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Abstract. In this paper we present an overview of the contributed work
presented at the UAVision2018 ECCV workshop. This workshop focused
on real-time image processing on-board of Unmanned Aerial Vehicles
(UAVs). For such applications the computational complexity of state-
of-the-art computer vision algorithms often conflicts with the need for
real-time operation and the extreme resource limitations of the hardware.
Apart from a summary of the accepted workshop papers, this work also
aims to identify common challenges and concerns which were addressed
by multiple authors during the workshop, and their proposed solutions.

Keywords: Computer vision · Real-time · UAVs ·
Embedded hardware · Deep learning · GPUs · Hardware optimizations

1 Introduction

This paper contains a summary of the material presented at the 2nd Interna-
tional Workshop on Computer Vision for UAVs (UAVision 2018). This workshop
took place in conjunction with ECCV2018, Munich, Germany on Saturday the
8th of September 2018. Apart from a brief summarization of each paper, we
also identified a number of common concerns, challenges and possible proposed
solutions that several authors addressed during the workshop.

This workshop focused on state-of-the-art real-time image processing on-
board of Unmanned Aerial Vehicles. Indeed, cameras make ideal sensors for
drones as they are lightweight, power-efficient and an enormously rich source
of information about the environment in numerous applications. Although lots
of information can be derived from camera images using the newest computer
vision algorithms, the use of them on-board of UAVs poses unique challenges.
Their computational complexity often conflicts with the need for real-time oper-
ation and the extreme resource limitations of the platform. Of course, developers
have the choice to run their image processing on-board or on a remote process-
ing device, although the latter requires a wireless link with high bandwidth,
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minimal latency and ultra-reliable connection. Indeed, truly autonomous drones
should not have to rely on a wireless datalink, thus on-board real-time process-
ing is a necessity. However, because of the limitations of UAVs (lightweight pro-
cessing devices, limited on-board computational power, limited electrical power
on-board), extreme algorithmic optimization and deployment on state-of-the-
art embedded hardware (such as embedded GPUs) is the only solution. In this
workshop we focused on enabling embedded processing in drones, making effi-
cient use of specific embedded hardware and highly optimizing computer vision
algorithms towards real-time applications.

The remainder of this paper is structured as follows. Section 2 gives an
overview and short summary of each presented paper at our workshop. In Sect. 3
we discuss the challenges that were identified by multiple authors during the
workshop and their proposed solutions. Finally, we conclude this work in Sect. 4.

2 Contributed Papers

In total nine papers were accepted for publication at the UAVision2018 work-
shop. The first four papers listed below were accepted as full oral presentation
(i.e. 20 min), whereas the five consecutive papers were accepted as short oral
presentation (i.e. 15 min). Below we list and summarize each paper using the
paper abstracts.

2.1 Teaching UAVs to Race: End-to-End Regression of Agile
Controls in Simulation [7]

Automating the navigation of unmanned aerial vehicles (UAVs) in diverse sce-
narios has gained much attention in recent years. However, teaching UAVs to
fly in challenging environments remains an unsolved problem, mainly due to the
lack of training data. In this paper [7], the authors trained a deep neural network
to predict UAV controls from raw image data for the task of autonomous UAV
racing in a photo-realistic simulation. Training is done through imitation learn-
ing with data augmentation to allow for the correction of navigation mistakes.
Extensive experiments demonstrate that our trained network (when sufficient
data augmentation is used) outperforms state-of-the-art methods and flies more
consistently than many human pilots. Additionally, we show that our optimized
network architecture can run in real-time on embedded hardware, allowing for
efficient onboard processing critical for real-world deployment.

