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Abstract. Recent work has focused on generating synthetic imagery to
increase the size and variability of training data for learning visual tasks
in urban scenes. This includes increasing the occurrence of occlusions or
varying environmental and weather effects. However, few have addressed
modeling variation in the sensor domain. Sensor effects can degrade real
images, limiting generalizability of network performance on visual tasks
trained on synthetic data and tested in real environments. This paper
proposes an efficient, automatic, physically-based augmentation pipeline
to vary sensor effects – chromatic aberration, blur, exposure, noise, and
color temperature – for synthetic imagery. In particular, this paper illus-
trates that augmenting synthetic training datasets with the proposed
pipeline reduces the domain gap between synthetic and real domains for
the task of object detection in urban driving scenes.
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1 Introduction

Deep learning has enabled impressive performance increases across a range of
computer vision tasks. However, this performance improvement is largely depen-
dent upon the size and variation of labeled training datasets that are available
for a chosen task. For some tasks, benchmark datasets contain millions of hand-
labeled images for the supervised training of deep neural networks (DNNs) [1,2].
Ideally, we could compile a large, comprehensive training set that is representa-
tive of all domains and is labelled for all visual tasks. However, it is expensive
and time-consuming to both collect and label large amounts of training data,
especially for more complex tasks like detection or pixelwise segmentation [40].
Furthermore, it is practically impossible to gather a single real dataset that
captures all of the variability that exists in the real world.

Two promising methods have been proposed to overcome the limitations
of real data collection: graphics rendering engines and image augmentation
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Fig. 1. Examples of object detection tested on KITTI for baseline unaugmented data
(left) and for our proposed method (right). Blue boxes show correct detections; red
boxes show detections missed by the baseline method but detected by our proposed
approach for sensor-based image augmentation. (Color figure online)

pipelines. These approaches enable increased variability of scene features across
an image set without requiring any additional manual data annotation. Recent
work in rendering datasets has shown success in training DNNs with large
amounts of highly photorealistc, synthetic data and testing on real data [17], [?].
Pixel-wise labels for synthetic images can be generated automatically by render-
ing engines, greatly reducing the cost and effort it takes to create ground truth
for different tasks. Recent work on image augmentation has focused on model-
ing environmental effects such as scene lighting, time of day, scene background,
weather, and occlusions in training images as a way to increase the represen-
tation of these visual factors in training sets, thereby increasing robustness to
these cases during test time [5,6]. Another proposed augmentation approach is
to increase the occurrence of objects of interest (such as cars or pedestrians) in
images in order to provide more training examples of those objects in different
scenes and spatial configurations [4,7].

However, even with varying spatial geometry and environmental factors in
an image scene, there remain challenges to achieving robustness of task per-
formance when transferring trained networks between synthetic and real image
domains. To further understand the gaps between synthetic and real datasets,
it is worthwhile to consider the failure modes of DNNs in visual learning tasks.
One factor that has been shown to contribute to degradation of performance and
cross-dataset generalization for various benchmark datasets is sensor bias [8–11].
The interaction between the camera model and lighting in the environment can
greatly influence the pixel-level artifacts, distortions, and dynamic range induced
in each image [12–14]. Sensor effects, such as blur and overexposure, have been
shown to decrease performance of object detection networks in urban driving
scenes [15]. Examples of failure modes caused by over exposure, manifesting
as missed detections, are shown in Fig. 1. However, there still is an absence in
the literature examining how to improve failure modes due to sensor effects for
learned visual tasks in the wild.
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In this work, we propose a novel framework for augmenting synthetic data
with realistic sensor effects – effectively randomizing the sensor domain for syn-
thetic images. Our augmentation pipeline is based on sensor effects that occur in
image formation and processing that can lead to loss of information and produce
failure modes in learning frameworks – chromatic aberration, blur, exposure,
noise and color cast. We show that our proposed method improves performance
for object detection in urban driving scenes when trained on synthetic data and
tested on real data, an example of which is shown in Fig. 1. Our results demon-
strate that sensor effects present in real images are important to consider for
bridging the domain gap between real and simulated environments.

