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Abstract. Large-scale and real-time transport mode detection is an
open challenge for smart transport research. Although massive mobil-
ity data is collected from smartphones, mining mobile network geoloca-
tion is non-trivial as it is a sparse, coarse and noisy data for which real
transport labels are unknown. In this study, we process billions of Call
Detail Records from the Greater Paris and present the first method for
transport mode detection of any traveling device. Cellphones trajecto-
ries, which are anonymized and aggregated, are constructed as sequences
of visited locations, called sectors. Clustering and Bayesian inference are
combined to estimate transport probabilities for each trajectory. First, we
apply clustering on sectors. Features are constructed using spatial infor-
mation from mobile networks and transport networks. Then, we extract
a subset of 15% sectors, having road and rail labels (e.g., train stations),
while remaining sectors are multi-modal. The proportion of labels per
cluster is used to calculate transport probabilities given each visited sec-
tor. Thus, with Bayesian inference, each record updates the transport
probability of the trajectory, without requiring the exact itinerary. For
validation, we use the travel survey to compare daily average trips per
user. With Pearson correlations reaching 0.96 for road and rail trips, the
model appears performant and robust to noise and sparsity.
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1 Introduction

The growing use of smartphones generates massive ubiquitous mobility data.
With unprecedented penetration rates, mobile networks are supplying the largest
geolocation databases. Mobile phone providers collect real-time Call Detail
Records (CDR) from calls, text messages or data at no extra-cost for billing
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purposes. Still, traditional transport planning models have so far relied on expen-
sive travel surveys, conducted once a decade. Consequently, surveys are rapidly
outdated, while suffering from sampling bias and biased users’ responses. Past
research used CDR to estimate travel demand [21], optimal locations for new
transport infrastructures [7], weekly travel patterns [9], activity-based patterns
[12], urban land-use [19], impact of major events or incidents [6] and population
dynamics [5,14]. A few studies used triangulation, based on signal strength e.g.,
in Boston U.S. [4,20]. In Europe, privacy policies restrict triangulation usage
to police demands. CDR and GPS data both respect privacy compliance for
geolocation. Still GPS data collection requires users to install tracking applica-
tions and activate GPS, which has greedy battery consumption. Consequently,
GPS samples represent subsets of users’ trips while CDR generate locations
from larger populations over longer time periods. However CDR geolocation is
coarse, noisy and affected by the usage frequency of devices. Raw CDR provide
approximate and partial knowledge of true users’ paths, hence requiring careful
pre-processing. Past methods on transport mode detection mainly involved GPS
data and are hardly transposable to CDR. In addition, these studies applied
supervised learning [10,18,22] requiring a training dataset of trajectories with
transport mode labels. Transport modes were either collected via applications
where users consent to enter their travel details, or manually identified using
expert knowledge, which is a costly task. In real world scenarios, transport
modes of traveling populations are unavailable. Therefore we need new unsu-
pervised approaches to tackle this issue.

This paper presents the first unsupervised learning method for transport
mode detection from any CDR trajectory. As this is a first study, we focus
on a bi-modal separation between road and rail trips. In collaboration with a
mobile phone provider, we process one month trajectories from the Greater Paris,
which are anonymized and aggregated for privacy. Trajectories are represented
as sequences of visited mobile network areas, called sectors. Our model combines
clustering with Bayesian inference to determine the probability that cellphones
traveled by road or rail knowing their trajectories on the mobile network. The
transport probability of a trajectory is initialized with a prior obtained from the
travel survey and updated with each new visited sector. Transport probabilities
for sectors are derived after clustering sectors by transport type. Sectors fea-
tures are constructed using both mobile networks and transport networks spatial
properties. Then, for a subset of 15% sectors, we extract transport labels, being
road or rail, (e.g., equipments inside train stations, on highways etc.) while the
remaining sectors are multimodal. For each cluster, we use the binary labels to
calculate continuous transport probabilities as the proportion of labeled sectors
among total sectors. Trajectories are thus attributed the most probable mode
among road, rail or mixed (i.e., when probabilities are close). For validation, we
calculate daily average rail and road trip counts per user and obtain Pearson cor-
relations with the travel survey above 0.96, for the 8 departments of the region.
In the next sections, we review the literature in Sect.2 and describe data engi-
neering in Sect.3. The methodology steps are presented in Sect. 4. Eventually,
we discuss main results in Sect. 5 and provide conclusion.
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2 Related Work

