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Abstract. We present an overview of inequality-constrained matrix
completion, with a particular focus on alternating least-squares (ALS)
methods. The simple and seemingly obvious addition of inequality con-
straints to matrix completion seems to improve the statistical perfor-
mance of matrix completion in a number of applications, such as col-
laborative filtering under interval uncertainty, robust statistics, event
detection, and background modelling in computer vision. An ALS algo-
rithm MACO by Marecek et al. outperforms others, including Sparkler,
the implementation of Li et al. Code related to this paper is available at:
http://optml.github.io/ac-dc/.

1 Introduction

Matrix completion is a well-known problem: Given dimensions of a matrix X and
some of its elements Xi,j , (i, j) ∈ E , the goal is to find the remaining elements.
Without imposing any further requirements on X, there are infinitely many
solutions. In many applications, however, the matrix completion that minimizes
the rank:

minY rank(Y ), subject to Yi,j = Xi,j , (i, j) ∈ E , (1)

often works as well as the best known solvers for problems in the particular
domain. There are literally hundreds of applications of matrix completion, espe-
cially in recommender systems [3], where the matrix is composed of ratings, with
a row per user and column per product.

Two major challenges remain. The first challenge is related to data quality:
when a large proportion of data is missing and one uses matrix completion for
data imputation, it may be worth asking whether the remainder data is truly
known exactly. The second challenge is related to the rate of convergence and
run-time to a fixed precision: many solvers still require hundreds or thousands
of CPU-hours to complete a 480189 × 17770 matrix reasonably well.
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The first challenge has been recently addressed [8] by considering a variant
of the problem with explicit uncertainty set around each “supposedly known”
value. Formally, let X be an m × n matrix to be reconstructed. Assume that
elements (i, j) ∈ E of X we wish to fix, for elements (i, j) ∈ L we have lower
bounds and for elements (i, j) ∈ U we have upper bounds. The variant [8] is:

min
X∈Rm×n

rank(X)

subject to Xij = XE
ij , (i, j) ∈ E

Xij ≥ XL
ij , (i, j) ∈ L

Xij ≤ XU
ij , (i, j) ∈ U .

(2)

We refer to [8] for the discussion of the superior statistical performance.

2 An Algorithm

The second challenge can be addressed using the observation that a rank-r X is
a product of two matrices, X = LR, where L ∈ R

m×r and R ∈ R
r×n. Let Li:

and R:j be the i-th row and j-h column of L and R, respectively. Instead of (2),
we shall consider the smooth, non-convex problem

min{f(L,R) : L ∈ R
m×r, R ∈ R

r×n}, (3)

where

f(L,R) := µ
2 ‖L‖2F + µ

2 ‖R‖2F
+ fE(L,R) + fL(L,R) + fU (L,R),

fE(L,R) := 1
2

∑
(ij)∈E(Li:R:j − XE

ij)
2

fL(L,R) := 1
2

∑
(ij)∈L(XL

ij − Li:R:j)2+

fU (L,R) := 1
2

∑
(ij)∈U (Li:R:j − XU

ij)
2
+

and ξ+ = max{0, ξ}. The parameter μ helps to prevent scaling issues1. We could
optionally set μ to zero and then from time to time rescale matrices L and R,
so that their product is not changed. The term fE (resp. fU , fL) encourages the
equality (resp. inequality) constraints to hold.

Subsequently, we can apply an alternating parallel coordinate descent method
called MACO in [8]. This is based on the observation that although f is not
convex jointly in (L,R), it is convex in L for fixed R and in L for fixed R. We

