagining while
drawing.

The model is built on a cycle-consistent framework [29], which is endowed
with an external memory of photo-realistic images and a patch-level retrieval
strategy. At training time, real patches can be retrieved at multiple scales thanks
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to an assignment loss between real and generated patches. A summary of the
approach is presented in Fig. 3.
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Fig. 3. Overall representation of our model. The model contains two generators (G and
F ) and two discriminators (not shown in the figure). The adversarial losses [4], com-
bined with cycle-consistency losses, push the generators to produce images belonging
to their corresponding target distributions, while imposing a pairing between the two
domains. Every generated patch is also associated with respect to a memory bank of
real patches, in a multi-scale and differentiable way. An additional cost term minimizes
the distance between generated and real patches retrieved from the memory.

3.1 Unpaired Image to Image Translation

Our model needs to learn a mapping between the domain of paintings from a
specific artist, which we call X, and the domain of real images, Y . Denoting the
data distributions as x ∼ pdata(x) and y ∼ pdata(y), two mapping functions are
built to translate data from one domain to another, G : X → Y and F : Y →
X. Following the Cycle-GAN approach, we realize the two mapping functions
through learnable generators, which are paired with two discriminators DX and
DY at training time. The Cycle-Consistent Adversarial Objective features the
following losses:

– Two adversarial losses [4] to generate images indistinguishable from those in
the target domain. For both (G,DY ) and (F,DX), the generator is trained to
reproduce the target data distribution, creating images that are difficult for
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the discriminator to distinguish from the real ones, while the discriminator
is trained to differentiate between real and synthetic images. In this setting,
the generator and the discriminator play a two-player minimax game through
the following objective functions:

LGAN (G,DY ,X, Y ) = Ey∼pdata(y)[logDY (y)]+Ex∼pdata(x)[log(1−DY (G(x)))]
(1)

LGAN (F,DX , Y,X) = Ex∼pdata(x)[logDX(x)]+Ey∼pdata(y)[log(1−DX(F (y)))]
(2)

During training, while the generator (i.e. the mapping function) tries to min-
imize the objective, the discriminator tries to maximize it.

– Observing that the adversarial losses, alone, would lead to an under con-
strained problem, which would not ensure that the input and the generated
images share the same content, a cycle consistency loss [29] is applied to
reduce the space of possible mapping functions. For this purpose, whenever
an image is synthesized by a generator, the result is transformed again by the
other generator, taking the image back into the starting distribution, thus
obtaining a reconstructed image.
We require the original image and the reconstructed one to be the same,
i.e. x → G(x) → F (G(x)) ≈ x and y → F (y) → G(F (y)) ≈ y. This is
imposed by applying an �1-loss between reconstructed and original images:

Lcyc(G,F ) = Ex∼pdata(x)[‖F (G(x)) − x‖] + Ey∼pdata(y)[‖G(F (y)) − y‖] (3)

– An identity mapping loss [24] helps to preserve the color distributions between
input and output images. This is done by forcing the generators to behave like
an identity function when their input are images from their target domain,
through the following loss:

Lid(G,F ) = Ey∼pdata(y)[‖G(y) − y‖] + Ex∼pdata(x)[‖F (x) − x‖] (4)

The full Cycle-Consistent Adversarial Loss [29] can therefore be written as fol-
lows:

Lcca(G,F,DX ,DY ) = LGAN (G,DY ,X, Y ) + LGAN (F,DX , Y,X)
+ Lcyc(G,F ) + Lid(G,F ).

(5)

Alone, this objective sets an unpaired image-to-image translation setting
between artistic and real images, suitable for performing translations in both
directions. In the following, we discuss the incorporation of an external memory
and of a retrieval strategy to condition the model on real image elements.

3.2 Retrieving Real Patches from an External Memory

Our goal is to translate images from the artistic domain to the realistic domain.
To do so, we rely on the hypothesis that realistic images can be effectively
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generated by copying visual elements from real images, instead of optimizing
the cycle-consistent generative objectives alone.

Given a set of real images, we build a memory bank M by extracting fixed-
size patches from each image in a sliding window manner. When the number
of real images is sufficiently large and their content is sufficiently aligned with
the distribution represented by the paintings, the memory bank can effectively
model a distribution of real patches which can drive the training of the generative
model. To do so, each generated image G(x) is split into patches as well, following
the same patch size and stride as in the memory bank. Then, a retrieval strategy
is designed to pair each generated patch with the most similar in the memory
bank M , while an assignment loss is in charge of maximizing the similarity
between generated and real patches, under the previously computed assignment.
Since we focus on appearance, each patch is encoded with its RGB values, thus
obtaining a dimensionality of l × l × 3 for a patch size of l × l.