Common applications for geolocation data mining are the identification of travel
patterns for personal travel recommendation [23,24], anomalous behavior detec-
tion [17] and transport planning [12]. Several works used supervised transport
mode learning from GPS trajectories. A multilayer perceptron was used to iden-
tify car, bus and walkers modes for 114 GPS trajectories in [10]. Features were
the average and maximum speed and acceleration, the total and average travel
distance, the number of locations divided by travel distance and the number of
locations divided by travel time. The best accuracy was 91% using a 10-folds
cross validation. In [18], speed and acceleration features were collected from 16
GPS trajectories. Several classification models (Decision Tree, Kmeans, Naive
Bayes, NNeighbor, SVM, Discrete and Continuous HMM) were compared. The
Decision tree with Discrete Hidden Markov Model obtained the highest accuracy
(74%). Still, supervised approaches with GPS are constrained by the small size
of the training data. Moreover, although transport labels can be collected for
small GPS datasets, they are unavailable for CDR.

Meanwhile, few studies tackled unsupervised transport mode detection. In [§]
fuzzy logic was used as a scoring function calculated between consecutive GPS
traces. The transport score was calculated with boolean conditions on speed,
distances to transport network and previous mode. Still, this work lacked a per-
formance evaluation. In [15], base stations located inside Paris underground were
used to identify underground mode from CDR trips. A record detected by an
underground antenna was labeled accordingly. This approach is limited as it
relies exclusively on indoor equipment inside the underground. No additional
modes were identified. To our knowledge, only one work addressed unsupervised
transport mode learning for two modes, road and public transport, using trian-
gulated CDR [20]. The approach applies travel times clustering followed by a
comparison with Google travel times. Still, CDR low frequency induces impor-
tant incertitude and delay on start and end travel times of CDR trips. Con-
sequently a device may not be detected as traveling when the real trip begins
and ends. Moreover the presented approach was demonstrated on one unique
Origin and Destination (OD) pair which is not sufficient to validate the method.
In dense urban areas, travel times can be affected by traffic states (e.g., rush
hours) and can be identical for several modes, depending on the OD.

Our work presents a novel method for transport mode detection by combin-
ing two unsupervised techniques, namely clustering and Bayesian inference. This
model classifies millions of CDR trajectories into road and rail trips. Instead of
clustering trajectories with features such as speed or travel time, highly impacted
by the imprecision, sparsity and noise of CDR. geolocation, we apply clustering
on sectors and build spatial features using transport networks. A small subset
of road and rail labels is collected for sectors in order to calculate sectors trans-
port probabilities. After the Bayesian inference step, we conduct a large-scale
validation for the complete region, using the travel survey. The high Pearson
correlations, obtained on daily average trips per user, proves the method is gen-
eralizable, performant and robust to noise and sparsity.
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3 Data Engineering

For this study, we collect anonymized CDR trajectories from the Greater Paris
region, over one month. Sectors features are constructed using the base stations
referential jointly with transport networks infrastructures. For data normaliza-
tion, we introduce a specific procedure accounting for heterogeneous urban den-
sity. Label extraction is realized to gather transport labels for a small subset
of sectors. For model validation we use the household travel survey from 2010
conducted by Tle de France Mobilités-OMNIL-DRIEA [1].

3.1 Mobile Network

Mobile providers do not have access to GPS coordinates of mobile phones.
Although we know which base station is connected to a device, it is unlikely
to encounter mobile users positioned exactly at the base station. Devices are
located inside mobile network areas covered by base stations signal range. For
this study, we use the mobile network referential of the Greater Paris region.
This region has a 12000 km? area with more than 1200 cities and 12 millions
inhabitants. It is covered by thousands of mobile network antennas. Each base
station emits 2G, 3G or 4G radio signals. Cells are circular areas covered by
signals (see Fig.1). Each cell equipment is oriented toward one direction. The
partitions of cells directions are called sectors. The average sector number per
antenna is 3 where one sector covers 120° around the base station. A cellular
tessellation is composed of a multitude of overlapping areas. We use the sector
tessellation to get rid of overlaps and create the voronoi partitions using sectors
centroids (see Fig. 2). We associate each mobile phone record to a sector location.

Sector 2 Sector 3

Fig. 1. Schema of a tri-sector antenna. Fig. 2. Example of a voronoi sector and
The antenna is represented by the its associated shortest distance to trans-
black dot. Circular areas are cells for ports axes. Five roads (colored lines) and
2@G, 3G and 4G signals. one rail line (dashed line) intersect the

sector. (Color figure online)
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3.2 Transport Networks

Transport networks are used to construct sectors features. We retrieve rails
infrastructures for underground, overground, tramway and train stations shared
by Ile-de-France Mobilité on their platform Open Data STIF [2]. In addition we
use OpenStreetMap (OSM) [3] to retrieve highspeed rails and road infrastruc-
tures. Roads are categorized by traffic importance. We filter residential roads
which have highest road count and lowest traffic.

