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Abstract. We introduce recommendations to train a Convolutional
Neural Network for grid-based detection on a dataset that has a substan-
tial class imbalance. These include curriculum learning, hard negative
mining, a special border class, and more. We evaluate the recommen-
dations on the problem of animal detection in aerial images, where we
obtain an increase in precision from 9% to 40% at high recalls, compared
to state-of-the-art. Data related to this paper are available at: http://
doi.org/10.5281/zenodo.609023.
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1 Introduction

Convolutional Neural Networks (CNNs) [5] have led to tremendous accuracy
increases in vision tasks like classification [2] and detection [8,9], in part due to
the availability of large-scale datasets like ImageNet [11]. Many vision bench-
marks feature a controlled situation, with all classes occurring in more or less
similar frequencies. However, in practice this isn’t always the case. For example,
in animal censuses on images from Unmanned Aerial Vehicles (UAVs) [6], the
vast majority of images is empty. As a consequence, training a deep model on
such datasets like in a classical balanced setting might lead to unusable results.

In this paper, we present a collection of recommendations that allow training
deep CNNs on heavily imbalanced datasets (Sect. 2), demonstrated with the
application of big mammal detection in UAV imagery. We assess the contribution
of each recommendation in a hold-one-out fashion and further compare a CNN
trained with all of them to the current state-of-the-art (Sect. 4), where we manage
to increase the precision from 9% to 40% for high target recalls. The paper is
based on [3].
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2 Proposed Training Practices

The following sections briefly address all the five recommendations that make
training on an imbalanced dataset possible:

Curriculum Learning. For the first five training epochs, we sample the training
images so that they always contain at least one animal. This is inspired by
Curriculum Learning [1] and makes the CNN learn initial representations of
both animals and background. This provides it with a better starting point for
the imbalance problem later on.

Rotational Augmentation. Due to the overhead perspective, we employ 90◦-stop
image rotations as augmentation. However, we empirically found it to be most
effective at a late training stage (from epoch 300 on), where the CNN is starting
to converge to a stable solution.

Hard Negative Mining. After epoch 80 we expect the model to have roughly
learned the animal and background appearances, and thus focus on reducing
the number of false positives. To do so, we amplify the weights of the four most
confidently predicted false alarms in every training image for the rest of the
training schedule.

Border Class. Due to the CNN’s receptive field capturing spatial context, we
frequently observed activations in the vicinity of the animals, leading to false
alarms. To remedy this effect, we label the 8-neighborhood around true animal
locations with a third class (denoted as “border”). This way, the CNN learns to
treat the surroundings of the animals separately, providing only high confidence
for an animal in its true center. At test time, we simply discard the border class
by merging it with the background.

Class Weighting. We balance the gradients during training with constant weights
corresponding to the inverse class frequencies observed in the training set.

3 Experiments

3.1 The Kuzikus Dataset

We demonstrate our training recommendations on a dataset of UAV images
over the Kuzikus game reserve, Namibia1. Kuzikus contains an estimated 3000
large mammals such as the Black Rhino, Zebras, Kudus and more, distributed
over 103 km2 [10]. The dataset was acquired in May 2014 by the SAVMAP
Consortium2, using a SenseFly eBee3 with a Canon PowerShot S110 RGB cam-
era as payload. The campaign yielded a total of 654 4000 × 3000 images, cover-
ing 13.38 km2 with around 4 cm resolution. 1183 animals could be identified in
a crowdsourcing campaign [7]. The data were then divided image-wise into 70%
training, 10% validation and 20% test sets.
1 http://kuzikus-namibia.de/xe index.html.
2 http://lasig.epfl.ch/savmap.
3 https://www.sensefly.com.
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3.2 Model Setup

We employ a CNN that accepts an input image of 512 × 512 pixels and yields a
32 × 32 grid of class probability scores. We base it on a pre-trained ResNet-18 [2]
and replace the last layer with two new ones that map the 512 activations to
1024, then to the 3 classes, respectively. We add a ReLU and dropout [12] with
probability 0.5 in between for further regularization. The model is trained using
the Adam optimizer [4] with weight decay and a gradually decreasing learning
rate for a total of 400 epochs.

We assess all recommendations in a hold-one-out fashion, and further com-
pare them to a full model and the current state-of-the-art on the dataset, which
employs a classifier on proposals and hand-crafted features (see [10] for details).

4 Results and Discussion

Figure 1 shows the precision-recall curves for all the models.

Fig. 1. Precision-recall curves based on the animal confidence scores for the hold-one-
out CNNs (first six models), the full model and the baseline

All recommendations boost precision, but with varying strengths. For exam-
ple, disabling curriculum learning (“CNN 3”) yields the worst precision at high
recalls—too many background samples from the start seem to severely drown
any signal from the few animals. Unsurprisingly, a model trained on only images
that contain at least one animal (“CNN 2”) is similarly bad: this way, the model
only sees a portion of the background samples and yields too many false alarms.
The full model provides the highest precision scores of up to 40% at high recalls
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of 80% and more. At this stage, the baseline reaches less than 10% precision,
predicting false alarms virtually everywhere. In numbers, this means that for
80% recall our model predicts 447 false positives, while the baseline produces
2546 false alarms.

5 Conclusion

Many real-world computer vision problems are characterized by significant class
imbalances, which in the worst case makes out-of-the-box applications of deep
CNNs unfeasible. An example is the detection of large mammals in UAV images,
out of which the majority is empty. In this paper, we presented a series of
practices that enable training CNNs by limiting the risk of the background class
drowning the few positives. We analyzed the contribution of each individual
practice (curriculum learning, hard negative mining, etc.) and showed how a
CNN, trained with all of them, yields a substantially higher precision if tuned
for high recalls.
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