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Abstract. Optimizing the utilization of huge data sets is a challeng-
ing problem for weather prediction. To a significant degree, prediction
accuracy is determined by the data used in model initialization, assimi-
lated from a variety of observational platforms. At present, the volume of
weather data collected in a given day greatly exceeds the ability of assim-
ilation systems to make use of it. Typically, data is ingested uniformly at
the highest fixed resolution that enables the numerical weather prediction
(NWP) model to deliver its prediction in a timely fashion. In order to
make more efficient use of newly available high-resolution data sources,
we seek to identify regions of interest (ROI) where increased data quality
or volume is likely to significantly enhance weather prediction accuracy.
In particular, we wish to improve the utilization of data from the recently
launched Geostationary Operation Environmental Satellite (GOES)-16,
which provides orders of magnitude more data than its predecessors.
To achieve this, we demonstrate a method for locating tropical cyclones
using only observations of precipitable water, which is evaluated using
the Global Forecast System (GFS) weather prediction model. Most state
of the art hurricane detection techniques rely on multiple feature sets,
including wind speed, wind direction, temperature, and IR emissions,
potentially from multiple data sources. In contrast, we demonstrate that
this model is able to achieve comparable performance on historical trop-
ical cyclone data sets, using only observations of precipitable water.
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1 Introduction

Extreme weather has the potential to cause significant economic damage and
loss of life. In order to minimize these losses, high precision weather predictions
are needed. It is also important to make such predictions as far in advance as
possible, to provide adequate advanced warning of impending storms. Improv-
ing the accuracy and time horizon of weather predictions are among the primary
research objectives pursued by the National Oceanic and Atmospheric Admin-
istration (NOAA). To a significant degree, the accuracy of a numerical weather
prediction is determined by the model initialization procedure, wherein data is
assimilated from a variety of observational platforms. Over wide swaths of ocean
or in remote areas of land, where in-situ observations are lacking, satellite data
is used to augment and complete the construction of the initial conditions. As
assimilation of satellite data is computationally expensive, the data resolution
is typically reduced in order to accelerate its incorporation into the forecast. In
the vicinity of an extreme weather event, such as a tropical cyclone, the situ-
ation can change rapidly. It is important to update the initial conditions more
frequently using higher resolution data, in order to produce the most accurate
forecasts. To this end, we are interested in automatically identifying specific
regions of interests (ROI) where supplemental satellite observations could help
increase the forecast’s quality and overall impact.

At present, detection of extreme weather is primarily a manual process rely-
ing on difficult-to-quantify human expertise and experience, with no clear-cut
definition for most weather phenomena. For example, it is well known that a
tropical cyclone is characterized by a region of low surface-pressure surrounded
by high speed winds and enhanced water vapor. However, there is no universally
agreed upon combination of wind speed, pressure, and vapor that definitively
identifies a tropical cyclone. If we attempt to hand-craft a definition identifying
all tropical cyclones, we would have to deal with many edge cases that don’t
meet that definition. In addition to the challenge of constructing adequate def-
initions, there are also limits on the quality and quantity of observational data
available. For example, the data needed for forecasting tropical cyclones is often
provided by satellites in polar orbits. Those observations may be poorly timed,
leading to images where the target cyclone is located in the periphery of the
observed region, or absent from the image entirely (Fig. 1).

In this article, we propose a tropical cyclone detection algorithm that requires
only observations of water vapor which is the primary data source to be pro-
vided by the new geostationary GOES-16 satellite. As it doesn’t require mea-
surements of wind speed or direction, we can avoid intermittent data from
non-geostationary satellites. By using only high-frequency geostationary satellite
data, we ensure continuous tracking. The proposed algorithm also employs a slid-
ing window data augmentation strategy to overcome data sparsity, as discussed
in Sect. 5.
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(a) Water Vapor image of GOES-15

(b) Precipitable water of GFS data

Fig. 1. Precipitable water is a good approximate of satellite water vapor channel for
preliminary study