3.3 Raw Features Construction

We construct our dataset D = {draih droad7 dstation; Nroad; Nrail wstation} where
features stand for:

— droqa: shortest distance between sector centroid and road (see Fig. 2).

— drqq: shortest distance between sector centroid and rail network (see Fig. 2).

— dstation: shortest distance between sector centroid and train station centroid.

— Nyoaq: Number of roads intersecting the voronoi.

— Npei: number of rail lines intersecting the voronoi.

— Wstation: Weight of train stations calculated as the sum of stations area inter-
secting the sector voronoi area.

3.4 Data Normalization

We aim to find transport mode usage in sectors. As our raw features are built
with spatial information they are impacted by urban density. In the city center
the density is higher than in the suburb. Consequently sector areas and distances
to transport networks are smaller while there are more transport hubs. We nor-
malize our features to reduce the bias induced by urban density over transport
usage. We introduce a normalization specific to our problem:

dm
dnorm,m = Zd € [07 1] (1)
Nnorm,m = LT,;L S [07 1] (2)
Wstation
Wnorm,station — JtAit € [07 1] (3)

where d,, € {droad7 drait, dst(ztion}a Ny € {nroada nrail} and dnorm,nu resp.
Nporm,m, 1S the normalized vector for feature d,,, resp. ny,. Feature Wy orm, station
is the normalization of wstation by voronoi area A, .

3.5 Sector Label Extraction

A few base stations are located on transport hubs, such as rail lines, train sta-
tions, highways or tunnels. We process this information to construct labels for
a small subset of antennas. We assume that each sector inherits from its base
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station label. We attribute rail labels to indoor equipments located inside the
underground and train stations, which represent 4% sectors. We assign road
mode to indoor antennas in tunnels, constituting less than 1% sectors. We add
outdoor antennas on highways (11% sectors) to increase the size of the road
subset. In total we obtain 15% transport labels. In what follows, we use our sub-
set of sectors with categorical transport labels {road, rail}, as prior knowledge.
Still, categorical transport labels are not appropriate for most sectors, including
outdoor equipments. In urban areas, such as the Greater Paris, the classic sce-
nario is to encounter several transport modes inside an outdoor sector because of
mobile networks’ coarse granularity. Thus, we aim to find continuous transport
probabilities P € [0, 1] for all sectors, where indoor labeled equipments have
maximal probabilities P € {0,1}.

3.6 Trajectories Pre-processing

For this study, the mobile provider pre-processed raw anonymized users’ posi-
tions using noise reduction and segmentation (see Fig.3). For segmentation,
users’ locations were separated into stay points i.e., when users remain in the
same area, and moving points i.e., when users are assumed traveling. We define
a trajectory as a sequence of moving points 7} = {(Xo, o), ..., (Xi, )}, j being
the 7' trajectory of the user u. The i*® position recorded at timestamp t; is
X; = (z;,y:), where (x;,y;) are the centroid coordinates of the visited sector.
One trajectory corresponds to one user trip. We construct 95 millions CDR tra-
jectories from 2 millions anonymized users during one month. Similar trajectories
are aggregated to respect privacy policies. In order to compare our results with
household travel survey, which was conducted for residents of the Greater Paris
region, the mobile provider filters users by home department (first two digits of
billing address postcode) and exclude visitors.

4 Model

This section presents the unsupervised learning scheme combining clustering
and Bayesian inference to estimate transport modes of CDR trajectories. First,
the prior transport probability is obtained from the travel survey. Second, the
transport likelihood is calculated from the observed records, such as each new
visited sector updates the probability. In this perspective, we apply a clustering
on sectors. Then, our subset of sectors labels is used to calculate transport
probabilities within each cluster. Each sector is assigned a continuous score in
[0, 1] reflecting the real transport usage inside i.e., the probability to detect more
users on the roads or on the rails. For each trajectory, we assign the mode with
highest probability. Eventually, results are validated against the survey.