2.2 Onboard Hyperspectral Image Compression Using Compressed
Sensing and Deep Learning [2]

This paper [2] proposes a real-time onboard compression scheme for hyperspec-
tral datacube which consists of a very low complexity encoder and a deep learning
based parallel decoder architecture for fast decompression. The encoder creates a
set of coded snapshots from a given datacube using a measurement code matrix.
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The decoder decompresses the coded snapshots by using a sparse recovery algo-
rithm. The authors solve this sparse recovery problem using a deep neural net-
work for fast reconstruction. We present experimental results which demonstrate
that our technique performs very well in terms of quality of reconstruction and in
terms of computational requirements compared to other transform based tech-
niques with some tradeoff in PSNR. The proposed technique also enables faster
inference in compressed domain, suitable for on-board requirements.

2.3 SafeUAV: Learning to Estimate Depth and Safe Landing Areas
for UAVs from Synthetic Data [5]

The emergence of relatively low cost UAVs has prompted a global concern about
the safe operation of such devices. Since most of them can ‘autonomously’ fly
by means of GPS way-points, the lack of a higher logic for emergency scenarios
leads to an abundance of incidents involving property or personal injury. In order
to tackle this problem, this paper [5] proposed a small, embeddable ConvNet for
both depth and safe landing area estimation. Furthermore, since labeled train-
ing data in the 3D aerial field is scarce and ground images are unsuitable, the
authors captured a novel synthetic aerial 3D dataset obtained from 3D recon-
structions. They used the synthetic data to learn to estimate depth from in-flight
images and segmented them into ‘safe-landing’ and ‘obstacle’ regions. Experi-
ments demonstrated compelling results in practice on both synthetic data and
real RGB drone footage.

2.4 Aerial GANeration: Towards Realistic Data Augmentation
Using Conditional GANs [6]

Environmental perception for autonomous aerial vehicles is a rising field. Recent
years have shown a strong increase of performance in terms of accuracy and
efficiency with the aid of convolutional neural networks. Thus, the community
has established data sets for benchmarking several kinds of algorithms. However,
public data is rare for multi-sensor approaches or either not large enough to train
very accurate algorithms. For this reason, this paper [6] proposed a method to
generate multi-sensor data sets using realistic data augmentation based on con-
ditional generative adversarial networks (cGAN). cGANs have shown impressive
results for image to image translation. The authors used this principle for sensor
simulation. Hence, there is no need for expensive and complex 3D engines. The
method encodes ground truth data, e.g. semantics or object boxes that could be
drawn randomly, in the conditional image to generate realistic consistent sensor
data. Their method is proven for aerial object detection and semantic segmenta-
tion on visual data, such as 3D Lidar reconstruction using the ISPRS and DOTA
data set. The authors demonstrate qualitative accuracy improvements for state-
of-the-art object detection (YOLO) using this augmentation technique.
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2.5 Metrics for Real-Time Mono-VSLAM Evaluation Including
IMU Induced Drift with Application to UAV Flight [3]

Vision based algorithms became popular for state estimation and subsequent
(local) control of mobile robots. Currently a large variety of such algorithms
exists and their performance is often characterized through their drift relative to
the total trajectory traveled. However, this metric has relatively low relevance for
local vehicle control/stabilization. In this paper [3], the authors proposed a set
of metrics which allows to evaluate a vision based algorithm with respect to its
usability for state estimation and subsequent (local) control of highly dynamic
autonomous mobile platforms such as multirotor UAVs. As such platforms usu-
ally make use of inertial measurements to mitigate the relatively low update
rate of the visual algorithm, they particularly focused on a new metric tak-
ing the expected IMU-induced drift between visual readings into consideration
based on the probabilistic properties of the sensor. The authors demonstrated
this set of metrics by comparing ORB-SLAM, LSD-SLAM and DSO on different
datasets.

2.6 ShuffleDet: Real-Time Vehicle Detection Network in On-board
Embedded UAV Imagery [1]

On-board real-time vehicle detection is of great significance for UAVs and other
embedded mobile platforms. In this paper [1] the authors present a computa-
tionally inexpensive detection network for vehicle detection in UAV imagery
which we call ShuffleDet. In order to enhance the speed-wise performance, we
construct our method primarily using channel shuffling and grouped convolu-
tions. We apply inception modules and deformable modules to consider the size
and geometric shape of the vehicles. ShuffleDet is evaluated on CARPK and
PUCPR+ datasets and compared against the state-of-the-art real-time object
detection networks. ShuffleDet achieves 3.8 GFLOPs while it provides compet-
itive performance on test sets of both datasets. We show that our algorithm
achieves real-time performance by running at the speed of 14 frames per second
on NVIDIA Jetson TX2 showing high potential for this method for real-time
processing in UAVs.