This paper is organized as follows: Sect. 2 presents related background work;
Sect. 3 details the proposed image augmentation pipeline; Sect. 4 describes exper-
iments and discusses results of these experiments and Sect. 5 concludes the
paper. Code for this paper can be found at https://github.com/alexacarlson/
SensorEffectAugmentation.

2 Related Work

Domain Randomization with Synthetic Data: Rendering and gaming
engines have been used to synthesize large, labelled datasets that contain a wide
variety of environmental factors that could not be feasibly captured during real
data collection [3,16]. Such factors include time of day, weather, and commu-
nity architecture. Improvements to rendering engines have focused on matching
the photorealism of the generated data to real images, which comes at a huge
computational cost. Recent work on domain randomization seeks to bridge the
reality gap by generating synthetic data with sufficient random variation over
scene factors and rendering parameters such that the real data falls into this
range of variation, even if rendered data does not appear photorealistic. Tobin
et al. [27] focus on the task of object localization trained with synthetic data.
They perform domain randomization over textures, occlusion levels, scene light-
ing, camera field of view, and uniform noise within the rendering engine, but
their experiments are limited to highly simplistic toy scenes. Building on [27],
Tremblay et al. [?] generate a synthetic dataset via domain randomization for
object detection of real urban driving scenes. They randomize camera viewpoint,
light source, object properties, and introduce flying distractors. Our work focuses
on image augmentation outside of the rendering pipeline and could be applied
in addition to domain randomization in the renderer.

Augmentation with Synthetic Data: Shrivastava et al. recently developed
SimGAN, a generative adversarial network (GAN) to augment synthetic data
to appear more realistic. They evaluated their method on the tasks of gaze
estimation and hand pose estimation [19]. Similarly, Sixt et al. proposed Ren-
derGAN, a generative network that uses structured augmentation functions to
augment synthetic images of markers attached to honeybees [20]. The augmented
images are used to train a detection network to track the honeybees. Both of
these approaches focus on image sets that are homogeneously structured and low
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resolution. We instead focus on the application of autonomous driving, which
features highly varied, complex scenes and environmental conditions.

Traditional Augmentation Techniques: Standard geometric augmentations,
such as rotation, translation, and mirroring, have become commonplace in deep
learning for achieving invariance to spatial factors that are not relevant to the
given task [24]. Photometric augmentations aim to increase robustness to dif-
fering illumination color and intensity in a scene. These augmentations induce
small changes in pixel intensities that do not produce loss of information in
the image. A well known example is the PCA-based color shift introduced by
Krizhevsky et al. [1] to perform more realistic RGB color jittering. In contrast,
our augmentations are modeled directly from real sensor effects and can induce
large changes in the input data that mimics the loss of information that occurs
in real data.

Sensor Effects in Learning: More generally, recent work has demonstrated
that elements of the image formation and processing pipeline can have a
large impact upon learned representation [10,28,29]. Andreopoulos and Tsot-
sos demonstrate the sensitivities of popular vision algorithms under variable
illumination, shutter speed, and gain [8]. Doersch et al. show there is dataset
bias introduced by chromatic aberration in visual context prediction and object
recognition tasks [11]. They correct for chromatic aberration to eliminate this
bias. Diamond et al. demonstrate that blur and noise degrade neural network
performance on classification tasks [29]. They propose an end-to-end denoising
and deblurring neural network framework that operates directly on raw image
data. Rather than correcting for the effects of the camera during image forma-
tion of real images, we propose to augment synthetic images to simulate these
effects. As many of these effects can lead to loss of information, correcting for
them is non-trivial and may result in the hallucination of visual information in
the restored image.

