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Abstract. In the problem of generalized zero-shot learning, the data-
points from unknown classes are not available during training. The main
challenge for generalized zero-shot learning is the unbalanced data dis-
tribution which makes it hard for the classifier to distinguish if a given
testing sample comes from a seen or unseen class. However, using Gen-
erative Adversarial Network (GAN) to generate auxiliary datapoints by
the semantic embeddings of unseen classes alleviates the above problem.
Current approaches combine the auxiliary datapoints and original train-
ing data to train the generalized zero-shot learning model and obtain
state-of-the-art results. Inspired by such models, we propose to feed the
generated data via a model selection mechanism. Specifically, we leverage
two sources of datapoints (observed and auxiliary) to train some classifier
to recognize which test datapoints come from seen and which from unseen
classes. This way, generalized zero-shot learning can be divided into two
disjoint classification tasks, thus reducing the negative influence of the
unbalanced data distribution. Our evaluations on four publicly available
datasets for generalized zero-shot learning show that our model obtains
state-of-the-art results.
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1 Introduction

In the zero-shot learning task, a classifier is trained with datapoints from seen
classes and applied to recognize previously unseen dataponts belonging to unseen
classes. The main objective is to leverage knowledge from label embeddings,
e.g. attributes, word embedding or class hierarchy information, to build a univer-
sal mapping that can classify unseen datapoints without retraining the system
on new unseen classes. Firstly, let us denote Xtr as training datapoints from
seen classes Cs, Xts to be testing datapoints from unseen classes Cu such that
Cs ∩ Cu = ∅. The model is trained on Xtr but needs to assign a label l ∈ Cu for
each datapoint from Xts. Recently, researchers have argued that standard zero-
shot learning protocols are biased towards good results on unseen classes while
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neglecting performance on seen classes. To address this issue, a generalized zero-
shot learning task was proposed for which testing datapoints come from seen and
unseen classes, and the classifier needs to cope well with all classes C = Cs ∪Cu.

It has emerged that most of zero-shot learning methods achieve low accuracy
in such a protocol because training datapoints come only from the seen classes.
In most cases, the strong imbalance of data distribution will make the classifier
assign datapoints from seen classes to unseen classes.

The use of Generalized Adversarial Network (GAN) to generate auxiliary
datapoints for unseen classes [1] enables the classifier to be trained on data-
points from both seen and unseen categories. Inspired by such an extension,
we found that using the auxiliary and original training data to learn a classi-
fier, e.g. Support Vector Machine (SVM), can be further improved by treating
the classification of original datapoints separately, that is, by decomposing the
generalized zero-shot learning into two disjoint classification tasks: one classi-
fier dealing with datapoints from seen classes and another classifier dealing with
datapoints of unseen classes.

In this paper, we propose to use the auxiliary data of unseen classes gener-
ated by GAN together with the original training data to build a model selection
approach for generalized zero-shot learning. We refer to our approach as Mod-
elSel and propose its three variants in Sect. 3. We evaluate ModelSel on four
standard datasets and demonstrate state-of-the-art results.

2 Related Work

Zero-shot learning is a form of transfer learning. Specifically, it utilizes the knowl-
edge learned on datapoints of seen classes and attribute vectors to generalize and
recognize testing datapoints from new classes. The majority of previous zero-shot
learning methods use some linear mapping to capture the relation between the
feature and attribute vectors. Attribute Label Embedding (ALE) [2] uses the
attributes as label embedding and presents an objective inspired by a struc-
tured WSABIE ranking method that assigns more importance to the top of the
ranking list. Embarrassingly Simple Zero-Shot Learning (ESZSL) [3] uses a lin-
ear mapping and simple empirical objective with several regularization terms
that impose penalty on the projection of features from the Euclidean into the
attribute space and the projection of attribute vectors back to the Euclidean
space. Structured Joint Embedding (SJE) [4] proposes an objective inspired by
the structured SVM and applied as linear mapping while [5] proposes new data
splits and evaluation protocols to eliminate the overlap between classes of Ima-
geNet [6] and zero-shot learning datasets. Zero-shot Kernel Learning (ZSKL) [7]
proposes a non-linear kernel method with weak incoherence constraints to make
the columns of projection matrix weakly incoherent. Feature Generating Net-
works [1] leverages a conditional Wasserstein Generative Adversarial Network
(WGAN) to generate auxiliary datapoints for unseen classes from attribute vec-
tors followed by training a simple Softmax classifier. SoSN [8] and So-HoT [9]
use second-order statistics [10] for similarity learning and domain adaptation.
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3 Approach

3.1 Notations

Let us denote seen classes as Cs, unseen classes as Cu. Xtr denotes original
training datapoints, Xge are the generated datapoints for unseen classes. Each
datapoint is a column vector in one of the above matrices. Msel is the selector
between seen/unseen class, Ms is the model for Cs, Mu is the model for Cu, Mt

is a model for Cs ∪ Cu. Moreover, wsel, bsel, W s, bs, W u, bu, W t and bt are
the projection vector/matrices and biases used by our models as detailed below.