2.7 Joint Exploitation of Features and Optical Flow for Real-Time
Moving Object Detection on Drones [4]

Moving object detection is an imperative task in computer vision, where it is
primarily used for surveillance applications. With the increasing availability of
low-altitude aerial vehicles, new challenges for moving object detection have sur-
faced, both for academia and industry. In this paper [4], the authors proposed
a new approach that can detect moving objects efficiently and handle parallax
cases. By introducing sparse ow based parallax handling and downscale pro-
cessing, they pushed the boundaries of real-time performance with 16 FPS on
limited embedded resources (a five-fold improvement over existing baselines),
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while managing to perform comparably or even improve the state-of-the-art in
two different datasets. They also presented a roadmap for extending our app-
roach to exploit multi-modal data in order to mitigate the need for parameter
tuning.

2.8 UAV-GESTURE: A Dataset for UAV Control and Gesture
Recognition [8]

Current UAV-recorded datasets were mostly limited to action recognition and
object tracking, whereas the gesture signals datasets were mostly recorded in
indoor spaces. Currently, there is no outdoor recorded public video dataset for
UAV commanding signals. To fill this gap and enable research in wider appli-
cation areas, this paper [8] presented a UAV gesture signals dataset recorded
in an outdoor setting. The authors selected 13 gestures suitable for basic UAV
navigation and command from general aircraft handling and helicopter handling
signals. They provide 119 high-definition video clips consisting of 37151 frames.
All the frames are annotated for the body joints and gesture classes in order
to extend the dataset’s applicability to a wider research area including gesture
recognition, action recognition, human pose recognition and situation awareness.

2.9 ChangeNet: A Deep Learning Architecture for Visual Change
Detection [9]

The increasing urban population in cities necessitates the need for the develop-
ment of smart cities that can offer better services to its citizens. Drone technol-
ogy plays a crucial role in the smart city environment and is already involved
in a number of functions in smart cities such as traffic control and construc-
tion monitoring. A major challenge in fast growing cities is the encroachment of
public spaces. A robotic solution using visual change detection can be used for
such purposes. For the detection of encroachment, a drone can monitor outdoor
urban areas over a period of time to infer the visual changes. Visual change
detection is a higher level inference task that aims at accurately identifying vari-
ations between a reference image (historical) and a new test image depicting
the current scenario. In case of images, the challenges are complex considering
the variations caused by environmental conditions that are actually unchanged
events. Human mind interprets the change by comparing the current status with
historical data at intelligence level rather than using only visual information. In
this paper [9], the authors presented a deep architecture called ChangeNet for
detecting changes between pairs of images and express the same semantically
(label the change). A parallel deep convolutional neural network (CNN) archi-
tecture for localizing and identifying the changes between image pair has been
proposed in this paper. The architecture is evaluated with VL-CMU-CD street
view change detection, TSUNAMI and Google Street View (GSV) datasets that
resemble drone captured images. The performance of the model for different
lighting and seasonal conditions are experimented quantitatively and qualita-
tively. The result shows that ChangeNet outperforms the state of the art by
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achieving 98.3% pixel accuracy, 77.35% object based Intersection over Union
(IoU) and 88.9% area under Receiver Operating Characteristics (RoC) curve.

3 Discussion: Trends and Solutions to Common
Challenges

Throughout the workshop we identified a number of common concerns for UAV
vision applications that multiple authors identified and proposed solutions for.
Below we give an overview.