3 Sensor-Based Image Augmentation

Figure 2 shows a side-by-side comparison of two real benchmark vehicle
datasets, KITTI [38,39] and Cityscapes [40], and two synthetic datasets, Vir-
tual KITTI [16] and Grand Theft Auto [17,41]. Both of the real datasets share
many spatial and environmental visual features: both are captured during sim-
ilar times of day, in similar weather conditions, and in cities regionally close
together, with the camera located on a car pointing at the road. In spite of
these similarities, images from these datasets are visibly different. This suggests
that these two real datasets differ in their global pixel statistics. Qualitatively,
KITTI images feature more pronounced effects due to blur and over-exposure.
Cityscapes has a distinct color cast compared to KITTI. Synthetic datasets such
as Virtual KITTI and GTA have many spatial similarities with real benchmark
datasets, but are still visually distinct from real data. Our work aims to close
the gap between real and synthetic data by modelling these sensor effects that
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Fig. 2. A comparison of images from the KITTI Benchmark dataset (upper left),
Cityscapes dataset (upper right), Virtual KITTI (lower left) and Grand Theft Auto
(lower right). Note that each dataset has differing color cast, brightness, and detail.

can cause distinct visual differences between real world datasets. Figure 3 shows
the architecture of the proposed sensor-based image augmentation pipeline. We
consider a general camera framework, which transforms radiant light captured
from the environment into an image [30]. There are several stages that comprise
the process of image formation and post-processing steps, as shown in the first
row of Fig. 3. The incoming light is first focused by the camera lens to be incident
upon the camera sensor. Then the camera sensor transforms the incident light
into RGB pixel intensity. On-board camera software manipulates the image (e.g.,
color space conversion and dynamic range compression) to produce the final out-
put image. At each stage of the image formation pipeline, loss of information
can occur to degrade the image. Lens effects can introduce visual distortions
in an image, such as chromatic aberration and blur. Sensor effects can intro-
duce over- or under-saturation depending on exposure, and high frequency pixel
artifacts, based on characteristic sensor noise. Lastly, post-processing effects are
implemented to shift the color cast to create a desirable output. Our image aug-
mentation pipeline focuses on five total sensor effects augmentations to model
loss of information that can occur at each stage during image formation and
post-processing: chromatic aberration, blur, exposure, noise, and color shift. To
model how these effects manifest in images in a camera, we implement the image
processing pipeline as a composition of physically-based augmentation functions
across these five effects, where lens effects are applied first, then sensor effects,
and finally post-processing effects:

Iaug. = φcolor(φnoise(φexposure(φblur(φchrom.ab.(I))))) (1)

Note that these chosen augmentation functions are not exhaustive, and are meant
to approximate the camera image formation pipeline. Each augmentation func-
tion is described in detail in the following subsections.

3.1 Chromatic Aberration

Chromatic aberration is a lens effect that causes color distortions, or fringes,
along edges that separate dark and light regions within an image. There are
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Fig. 3. A schematic of the image formation and processing pipeline used in this work.
A given image undergoes augmentations that approximate the same pixel-level effects
that a camera would cause in an image.

two types of chromatic aberration, longitudinal and lateral, both of which can
be modeled by geometrically warping the color channels with respect to one
another [31]. Longitudinal chromatic aberration occurs when different wave-
lengths of light converge on different points along the optical axis, effectively
magnifying the RGB channels relative to one another. We model this aberra-
tion type by scaling the green color channel of an image by a value S. Lateral
chromatic aberration occurs when different wavelengths of light converge to the
different points within the image plane. We model this by applying translations
(tx, ty) to each of the color channels of an image. We combine these two effects
into the following affine transformation, which is applied to each (x, y) pixel
location in a given color channel C of the image:

⎡
⎣

xchrom.ab.
C

ychrom.ab.
C

1

⎤
⎦ =

⎡
⎣

S 0 tx
0 S ty
0 0 1

⎤
⎦

⎡
⎣

xC

yC
1

⎤
⎦ (2)

3.2 Blur

While there are several types of blur that occur in image-based datasets, we
focus on out-of-focus blur, which can be modeled using a Gaussian filter [33]:

G =
1

2πσ2
e− x2+y2

2σ2 (3)

where x and y are spatial coordinates of the filter and σ is the standard deviation.
The output image is given by:

Iblur = I ∗ G (4)



Modeling Camera Effects 511

3.3 Exposure

To model exposure, we use the exposure density function developed in [34,35]:

I = f(S) =
255

1 + e−A×S
(5)

where I is image intensity, S indicates incoming light intensity, or exposure, and
A is a constant value for contrast. We use this model to re-expose an image as
follows:

S′ = f−1(I) + ΔS (6)

Iexp = f(S′) (7)

We vary ΔS to model changing exposure, where a positive ΔS relates to increas-
ing the exposure, which can lead to over-saturation, and a negative value indi-
cates decreasing exposure.