2 Related Work

Many researchers have investigated extreme weather detection using both remote
sensing data and Numerical Weather Prediction (NWP) models. A technique
introduced by Dvorak in the 1970s is a widely accepted approach for classifying
the intensity of tropical cyclones [3]. This technique uses visual identification of
images of tropical cyclones in the visible and infrared bands for classification.
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However, cyclone images vary a great deal, and expert opinion is required in order
to properly apply this method. Although Dvorak’s technique has been modified,
with an increased reliance on NWP models, meteorologists still rely primarily
on judgment and experience to identify and locate tropical cyclones using mete-
orological data. Since that time, significant research has been conducted in an
effort to develop improved tropical cyclone indicators [2,9,10,12,14]. Research
into the estimation of tropical cyclone intensity using satellite data has also
been an active area of investigation. For example, Velden et al. [13] made use
of sequences of GOES-8 infrared images to infer tropical cyclone wind speed
and track. Jaiswal et al. [6] suggested matching infrared images with a database
of known intensities as a means to estimate tropical cyclone strength. Disad-
vantages of these techniques include the need for manual adjustment of the
matching-index threshold, and the requirement that the cyclone to be measured
is well centered in the image.

More recently, there has been an increased effort to apply machine learn-
ing techniques to automate the identification of severe weather phenomena.
Liu et al. used data generated by the CAM-5 atmosphere model to automate
extreme weather detection in climate simulations [8]. However, this technique
also required the target object be well centered in the image, which is not well
suited for use with GOES satellite images. Ho et al. identified tropical cyclones
from QuickScat satellite data using support vector machines (SVMs) applied
to wind speed and direction [5]. They also built a system to combine the data
from QuickScat with TRMM precipitation measurements using a Kalman filter
for cyclone tracking [4]. The technique of Panangadan et al. uses multiple satel-
lite images with a graph-based algorithm to detect the eye of the cyclone and
a Kalman filter or particle filter for cyclone tracking [11]. Zou et al. employed
wind circulation as an additional feature for cyclone detection using QuickSCAT
data [15]. Their technique used a wind speed and direction histogram to perform
coarse identification, and then use the wind circulation path to refine the classi-
fication. However, common drawbacks in these techniques include their reliance
on multiple data sources and their focus on wind-speed and direction for cyclone
identification. In contrast, the technique described in this work achieves high
accuracy identification of tropical cyclones using only water vapor images from
a single geostationary satellite source.

3 Data

In this section, we describe the Global Forecast System (GFS) data and Interna-
tional Best Track Archive for Climate Stewardship (IBTrACS) data. From this
data, we extract information covering tropical cyclones in the west pacific basin.
The IBTrACS and GFS datasets are combined to form our labeled dataset used
in training, validation and prediction.
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3.1 Global Forecast System Data

The Global Forecast System (GFS) is a weather forecast model produced by the
National Centers for Environmental Prediction (NCEP). The main goal of GFS
is the production of operational forecasts for weather prediction over both short-
range and long-range forecasts. GFS proves a large set of variables which have
the potential to impact global weather. Examples variables include temperature,
winds, precipitation, atmospheric ozone, and soil moisture. GFS data is provided
in a gridded format on the regular latitude-longitude grid. GFS provides data
with a horizontal resolution of 18 miles (28 km) for weather forecasts out to 16
days, and 44 mile resolution (70 km) for forecasts of up to two weeks. GFS data
is produced 4 times per day at 00, 06, 12, 18 UTC time [1].

3.2 International Best Track Archive for Climate Stewardship
(IBTrACS)

International Best Track Archive for Climate Stewardship (IBTrACS) is a
project aimed at providing best-track data for tropical cyclones from all avail-
able Regional Specialized Meteorological Centers (RSMCs) and other agencies.
It combines multiple datasets into a single product, describing the track of each
tropical cyclone in latitude-longitude coordinates. This dataset makes it sim-
ple for researchers to locate a given tropical cyclone in both space and time [7]
(Fig. 2).

Fig. 2. Combining visualizations of the GFS precipitable water field (left) with
IBTrACS cyclone track data (right) produces a labeled dataset of tropical cyclones
in the west Pacific basin.

4 Issues and Challenges

Although the atmosphere is continuous, computational constraints force use to
approximate it using discrete, gridded data. In order to identify severe weather
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phenomenon, we naturally need to separate a large region data into small areas
to analyze and prioritize data. Those areas we identify as having high potential
impact become our regions of interest (ROI). We define these areas containing a
cyclone center as positive samples. However, such identification can cause some
challenges.