Reading from the External Memory. Given the set of real patches from M ,
M = {mj} and the set of patches from G(x), K = {ki}, a pairwise cosine
distance function is defined after centering the distributions of real and generated
patches with respect to the mean of real patches.

dij =
(

1 − (ki − μm) · (mj − μm)
‖ki − μm‖2 ‖mj − μm‖2

)
, where μm =

1
N

∑
j

mj (6)

Each generated patch is then assigned to its most similar counterpart in
the memory bank with a differential assignment strategy. In particular, we first
normalize the pairwise distances and then compute pairwise affinities Aij ∈ [0, 1]
as follows:

d̃ij =
dij

minl dil + ε
, where ε = 1e − 5 (7)

Aij =
exp(1 − d̃ij/h)∑
l exp(1 − d̃il/h)

=

{
≈ 1 if d̃ij � d̃il ∀ l 	= j

≈ 0 otherwise
(8)

where h > 0 is a bandwidth parameter. In practice, each generated patch ki
is softly assigned to the most similar real patch, as determined by the affinity
matrix Aij . In other words, ki will be assigned prominently to the real patch
corresponding to maxj Aij , and to others near real patches which happen to have
an high degree of affinity with ki.

Reducing the Computational Overhead. Computing the assignments between real
and generated patches requires to compute the entire affinity matrix Aij , which
leads to an intractable process when the number of real patches is large. The size
of Aij , in fact, grows linearly with the number of patches, which grows linearly
with the number of images and quadratically when decreasing the stride.

To reduce the computational overhead, we build a suboptimal Nearest Neigh-
bors index with real patches. Then, for each generated patch ki, we conduct a
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k-NN search to get the k nearest samples from the memory bank. We subse-
quently estimate the affinity matrix Aij by reducing the computation only on
the retrieved real patches, thus getting a sparse matrix in which the affinities for
non retrieved patches are set to zero. Notice that, when the results of the k-NN
search are reliable, the estimation of Aij is close to the exact results, thanks to
the Softmax normalization in Eq. 8.

To speed up the computation of the distances when the number of real images
used to generate the memory bank is large, we adopt a suboptimal inverted index
with exact post-verification (IndexIVFFlat), which has an high-performance
implementation in the Faiss library [8].

Fig. 4. Comparison between (left) original Monet painting and (right) an image gen-
erated by minimizing the contextual loss on real patches, plus a content loss regular-
ization, updating pixel values directly. As shown in the zoomed patches, many brush
strokes disappear, recovering realistic textures.

Maximizing the Similarity with Real Patches. Once affinities are computed, we
maximize the similarity between each generated patch and its corresponding
assignments from the memory bank. To this aim, we employ the contextual
loss [17] as follows.

LCX(K,M) = − log

(
1
N

(∑
i

max
j

Aij

))
(9)

With the contextual loss, we aim to reduce the distance between two distri-
butions: the distribution of the generated image features (i.e., that of generated
patches) and that of the memory bank features (i.e., real patches).



What Was Monet Seeing While Painting? 609

Multi-scale. To better translate artistic details to real details we adopt a multi-
scale variant of the proposed approach, thus building multiple memory banks,
each with different patch sizes and strides. During training, we compute the
contextual loss for each scale separately, and define the final objective as the
sum of the losses obtained at each scale. In practice, we adopt three scales, as
follows:

LCXMS(K,M) =
3∑

s=1

− log

(
1

Ns

(∑
i

max
j

As
ij

))
(10)

where As is the affinity matrix computed between patches with scale s and Ns

is the number of real patches of the memory bank for scale s.

The Role of the Contextual Loss. For the ease of the reader, we showcase the
benefit of this strategy in a simpler setting which does not employ a min-max
generative game. Taking inspiration from style-transfer works [2], we build a cost
function and minimize it by back-propagating directly on the pixel values of the
source image. In particular, a content loss is placed to regularize the training
and to maintain the semantic content of the original image, while the contextual
loss is applied to maximize the patch-level similarity with respect to a memory
bank of real images. A sample result on a Monet painting is shown in Fig. 4. As
it can be observed, the contextual loss on real patches helps to obtain realistic
and plausible results, removing stroke textures in large portions of the image.