3.4 Noise

The sources of image noise caused by elements of the sensor array can be modeled
as either signal-dependent or signal-independent noise. Therefore, we use the
Poisson-Gaussian noise model proposed in [14]:

Inoise(x, y) = I(x, y) + ηpoiss(I(x, y)) + ηgauss (8)

where I(x, y) is the ground truth image at pixel location (x, y), ηpoiss is the
signal-dependent Poisson noise, and ηgauss is the signal-independent Gaussian
noise. We sample the noise for each pixel based upon its location in a GBRG
Bayer grid array assuming bilinear interpolation as the demosaicing function.

3.5 Post-processing

In standard camera pipelines, post-processing techniques, such as white balanc-
ing or gamma transformation, are nonlinear color corrections performed on the
image to compensate for the presence of different environmental illuminants.
These post-processing methods are generally proprietary and cannot be eas-
ily characterized [12]. We model these effects by performing translations in the
CIELAB color space, also known as L*a*b* space, to remap the image tonality
to a different range [36,37]. Given that our chosen datasets are all taken out-
doors during the day, we assume a D65 illuminant in our L*a*b* color space
conversion.
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Fig. 4. Example augmentations of GTA (left column) and VKITTI (right column)
using the proposed sensor effect augmentation pipeline. Each image has a randomly
sampled level of blur, chromatic aberration, exposure, sensor noise, and color temper-
ature shift applied to it in an effort to model the visual structure/information loss
caused by cameras when capturing real images.

3.6 Generating Augmented Training Data

The bounds on the sensor effect parameter regimes were chosen experimentally.
The parameter selection process is discussed in more detail in Sect. 4. To aug-
ment an image, we first randomly sample from these visually realistic parameter
ranges. Both the chosen parameters and the unaugmented image are then input
to the augmentation pipeline, which outputs the image augmented with the
camera effects determined by the chosen parameters. We augmented each image
multiple times with different sets of randomly sampled parameters. Note that
this augmentation method serves as a pre-processing step. Figure 4 shows sam-
ple images augmented with individual sensor effects as well as our full proposed
sensor-based image augmentation pipeline. We use the original image labels as
the labels for the augmented data. Pixel artifacts from cameras, like chromatic
aberration and blur, make the object boundaries noisy. Thus, the original target
labels are used to ensure that the network makes robust and accurate predictions
in the presence of camera effects.

4 Experiments

We evaluate the proposed sensor-based image augmentation pipeline on the task
of object detection on benchmark vehicle datasets to assess its effectiveness at
bridging the synthetic to real domain gap. We apply our image augmentation
pipeline to two benchmark synthetic vehicle datasets, each of which was rendered
with different levels of photorealism. The first, Virtual KITTI (VKITTI) [16],
features over 21000 images and is designed to models the spatial layout of KITTI
with varying environmental factors such as weather and time of day. The sec-
ond is Grand Theft Auto (GTA) [17,41], which features 21000 images and is
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noted for its high quality and increased photorealism compared to VKITTI. To
evaluate the proposed augmentation method for 2D object detection, we used
Faster R-CNN as our base network [42]. Faster R-CNN achieves relatively high
performance on the KITTI benchmark test dataset, and many state-of-the-art
object detection networks that improve upon these results use Faster R-CNN as
their base architecture. For all experiments, we apply sensor effect augmentation
pipeline to all images in the given dataset, then train an object detection network
on the combination of original unaugmented data and sensor effect augmented
data. We ran experiments to determine the number of sensor effect augmen-
tations per image, and determined that optimal performance was achieved by
augmenting each image in each dataset one time. To determine the bounds of
the sensor effect parameter ranges from which to sample, we augmented small
datasets of 2975 images by randomly sampling from increasingly larger param-
eter bounds and chose the ranges for each sensor effect that yielded the highest
performance as well as visually realistic images. We found that the same param-
eter regime yielded optimal performance for both synthetic datasets. All of the
trained networks are tested on a held out validation set of 1480 images from
the KITTI training data and we report the Pascal VOC AP50bbox value for
the car class. We also report the gain in AP50bbox, which is the difference in
performance relative to the baseline (unaugmented) dataset. We compare the
performance of object detection networks trained on sensor-effect augmented
data to object detection networks trained on unaugmented data as our baseline.
For each dataset, we trained each Faster R-CNN network for 10 epochs using
four Titan X Pascal GPUs in order to control for potential confounds between
performance and training time.