3.2 Model Selection Mechanism

In this paper, we propose a mechanism that leverages several classifiers to per-
form generalized zero-shot learning. Firstly, we label the original datapoints as
1 and auxiliary datapoints as −1 to train Msel, which is a linear SVM classifier.

Model Ms is a classifier trained with datapoints from seen classes Cs, model
Mu is trained with auxiliary datapoints from GAN corresponding to unseen
classes Cu. Model Mt is trained for Cs ∪ Cu simultaneously.

Ms, Mu and Mt are trained separately via the SoftmaxLog classifier. While
we use a single training process, we distinguish three selection models applied
at the testing stage. The output of each classifier can be defined as:

gs(x) = W T
s x + bs, (1)

gu(x) = W T
ux + bu, (2)

gt(x) = W T
t x + bt. (3)

ModelSel-2Way. The testing mechanism of ModelSel-2Way can be illustrated
as follows. For each testing datapoint x ∈ Xtr, we feed it firstly into Msel. The
role of Msel is to decide if x belongs to the seen or unseen class based on which
we select either Ms or Mu model for the final classification:

s(x) = wT
selx + bsel. (4)

Then, the final prediction for x becomes:

f(x, s(x)) =

{
gs(x), if s ≥ 0,

gu(x), otherwise.
(5)

ModelSel-2Way-SA. We also propose to use the Sigmoid function to generate
soft assignment scores from the output of Msel as the weights assigned to the
outputs of Ms and Mu. We call this method as ModelSel-2Way-SA. The intuition
behind this model is that Msel suffers from the quantization errors close to the
classification boundary, thus we model the assignment uncertainty in Msel to
reduce quantization errors. The probability that x belongs to seen classes Cs or
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Fig. 1. Our ModelSel-2Way approach. Fig. 2. Our ModelSel-2Way-SA approach.

Cu is denoted ps(x) and pu(x) = 1 − ps(x), respectively, and ps(x) is given as
(Figs. 1 and 2):

ps(x) =
1

1 + e−σs(x)
, (6)

where σ is the parameter to control the slope of the Sigmoid function. Then, the
output of ModelSel-2Way-SA is given as:

f(x) = ps(x) · gs(x) + pu(x) · gu(x). (7)

ModelSel-3Way. For the ModelSel-3Way, we use additionally classifier Mt

trained with both original and auxiliary datapoints so it can classify data from
both seen and unseen classes. While its performance is worse than Ms and Mu in
each domain, we leverage the output of Mt as a mask to correct some incorrect
predictions from Mu and Ms. The output of our ModelSel-3Way model, shown
in Fig. 3, is defined as follows:

f(x, s(x)) = max

⎛
⎜⎝

{
c · gt(x) + gs(x) − os if s≥0
c · gt(x) + gu(x) − ou if s<0

,

gt(x)

⎞
⎟⎠,

← gray regions in Fig. 4
← black regions in Fig. 4
← white region in Fig. 4

(8)
where c, os and ou adjust the importance of Mt and offset for Ms and Mu.
Intuitively, close to the classification boundaries, predictions of gs(x) and gu(x)
become replaced by gt(x) in this model.

Figure 4 illustrates the selection of classifiers in our ModelSel-3Way approach.
We define N as the total number of testing data, Ns and Nu as the number
of testing data assigned to seen and unseen classes Cs and Cu, respectively.
The distribution map has the same size as gt(X) ∈ R

C×N , the light gray color
highlights successful predictions from gs(Xtr) ∈ R

Cs×Ns while the dark black
color highlights successful predictions from gu(Xte) ∈ R

Cu×Nu .

4 Experiments

Below we detail datasets used in our experiments, describe evaluation protocols
and show our experimental results to demonstrate usefulness of our approach.
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Fig. 3. Our ModelSel-3Way approach. Fig. 4. The selection of classifiers in our
ModelSel-3Way.

4.1 Setup

Datasets. We evaluate proposed models on four datasets. Attribute Pascal and
Yahoo (APY ) contains 15339 images, 64 attributes and 32 classes. The 20 classes
from Pascal VOC are used for training and 12 classes collected from Yahoo! are
used for testing. Animals with Attributes (AWA1 ) contains 30475 images from
50 classes. Each class is annotated with 85 attributes. The zero-shot learning split
of AWA1 is 40 classes for training and 10 classes for testing. The Animal with
Attributes 2 (AWA2 ) proposed by [5] is the updated and open source version of
AWA1. It has the same number of classes, attributes and train/test split with
AWA1. Flower102 (FLO) [11] contains 8189 images from 102 classes.