3.1 Potential of Deep Learning for UAV Applications

One main message is that the success of deep learning based techniques also
extends towards UAV applications. Almost every author in the workshop made
use of deep learning for their specific drone application. For example, Marcu et
al. [5] proposed a neural network that is trained to detect flat ground surfaces
upon which a UAV can land safely. Also, a CNN that is able to detect scene
changes from UAV drone images, without being distracted by seasonal effects
like snow and fallen leaves was presented by Varghese et al. [9]. A remarkable
result was shown in the work of Kumar et al. [2], where they show that for
multispectral data decompression, their proposed deep learning alternative is
even substantially faster than the classic mathematical approach.

3.2 Collecting Training Data for UAV Applications

A difficulty many drone vision researcher struggles with is how to gather enough
visual training material to train these neural networks with. Indeed, because of
the inherent viewpoint freedom a flying drone has, it is very difficult to acquire
real UAV image data that has enough variance. Quite a few papers in the Uavi-
sion workshop tackled this problem, in very diverse ways.

The straightforward manner is setting up a large data recording campaign
with real drones, pilots and actors. This is only feasible for a constrained appli-
cation because of the manual labour and hence the cost. Perera et al. [8] did this
and presented on this workshop a newly recorded dataset for gesture recognition
from drone images.

However, many authors seek the answer of this in other data sources, which
can be used for training a visual drone application. As in other computer vision
applications, the use of rendered synthetic data from simulation engines shows
potential for UAV too, as demonstrated by Müller et al. [7], using Sim4CV to
build a virtual environment to train a racing drone.

Another example is the work of Marcu et al. [5], in which the authors used
3D Google Earth data as training material for a drone to learn where it is safe
to land.

In this workshop, other work from Milz et al. [6] showed the potential of
cGANs to generate data to train a UAV application, yielding a virtually infinite
source of relevant training data.
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3.3 Real-Time On-board Processing

The participants of this UAVision workshop all agreed that on-board processing
is a must for real-time UAV vision applications. The second speaker [2] stated this
very strictly: for hyperspectral video transmission from UAVs, their is simply not
enough bandwidth available. On-board compression is hence a necessity. Also,
Hardt-Stremayr [3] concluded in his talk about metrics for UAV vision-based
SLAM that they need video processing with a frame-rate of at least 10 fps, in
order to keep the drift error caused by the IMU low enough.

Many authors showed successful implementations of deep learning based
image interpretation algorithms that indeed can run in real-time on embed-
ded hardware. We noticed that the NVIDIA Jetson TX2 platform is a popular
choice in this field. For example, Müller [7] estimated that their drone racing
model (running at 556 fps on a NVIDIA TitanX), will run at about 50 fps on a
Jetson TX2 platform, largely fast enough for real-time processing.

Another example is the presented work of Lezki et al. [4], who reached real-
time performance with 16 FPS on limited embedded resources (a 5× improve-
ment) for their moving objects detection, by introducing sparse parallax handling
and downscaling processing.

Indeed, also Kumar et al. [2] demonstrated a speed-up factor of 30× for their
hyperspectral decompression algorithm as compared to the baseline, indicating
that two-digit speed-up factors can be achieved in many cases.

Last but not least, in their talk on ShuffleDet, Azimi et al. [1] pulled out
all the stops for developing a ultimately efficient object detector. By exploiting
group convolutions, channel shuffling, and depth wise convolutions, they achieved
a 14× speed-up as compared to the already very time-optimal YOLO detector.

4 Conclusion

This paper summarized the contributed work which was presented at the UAVi-
sion2018 workshop (in conjunction with ECCV2018), and tried to identify com-
mon concerns and challenges that were recognized by multiple authors, and
their proposed solutions. Three significant trends were discovered. First, the use
of deep learning for (embedded) UAV applications seems viable, despite their
increased computational complexity. Secondly, the collection of sufficient train-
ing data remains difficult, and several authors therefore use synthetically gen-
erated images. Finally, although real-time computer vision processing on-board
of UAVs on low-power embedded hardware platforms remains challenging, sev-
eral authors were able to present real-time implementations through extreme
software and/or hardware optimizations.
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