4.1 Performance on Baseline Object Detection Benchmarks

Table 1 shows results for FasterRCNN networks trained on unaugmented syn-
thetic data and sensor-effect augmented data for both VKITTI and GTA. Note
that we provide experiments trained on the full training datasets, as well as
experiments trained on subsets of 2975 images to allow comparison of perfor-
mance across differently sized datasets. Synthetic data augmented with the pro-
posed method yields significant performance gains over the baseline (unaug-
mented) synthetic datasets. This is expected as, in general, rendering engines do
not realistically model sensor effects such as noise, blur, and chromatic aberration
as accurately as our proposed approach. Another important result for the syn-
thetic datasets (both VKITTI and GTA), is that, by leveraging our approach,
we are able to outperform the networks trained on over 20000 unaugmented
images with a tiny subset of 2975 images augmented with using our approach.
This means that not only can networks be trained faster but also when training
with synthetic data, varying camera effects can outweigh the value of simply
generating more data with varied spatial features. The VKITTI baseline dataset
tested on KITTI performs relatively well compared to GTA, even though GTA
is a more photorealistic dataset. This can most likely be attributed to the sim-
ilarity in spatial layout and image features between VKITTI and KITTI. With
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our proposed approach, VKITTI gives comparable performance to the network
trained on the Cityscapes baseline, showing that synthetic data augmented with
our proposed sensor-based image pipeline can perform comparably to real data
for cross-dataset generalization.

Table 1. Object detection trained on synthetic data, tested on KITTI

Training Set APcar Gain

Virtual KITTI

2975 Baseline 54.60 —

2975 Prop. Method 61.88 ↑ 7.28

Full Baseline (21K) 58.25 —

Full Prop. Method 62.52 ↑ 4.27

GTA

2975 Baseline 46.83 —

2975 Prop. Method 51.24 ↑ 4.41

Full Baseline (21K) 49.80 —

Full Baseline (50K) 53.26 —

Full Prop. Method 55.85 ↑ 6.05

4.2 Comparison to Other Augmentation Techniques

We ran experiments to compare our proposed method to photometric augmenta-
tion, specifically PCA-based color shift [1], complex spatial/geometric augmenta-
tions, specifically elastic deformation [47], standard additive gaussian noise aug-
mentation, and a suite of standard spatial augmentations, specifically random
rotations, scaling, translations, and cropping. We provide the results of train-
ing Faster-RCNN networks on the full VKITTI and GTA datasets augmented
with the above methods in Table 2. All networks were tested on the same held-
out set of KITTI images as used in the previous object detection experiments.
Our results show that our proposed method drastically outperforms the other
standard augmentation techniques, and that for certain synthetic data, spatial
augmentations actually decrease performance on real data. This suggests that
the proposed sensor effect augmentations capture more salient visual structure
than traditional, non-photorealistic augmentation methods. We hypothesize this
is because the physically-based sensor augmentations better model the informa-
tion loss and the resulting global pixel-statistics that occur in real images. For
example, our proposed method uses LAB space color transformation to alter the
color cast of an image, where as traditional approaches use RGB space. LAB
space is device independent, so it results in a more accurate, physically-based
augmentation than [1].
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Table 2. We provide the results of training Faster-RCNN networks on GTA and Virtual
KITTI augmented with various augmentation methods. All networks were tested on
KITTI.