3.3 Full Objective

We combine together the unpaired image-to-image translation framework and
our retrieval and assignment strategy between real and generated patches, thus
obtaining the following overall training loss:

L(G,F,DX ,DY ,K,M) = Lcca(G,F,DX ,DY ) + λLCXMS(K,M) (11)

where λ is the contextual loss weight. During our preliminary tests, we found that
good values for λ, in the multi-scale version of the approach, lie around 0.1 or less.
As a final side note, it is important to underline that we are interested only in
generating real images from paintings and not also in the opposite task. For this
reason, we do not include a second set of memory banks for the artistic features,
and we do not compute the contextual loss also in the opposite direction.

4 Experimental Results

In this section, we provide qualitative and quantitative results of the proposed
solution as well as implementation details and datasets used in our experiments.
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4.1 Datasets and Implementation Details

To evaluate our approach, we use a set of paintings from Monet, Cezanne and
Van Gogh and a set of real images. To keep the distribution of paintings and
real images roughly aligned, real images are selected from landscape pictures:
paintings are downloaded from Wikiart.org, and photos are taken from Flickr
using the combination of tags landscape and landscapephotography. Black-
and-white photos were pruned, and the images were scaled to 256 × 256 pixels.
The number of samples for each training set are Monet: 1072, Cezanne: 583, Van
Gogh: 400, Photographs: 2048.

CycleGAN Parameters. To build the Cycle-GAN part of our model, we keep
the same networks and training parameters as in [29]. The generative networks
architecture is adapted from Johnson et al. [9] and contains two stride-2 convo-
lutions to downsample the input, followed by several residual blocks and then
two convolutional layers with stride 1/2 for upsampling. The discriminative net-
works are PatchGANs [7,11,12] which try to classify if each square patch in an
image is real or fake.

Contextual Loss Parameters. We extract patches at three different scales,
to fill our memory banks, from 100 different real images. Keeping the size of
the image constant, we extracted real patches of size 4 × 4, 8 × 8 and 16 × 16,
using stride values of 4, 5 and 6 respectively. During training, at each iteration
we extract patches with the same sizes and strides from the generated image
and compute the contextual loss. The contextual loss weight λ in Eq. 11 was
fixed to 0.1.

We train the model for 200 epochs by using the Adam optimizer [10] with
a batch size of 1, keeping a learning rate of 0.0002 for the first 100 epochs and
then linearly decaying it to zero over the next 100 epochs. Weights are initialized
from a Gaussian distribution with 0 mean and standard deviation 0.02.

4.2 Qualitative Results

We compare our results with those from a CycleGAN [29], trained exactly with
the same parameters used for our model. Given the subjective nature of the
task, before presenting a quantitative discussion, we show some examples of
generated images starting from Monet, Cezanne and Van Gogh paintings in
Fig. 5. Additional qualitative results are reported in Fig. 6.

We observe that our results generally preserve the colors of the original paint-
ings and contain less artifacts than images generated by CycleGAN. This qual-
ity improvement is particularly manifest in the details of sky and sea (Fig. 5,
first and fourth rows), in the preservation of colors (Fig. 5, third row), and in
the smoothness of objects which do not have well defined edges in the original
painting, as in the smoke of Fig. 5, second row.

http://www.Wikiart.org/
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Fig. 5. Results of applying our method to Monet (first and second rows), Van Gogh
(third row) and Cezanne (fourth row) paintings. (left) Original painting, (center) Cycle-
GAN [29] output, (right) our method output.
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4.3 Quantitative Results

To numerically evaluate the visual quality of the results, we adopt the Fréchet
Inception Distance (FID) [6], which has been recently emerging as a reliable
metric for evaluating generated images and has been proven to be more consis-
tent with human judgments than the Inception score [20]. FID corresponds to a
Wasserstein-2 distance [26] between two multivariate Gaussian distributions fit-
ted on real and generated data, using activations from layers of the Inception-v3
model [23].

In Table 1, we show FID values obtained under different settings. In partic-
ular, we measure the FID distance with real images using the original paint-
ings, fake paintings generated using style transfer, and the recovered real images
generated with CycleGAN and our approach. Also, we employ three different
Inception-v3 layers to assess the distance using both low-level and high-level
visual features. As it can be observed, our model is able to further reduce the
distance with real images, when compared to CycleGAN, thus confirming the
effectiveness of the approach. The same trend is observable with both low-level
and high-level Inception features, and for all the artists.