4.1 Area Size Determination Problem

There is no clear rule to decide the appropriate grid size which could clearly
describe different severe weather phenomenon. If we use the smallest unit of
data set, a single point of GFS data, it contains only one value and could not
be used to describe or identify a weather phenomenon. However, if we use an
overly large selection, it may contain too much information which is not related
to a weather phenomenon. Therefore, to discuss tropical cyclones in this paper,
we adapt a 32× 32 image as our area size because this scale is large enough for
us to capture each tropical cyclone in our GFS data.

4.2 Occasional Weather Events Problem

Weather phenomenon like tropical cyclone does not happen occur in spatial
and time domain. Therefore, events are not distributed evenly throughout the
entire region and time. In Fig. 3, we could find that we only have one positive
sample in total 36 small areas of west pacific basin at the same time. Also, in
entire IBTrACS data set, it is quite common no positive samples on some days
because there are no tropical cyclones for that time period. Positive samples
are extremely rare compared to negative samples. As a result, we don’t have
sufficient number of positive samples which are needed for analysis and causes
data sparsity problem.

4.3 Weather Events Location Problem

In data preprocessing, we divide a large region into many small areas equally.
Throughout tropical cyclone life cycle, location and size vary through time, there-
fore, center of a tropical cyclones is not permanently located in the center of area
without external adjustment. In Fig. 4, we show that there are many situations,
a tropical cyclone located near the edge and area doesn’t cover entire tropical
cyclone.

4.4 No Labeled Data for Negative Samples Problem

Best tracking data set are designed to provide information of tropical cyclones
such as location, wind speed, wind direction, timestamps. However, scientists
are only interested in regions with tropical cyclones, regions without tropical
cyclones are not recorded in any best tracking data set. For example, we can
easily find amount of tropical cyclones images from the Internet, but there are
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Fig. 3. The west pacific basin is divided into areas and mark a area with a tropical
cyclone as true, others as false through cyclone tracking data set

no images described as no tropical cyclones from the Internet. Therefore, there
is no clear definition of samples without tropical cyclones from scientists. It
leads no definition of negative samples for our training set. In this paper, we
randomly select areas which doesn’t include cyclones at best tracking data as
negative samples. In order to improve the confidence level of prediction, we
increase the scale of time and space to make our random selection samples are
well distributed.

5 System

Our system is designed to output probability prediction as reference for data
assimilation. The input data of system only comes from precipitable water. In
order to identify cyclone from a region, our system needs to apply sliding window
technique to solve problems we list in Sect. 4. We use center radiation feature
extraction to increase accuracy rate. After that, an ensemble algorithm helps the
system to reduce the penalty for area prediction error. Figure 5 shows system
flow and processing at each step.
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5.1 Data Augment with Sliding Window

We want to identify tropical cyclones within an area regardless the cyclone size is
large or small, cyclone image is part or all, and cyclone position is in the middle
or edge of the image. In order to train our model to identify all these cases,
we need to provide training set to cover as more variability as possible. When
we form our labeled training set, we naturally don’t have too many positive
samples with high variability and generate lots or samples which cyclones locate
on edge of images if we separate entire region equally. Our method is to use
sliding window technique to solve these two issues. We treat the target as a
small sight and then sweep the entire picture in the order of upper left, upper
right, lower left and lower right. Each area we slide would be treat as a positive
or negative sample. This process would produce W × H samples

W = H = (R − A)/S (1)

where, R = length of region
A = length of area
S = Interval points between area

Figure 6 shows the results after using sliding window. With sliding window
process, image with a cyclone in west pacific basin produces continuous posi-
tive samples with the same cyclone in different location of areas. Continuously

Fig. 4. Center of tropical cyclone located near or on area edge.



Machine Learning for Targeted Assimilation of Satellite Data 61

Fig. 5. System overview

slide entire region not only solving the boundary issues because at least one area
including entire tropical cyclone located in center, but also generating many pos-
itive samples with variability for training. Data augment methods like rotation,
flips and scaling are useful to deal few samples issues. However, for our GFS data
set, it is more suitable to use sliding window technique for data augment. The
reason is that GFS data set cover entire tropical cyclone life cycle and has time
relationship between each data. As time changes, the location, shape and size of
a tropical cyclone will change. Another advantage of sliding window technique
is tropical cyclones would rotate and varies with time, it would generate differ-
ent variance samples naturally. If we rotate and flips manually, it may generate
non-existent tropical cyclone phenomenon.