Augmentation Method APCar Gain

Virtual KITTI

Baseline 58.25 —

Prop. Method 62.52 ↑ 4.27

Krishevsky et al. [1] 59.09 ↑ 0.84

Ronneberger et al. [47] 56.56 ↓ 1.69

Additive Gaussian Noise 56.98 ↓ 1.27

Random Rotation, Scale, Transl., Crop 55.11 ↓ 3.14

GTA

Baseline (21k) 49.80 —

Prop. Method (21k) 55.85 ↑ 6.05

Krishevsky et al. [1] 51.62 ↑ 1.88

Ronneberger et al. [47] 48.94 ↑ 0.14

Additive Gaussian Noise 52.01 ↑ 2.21

Random Rotation, Scale, Transl., Crop 50.11 ↑ 0.31

4.3 Ablation Study

To evaluate the contribution of each sensor effect augmentation on performance,
we used the proposed pipeline to generate datasets with only one type of sensor
effect augmentation. We trained Faster-RCNN on each of these datasets aug-
mented with single augmentation functions, the results of which are given in
Table 3. Performance increases across all ablation experiments for training on
synthetic data. This further validates our hypothesis that each of the sensor
effects are important for closing the gap between synthetic and real data.

4.4 Failure Mode Analysis

Figure 5 shows the qualitative results of failure modes of FasterRCNN trained on
each synthetic training dataset and tested on KITTI, where the blue bounding
box indicates correct detections and the red bounding box indicate a missed
detection for the baseline that was correctly detected by our proposed method.
Qualitatively, it appears that our method more reliably detects instances of cars
that are small in the image, in particular in the far background, at a scale
in which the pixel statistics of the image are more pronounced. Note that our
method also improves performance on car detections for cases where the image
is over-saturated due to increased exposure, which we are directly modeling
through our proposed augmentation pipeline. Additionally, our method produces
improved detections for other effects that obscure the presence of a car, such as
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Table 3. Ablation study for object detection trained on synthetic data, tested on
KITTI

Training Set Augmentation Type APcar Gain

Virtual KITTI

2975 Baseline None 54.60 —

2975 Prop. Method Chrom. Ab. 61.08 ↑ 6.48

2975 Prop. Method Blur 59.72 ↑ 5.12

2975 Prop. Method Exposure 57.37 ↑ 2.77

2975 Prop. Method Sensor Noise 58.60 ↑ 4.00

2975 Prop. Method Color Shift 58.59 ↑ 3.99

GTA

2975 Baseline None 46.83 —

2975 Prop. Method Chrom. Ab. 48.92 ↑ 2.09

2975 Prop. Method Blur 49.17 ↑ 2.34

2975 Prop. Method Exposure 47.95 ↑ 1.12

2975 Prop. Method Sensor Noise 48.09 ↑ 1.26

2975 Prop. Method Color Shift 48.61 ↑ 1.78

Fig. 5. Virtual KITTI examples are in the left column, GTA examples are in the right
column. Blue boxes show correct detections; red boxes show detections missed by the
FasterRCNN network trained on baseline, unaugmented image datasets but detected
by FasterRCNNs trained on data augmented using our proposed approach for sensor-
based image augmentation. (Color figure online)
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occlusion and shadows, even though we do not directly model these effects. This
may be attributed to increased robustness to effects that lead to loss of visual
information about an object in general.

5 Conclusions

We have proposed a novel sensor-based image augmentation pipeline for aug-
menting synthetic training data input to DNNs for the task of object detec-
tion in real urban driving scenes. Our augmentation pipeline models a range
of physically-realistic sensor effects that occur throughout the image formation
and post-processing pipeline. These effects were chosen as they lead to loss of
information or distortion of a scene, which degrades network performance on
learned visual tasks. By training on our augmented datasets, we can effectively
increase dataset size and variation in the sensor domain, without the need for
further labeling, in order to improve robustness and generalizability of result-
ing object detection networks. We achieve significantly improved performance
across a range of benchmark synthetic vehicle datasets, independent of the
level of photorealism. Overall, our results reveal insight into the importance of
modeling sensor effects for the specific problem of training on synthetic data and
testing on real data.
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