1 Let X = LR, then also X = (cL)( 1
c
R) as well, but we see that for c → 0 or c → ∞

we have ‖L‖2
F + ‖R‖2

F � ‖cL‖2
F + ‖ 1

c
R‖2

F .
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can hence alternate between fixing R, choosing r̂ and Ŝ of rows of L uniformly
at random, updating Lir̂ ← Lir̂ + δir̂ in parallel for i ∈ Ŝ, and the respective
steps for L. Further, notice that if we fix i ∈ {1, 2, . . . ,m} and r̂ ∈ {1, 2, . . . , r},
and view f as a function of Lir̂ only, it has a Lipschitz continuous gradient with
constant WL

ir̂ = μ+
∑

v : (iv)∈E R2
r̂v +

∑
v : (iv)∈L∪U R2

r̂v. That is, for all L, R and

δ ∈ R, we have f(L + δEir̂, R) ≤ f(L,R) + 〈∇Lf(L,R), Eir̂〉δ + WL
ir̂

2 δ2, where
E is the n × r matrix with 1 in the (ir̂) entry and zeros elsewhere. Likewise,
one can define V for Rr̂j . The minimizer of the right hand side of the bound on
f(L + δEir̂, R) is hence

δir̂ := − 1
WL

ir̂

〈∇Lf(L,R), Eir̂〉, (4)

where 〈∇Lf(L,R), Eir̂〉 equals

μLir̂ +
∑

v : (iv)∈E(Li:R:v − XE
iv)Rr̂v

+
∑

v : (iv)∈U & Li:R:v>XU
iv

(Li:R:v − XU
iv)Rr̂v

+
∑

v : (iv)∈L & Li:R:v<XL
iv

(XL
iv − Li:R:v)Rr̂v.

The minimizer of the right hand side of the bound on f(L,R + δEr̂j) is derived
in an analogous fashion.

Fig. 1. RMSE as a function of the number of iterations and wall-clock time, respec-
tively, on a well-known 480189 × 17770 matrix, for r = 20 and µ = 16.

3 Numerical Experiments

A particular care has been taken to produce a numerically stable and efficient
implementation. Algorithmically, the key insight is that Eq. (4) does not require
as much computation as it seemingly does. Let us define matrix A ∈ R

m×r and
B ∈ R

r×n such that Aiv = WL
iv and Bvj = V U

vj . After each update of the solution,
we also update those matrices. We also store and update sparse residuals, where
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(ΔE)i,j is Li:R:j − XE
ij for (ij) ∈ E and zero elsewhere, and similarly for ΔU ,

ΔL. Subsequently, the computation of δir̂ or δr̂j is greatly simplified.
Our C++ implementation stores all data stored in shared memory and uses

OpenMP multi-threading. Figure 1 presents the evolution of RMSE over time on
the well-known 480189 × 17770 matrix of rank 20 on a machine with 24 cores of
Intel X5650 clocked at 2.67 GHz and 24 GB of RAM. There is an almost linear
speed-up visible from 1 to 4 cores and marginally worse speed-up between 4
and 8 cores. The comparison of run-times of algorithms across multiple papers
is challenging, especially when some of the implementations are running across
clusters of computers in a distributed fashion. Nevertheless, the best distributed
implementation, which uses a custom matrix-completion-specific platform for
distributed computing [4], requires the wall-clock time of 95.8 s per epoch on a
5-node cluster, for rank 25, and 121.9 s per epoch on a 10-node cluster, again for
rank 25, which translates to the use of 47900 to 121900 node-seconds, on the same
480189 × 17770 matrix (denoted N1). For a recent Spark-based implementation
[4], the authors report the execution time of one epoch of 500 s for rank between
25 and 50 on a 10-node cluster, with 8 Intel Xeon cores and 32 GB of RAM per
node. A run of 100 epochs, which is required to obtain an acceptable precision,
hence takes 50000 to 300000 node-seconds. As can be seen in Fig. 1, our algorithm
processes the 100 epochs within 500 node-seconds, while using 8 comparable
cores. This illustration suggests an improvement of two orders of magnitude, in
terms of run-time.

4 Conclusions

In conclusion, MACO makes it possible to find stationary points of an NP-Hard
problem in matrix completion under uncertainty rather efficiently. The simple
and seemingly obvious addition of inequality constraints to matrix completion
seems to improve the statistical performance of matrix completion in a number
of applications, such as collaborative filtering under interval uncertainty, robust
statistics, event detection [7,9], and background modelling in computer vision
[1,2,5,6]. We hope this may spark further research, both in terms of dealing with
uncertainty in matrix completion and in terms of the efficient algorithms for the
same.
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