Fig. 6. Output images of tropical cyclone at west pacific basin through sliding windows.

5.2 Feature Extraction Through Center Radiation

Although separating a region into small areas could reduce difficulty to identify
a tropical cyclone, it still is not enough to provide high accuracy to determine
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whether there is a tropical cyclone in the area. In order to solve this problem,
we provide a center radiation algorithm for feature engineering. Figure 7 shows
the graphical representation of this algorithm. This algorithm has a two steps
mechanism to generate features. First, Use Algorithm 1 to locate maximum value
of water vapor within an area and align it as a center. The central point would
be a first feature. Second, after determining the center, we take average value
of surrounding 8 points as a first layer feature. Then we take average value of
surrounding 16 points as a second layer feature. We increase features until reach
8 layers from center. We think this feature engineering could represent the char-
acteristic of tropical cyclones in precipitable water data set. Although a tropical
cyclone changing its size and rotating over time, we assume that its shape is still
roughly symmetrical. This means that its center will have the maximum value of
precipitable water and decrease as the radius widens. Although a tropical cyclone
can have more than one maximum value of precipitable water, these values are
not randomly distributed but are gathered together. We can arbitrarily choose
one of the maximum values without losing representativeness in Algorithm 1.

Fig. 7. Think of the center point as a feature and the surrounding point layer as a
feature.

5.3 Ensemble Algorithm

With sliding window technique, we separate a region into many small areas,
and we need to ensemble classification results of those areas into one probability
predict result of entire region. We want to design an algorithm to reduce the cost
of predicting errors and increase the weight of correct predictions. The idea is the
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Data: Precipitable water value of an area of west pacific basin region

for Each point in areas do
From Top left to Bottom right, find the maximum points;
if There is only one maximum value then

Select that point as the center;
else

Find the first point with maximum value
Select that point as the center;

end

end
Algorithm 1. Determine center point in an area.

more prediction results for one point, the less predictive error will pay. Therefore,
we leverage the sliding window result to give a point multiple predictions and use
an algorithm to ensemble those predictions. Algorithm2 shows how we ensemble
points in the same area. At present we take Δ = 1 in our algorithm.

Data: Precipitable water value of west pacific basin region

Calculating how many time each point be slided by a sliding window; Total
sliding times = the number of times passed by sliding window of a point Value
= the value of a point for Each area within the region do

Identify each area through classifier;
if The area is identified to have a tropical cyclone then

All points within area Value + Δ;
else

All points within area Value - Δ;
end

end
if The Value of any point ¡ 0 then

set Value of that point to 0
end
Calculation of probability for each points;
Prob of a point = Value / Total sliding times ;

Algorithm 2. Ensemble classified areas into Probability Prediction.

6 Experiment

6.1 Experiment Setup

We combined GFS precipitable water data and IBTrACS best tricking data and
generated five years labeled data from 2010 to 2014. With sliding window for data
preprocessing, we solved data sparsity problem and could have enough training
samples. Also, we randomly selected negative samples to balance positive and
negative samples. Because number of tropical cyclones per year are not equal,
number of samples from 2010 to 2015 are also not equal, too. In order to prove
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our center radiation feature engineering and models work well for tropical cyclone
characteristics and can use without worrying about concept drift over time, we
treated 2015 year samples, processing with the same sliding window and feature
engineering as another test set (Table 1).

Table 1. Data source, training and test data set information.

Data Event Resolution Feature

GFS data Tropical cyclones 32x32 Precipitable Water

Data Set Year Positive Samples Negative Samples

Train 2010-2014 105000 105000
Test1 2010-2014 35000 35000
Test2 2015 10000 10000

6.2 Experiment Result and Discussion

In Sect. 5.2, we explained how to extract features through origin data, starting
from the center point and layer by layer to extract our features. However, it is
hard to estimate how many features we needed. We didn’t know if more features
can help us better to identify tropical cyclones. An experiment is designed to
verify whether this kind of feature extraction works. This experiment began
with only one feature, the maximum value we found from Algorithm1. Then,
we increased more features in each step. In order to reduce the influence of very
similar points, we obtained the feature by adding two points to the radius at a
time. For example, the first added feature is points with radius = 2 from their
center point, the second added feature is points with radius = 4 from their center
point. We use the same approach for both training and test data.