An evaluation paper [5] proposes a novel zero-shot learning splits to eliminate
the overlap between the classes in zero-shot datasets and ImageNet [5], and
evaluates most popular zero-shot learning methods. In this paper, we follow the
new splits to make a fair comparison to other state-of-the-art methods.

Parameters. We perform the mean extraction and standard deviation normal-
ization on both original and auxiliary datapoints to train Msel to alleviate the
imbalance between two distributions. For Ms and Mu, we simply use the original
data provided in paper [5] without any preprocessing. Our models use classifiers
with the SoftmaxLog objective. We use the Adam solver with mini-batches of
size 60, the parameters of Adam are set to β1 = 0.9 and β2 = 0.99. We run the
solver for 50 epochs. The learning rate is set to 1e−4. The parameters used by
ModelSel-2Way and ModelSel-3Way are chosen via cross-validation.

Protocols. For training, all models are trained at once as the training process is
the same for each model. To perform testing, we follow the generalized zero-shot
learning protocols in [5]. There are two testing splits for seen and unseen classes,
respectively. We evaluate the two testing splits, and collect two per-class mean
top-1 accuracies AccS and AccU as suggested by [5]. We report the harmonic
mean over the two results as the final score:

H = 2
AccS · AccU

AccS + AccU
. (9)
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4.2 Evaluations

Figure 5 shows how the classification accuracy varies w.r.t. σ of ModelSel-2Way-
SA. It can be seen that the soft assignment score obtained by passing SVM
scores via the Sigmoid function helps improve the performance of our model.
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Fig. 5. The influence of σ on the classification accuracy.

Table 1 shows that our models obtain state-of-the-art results on AWA1,
AWA2, FLO and APY datasets. Compared to f-CLSWGAN, our ModelSel-3Way
achieves a 2.8% higher accuracy on AWA1, 3.6% on AWA2 and 0.8% on FLO.
The biggest improvement for ModelSel-2Way-SA is observed on APY, where
the accuracy increased from 20.5% of ZSKL [7] to 42.3%. The above evalua-
tions illustrate that our models can combine predictions on seen and auxiliary
datapoints better than current state-of-the-art approaches.

Table 1. Evaluations on generalized zero-shot learning

AWA1 AWA2 FLO APY

Method ts tr H ts tr H ts tr H ts tr H

DAP [12] 0.0 88.7 0.0 0.0 84.7 0.0 - - - 4.8 78.3 8.0

SSE [13] 7.0 80.5 12.9 8.1 82.5 14.8 - - - 0.2 78.9 0.4

LATEM [14] 7.3 71.7 13.3 11.5 77.3 20.0 14.7 28.8 19.5 0.1 73.0 0.2

ALE [2] 16.8 76.1 27.5 14.0 81.8 23.9 21.8 33.1 26.3 4.6 73.7 8.7

DEVISE [15] 13.4 68.7 22.4 17.1 74.7 27.8 9.9 44.2 16.2 4.9 76.9 9.2

SJE [4] 11.3 74.6 19.6 8.0 73.9 14.4 13.9 47.6 21.5 3.7 55.7 6.9

ESZSL [3] 6.6 75.6 12.1 5.9 77.8 11.0 11.4 56.8 19.0 2.4 70.1 4.6

SYNC [16] 8.9 87.3 16.2 10.0 90.5 18.0 - - - 7.4 66.3 13.3

SAE [17] 1.8 77.1 3.5 1.1 82.2 2.2 - - - 0.4 80.9 0.9

ZSKL [7] 18.3 79.3 29.8 18.9 82.7 30.8 - - - 11.9 76.3 20.5

f-CLSWGAN [1] 57.9 61.4 59.6 53.7 68.2 60.1 59.0 73.8 65.6 8.7 75.4 15.5

ModelSel-2Way 50.1 77.7 61.0 41.7 84.2 55.8 46.9 60.9 53.0 27.5 76.9 40.5

ModelSel-2Way-SA 55.8 69.6 62.0 55.2 70.8 62.0 52.6 54.7 53.6 30.3 70.3 42.3

ModelSel-3Way 52.6 76.7 62.4 52.3 81.3 63.7 56.1 81.2 66.4 28.4 75.5 41.2
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5 Conclusions

In this paper, we have presented three approaches to the model selection, which
introduce a novel way of leveraging generated datapoints on generalized zero-
shot learning task. Different from [1], our models use original and generated
datapoints to train a selector function which distinguishes between classifiers
for seen and unseen training datapoints. Evaluations on our ModelSel variants
achieve state-of-the-art results on four publicly available datasets.
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