While being a well-grounded metric for image generation, the FID score
cannot be as effective as human judgment. Therefore, we further evaluate our
results by conducting a user study. All the tests have involved five volunteering
people who were not aware of the details of the proposed approach, and thus not
trained to distinguish between our results and those of CycleGAN. In each test,
evaluators were presented with different real and generated images, and asked to
click on the most realistic one using a web interface. Our tests were structured
as follows.

Realism of the Generation – users were presented our result and the CycleGAN
output for a given input painting, which was not shown in the interface. Gener-
ated images were presented in their full size (256 × 256) and chosen randomly
from the dataset. Each user was given 100 image pairs, and asked to select which
of the two images seemed more realistic.

Coherency with the Source Painting – in this test, the interface also showed the
original painting to the user, who was asked to click on the generated image that
best represented the painting. With this test, we aim to investigate whether our
results are more faithful to the original painting colors and composition. Again,
100 image triplets were shown to each user.

Multi-scale Comparison with Real Images – to assess to what extent the gen-
erated images look realistic, we also asked the users to rank the realism of the
generated images with respect to real images. In this test, the interface showed
two images to the user, one generated by our method and the other randomly
extracted from the real images dataset. The user was asked to select the more
realistic one, and presented with 100 image pairs. The same test was repeated
in three different runs, in which images were resized with a ratio of 1, 2/3, 1/2,
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and ensuring that different real-generated pairs were presented to the same user
in different runs.

Tables 2 and 3 show the results of our tests. As it can be observed from
Table 2, images generated by our method were evaluated as more realistic than
those of CycleGAN 58.4% of the times, thus beating the baseline with a margin of
17%. Also, when showing the input painting to the user, images generated by our
method were ranked as more coherent with the input painting, thus underlying
that our method is able to preserve color and texture from the painting.

Finally, we also had some chances to win the comparison with real images. As
reported in Table 3, even when comparing the results of our generation with real
landscapes, sometimes the user was fooled and selected the generated image. As
it can be expected, this behavior becomes more frequent when the images are
downsized to a small scale. Nevertheless, it is significant to observe that, even
at full scale, the user was fooled about 5% of the times.

Table 1. Fréchet Inception Distance (FID) [6] computed between real images (land-
scape pictures) and different sets: artist’s original paintings, images obtained trans-
ferring the artist’s style to the real images through Gatys et al. [2], images generated
with CycleGAN [29] and with our method. The FID is computed using different fea-
ture layers of Inception-v3: the second max pooling (192-d), the pre-auxiliary classifier
layer (768-d) and the final average pooling layer (2048-d). FIDs computed at different
Inception-v3 layers are not directly comparable [6].

Monet Cezanne Van Gogh

2048 dimensions

Original paintings 74.45 176.51 166.72

Style transfer [2] 58.02 91.23 101.54

CycleGAN [29] 55.26 83.62 86.82

Our model 54.43 77.01 81.74

768 dimensions

Original paintings 0.52 1.26 1.39

Style transfer [2] 0.50 1.01 1.18

CycleGAN [29] 0.41 0.49 0.48

Our model 0.34 0.37 0.41

192 dimensions

Original paintings 0.94 1.67 3.96

Style transfer [2] 0.71 1.49 3.33

CycleGAN [29] 0.31 0.28 0.19

Our model 0.16 0.13 0.11
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Table 2. Results of the user tests on realism and coherency. Values are reported as
the percentage of images chosen with respect to the total.

Test Scale CycleGAN [29] Our method

Realism of the generation 256 × 256 41.6% 58.4%

Coherency with the painting 256 × 256 41.2% 58.8%

Table 3. Results of the multi-scale comparison with real images. Values are reported
as the percentage of images chosen with respect to the total.

Scale Random real image Generated image

256 × 256 95.1% 4.9%

170 × 170 88.2% 11.8%

128 × 128 88.0% 12.0%

Fig. 6. Sample results generated by our method.
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5 Conclusions

We presented a novel method for artistic-to-realistic domain translation. Since
paired training data is not available for this task, our approach is based on an
unpaired framework. In particular, we built upon the CycleGAN architecture,
and enriched it with multi-scale memory banks of real images, to drive the gen-
eration at the patch level. To make the approach computationally feasible, we
also provided an approximated version of the association strategy. Results, pre-
sented both qualitatively and quantitatively, show that our method outperforms
the CycleGAN baseline, leading to more realistic results. Despite the increased
quality, failure cases are still frequent, and the task is still far from being solved.
In particular, we noticed that the method often fails to translate portraits and
images with blurry foreground objects. Future works will explore this direction,
also tackling the generation of higher resolution images.
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