Table 2 shows the predict results of 2010–2014 test set. In general, the more
feature is trained, the more accurate the prediction is for that model. More
interesting, from Table 2 we can find the best number of feature when adding
more layers will not cause better results. Because number of features may have
a close relationship with the size of tropical cyclones, and size of each tropical
cyclone varies, too many features will reduce the tolerance of the model for
different tropical cyclones. In addition, the balanced training data has a large
impact. In our experience, if we don’t make the training samples equal, it would
be very biased to negative samples as natural of meteorology data.

Meteorological data has a strong relationship with time, therefore, we
designed another experiment to discuss our models with concept drift over time.
In this experiment we used 2010–2014 training model to predict 2015 tropical
cyclone data. As Table 3 shows, it is still consistent with our previous experi-
mental results. The accuracy is proportional to the number of features.
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Table 2. Results of prediction of 5 different training models of 2010–2014 test set.

Configuration True/false Predict false Predict true Accuracy

Center point False 31223 3777 0.892

True 934 9690 0.948

Center point + 1
radiation feature

False 31454 3546 0.899

True 1732 33268 0.951

Center point + 2
radiation features

False 31572 3428 0.952

True 1682 33318 0.952

Center point + 3
radiation features

False 31634 3366 0.902

True 1679 33330 0.952

Center point + 4
radiation features

False 31693 3307 0.923

True 1639 33361 0.953

Table 3. Results of prediction of 5 different training models of 2015 test set.

Configuration True/false Predict false Predict true Accuracy

Center point False 9127 873 0.913

True 328 9627 0.967

Center point + 1
radiation feature

False 9107 893 0.910

True 229 9771 0.977

Center point + 2
radiation features

False 9117 883 0.912

True 190 9810 0.981

Center point + 3
radiation features

False 9120 880 0.912

True 193 9807 0.981

Center point + 4
radiation features

False 9134 886 0.912

True 193 9807 0.981

We designed a system to find region of interest of serve weather phenomenon
and gave these regions high probability. In our system, we used Algorithm2 to
ensemble areas prediction into region probability prediction. Figure 8 are the
outcome of our system. Left side of Fig. 8 are origin precipitable water data
from GFS data and right side are output probability predict results which data
assimilation process would refer to. Figure 8a and c are one day at 2015 and
2016 without any tropical cyclone. On the other hand, Fig. 8e has two tropical
cyclones (one is located at edge) and Fig. 8g has one tropical cyclone. Ideally,
Fig. 8b and d should be all 0; however, these two figures still are affected by
false predictions and have some high probability points which should not exist.
In Fig. 8f and h, we covered most tropical cyclones center and regions around
tropical cyclones although Fig. 8h is affected by two major false prediction in
corners. Fortunately, on the premise that computing power can be handled,
a small amount of false prediction will only consume more computing power
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(a) Precipitable water data
without tropical cyclone.

(b) Probability predict result
without tropical cyclone.

(c) Precipitable water data
without tropical cyclone.

(d) Probability predict result
without tropical cyclone.

(e) Precipitable water data
with two tropical cyclones.

(f) Probability predict result
with two tropical cyclones.

(g) Precipitable water data
with a tropical cyclone.

(h) Probability predict result
with a tropical cyclone.

Fig. 8. Probability prediction
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without affecting the predict result of NWP. Our system is designed to feed high
resolution satellite data into region of interesting, but still keep update original
resolution data for others.

7 Conclusion

In this paper, we apply machine learning in GFS precipitable water data to iden-
tify tropical cyclones, facilitate sliding window technique to solve data sparsity
and overcome the traditional limitation that tropical cyclones were needed to
be put in the center of figures for identification. The center-radiation methods
for feature engineering of precipitable water data was proved to achieve fairly
high classification accuracy rate for 2010–2015 GFS data set around 94%. Our
system produces the probability predict result as a reference of data assimilation
process. The probability predict results indicate the region of interest where we
may need to put high resolution satellite data and increase initial value update
frequency to help NWP with better weather prediction. This successful result
could be a good pilot study for further GOES-15 or GOES-16 satellite image
research.
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