4.1 Clustering

We aim to find transport clusters for mobile network sectors with an underlying
hierarchical structure. Thus we use an agglomerative hierarchical clustering. The
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INPUT DATA PRE-PROCESSING MODEL OUTPUT
Transport
Network Transport
IS Modes
Probabilities
Base & Final Mode
Stations of Trajectories
Referential (Road, Rail,
Mixed)
Anonymized
Raw CDR
Household
Travel F
Survey

Fig. 3. Transport mode detection workflow applied for this case study. Pre-processing
steps annotated with (*) were performed by the mobile operator.

clustering starts with IV clusters of size 1, N being the number of sectors. Each
sector is recursively merged with its closest neighbor according to a linkage cri-
terion and a distance function. We test three linkage types with three distance
functions (euclidean, Manhattan and cosine). Complete linkage minimizes the
maximal distance between two points from two clusters. Average linkage mini-
mizes the average distance between clusters points. Ward linkage, with euclidean
distance, minimizes the sum of squared error ESS =37 ; [ Xyjk — Tk |2, where
Xijk is the sample value for sector 7, feature j and cluster k; Zj; is the mean
value of feature j for cluster k. The agglomerative clustering applies until all
data points are merged into a single cluster of size N. A good clustering solution
should divide rail transport sectors from road sectors.

4.2 Evaluation Metrics

We use internal evaluation metrics to assess the clustering performance and to
identify the optimal cluster number. We used the Silhouette (S) to evaluate
clusters separability [13] (see Eq.4).

1
Sk—m;&’k (5)
1
szﬁ;sk (6)

where a(i) is the average intra cluster distances for sector ¢ and b(i) is the
lowest value among average inter cluster distances. Here N stands for the size
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of cluster k. The number of samples equals N. The optimal number of clusters
K maximizes the silhouette [16]. In addition we used the Sy, validity index.

Savw (k) = Scat(k) + Densgy(k) (7)
k
where Scat(k) = %Z ZE;; (8)
1 u dens(u;;)
and Densap (k) = k(k—1) ”Z: maz(dens(v;), dens(vj)) ©)

where v; denotes centroid of cluster 7 and w;; is the middle point between clusters
i and j ie., at mid distance from the two centroids (v;, v;). The scattering
index Scat is used to estimate the intra cluster compactness based on standard
deviations o of clusters over total dataset D. The term Densgp represents clusters
densities. It calculates the average ratio of clusters middle point densities over
clusters centers densities. The underlying assumption is that well defined clusters
are denser around their centroids than at their mid distance. This index is a
trade-off between clusters densities and variances. It has been depicted as the
most performing among internal clustering evaluation metrics in [11,16]. The
optimal cluster number is found when the index reaches its minimum.

4.3 Probability Scores of Sectors Transport Mode

For each cluster k we calculate the score py ., for transport mode m €
{rail, road}.

_ Nkm
=N
where Np, ,, is the number of labeled sectors belonging to class m in cluster £
and NN,, is the total number of sectors from class m in the dataset. We normalize
Pk,m to obtain the probability P(m|S;) € [0,1] of using mode m given a visited
sector S;, belonging to a cluster k.

Pk,m (]_O)

Pk,m
P(m|S;) = == (11)
Zj Pk,j
Unlabeled sectors obtain transport probabilities according to their cluster. In
addition we update the probabilities of outdoor labeled sectors (i.e., highways)
using Egs. 10 and 11. Indoor labeled sectors have binary probabilities in {0,1}.

4.4 Bayesian Inference of Trajectories Transport Mode

Bayesian inference is used to determine the main transport mode associated
to mobile phone trajectories. In this perspective, we calculate the probability
P(m|T}') to take a mode m € {rail,road} knowing the trajectory T}, using
Bayes theorem:

P(T}'|m) x P(m)

P(mIT}) = — 57y (12)
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Trajectories are sequences of sectors {Sp,...,S;} visited by mobile phone hold-
ers. Thus we have P(T}'|m) = P(So,...,S|m). We assume independence
between sectors probabilities such as P(S;, Si+1|m) = P(S;|m)P(S;4+1|m). This
assumption is motivated by the need to reduce the computational cost of the cal-
culation. Thus we can rewrite P(7}'|m) = Hé:o P(S;/m). Equation 12 becomes:

l

POn[T) = e T] PAsilm) (13)
J 7 4=0

The term P(m|S;), previously calculated with Eq. 11, is introduced by applying
Bayes theorem a second time, to Eq. 12:

P(m|T}) = HZP(();;( - lHP m|S;) (14)

L .
The term % does not influence the mode choice. The prior transport
J
probability P(m) can be seen as the initial guess, before observing records. The
prior probability is obtained from the travel survey and is calculated as the aver-

age trip counts per user given the home location of cellphone holders, here at the
AV G (szz)
AVGdep(cmul)JFpAVGdep((‘w oud)

[0,1] and prair,dep = 1 — Proad,dep, Where ¢rqi and croqq are the rail and road trip
counts, for the day of survey, per user living in the department dep. At last we
normalize the posterior transport probability to be in range [0, 1].

department scale. For rail mode we have pyqir,dep =

P(m|T}")
P(rail|T}') + P(road|T}')

P(mlT}) (15)

Finally we affect the mode obtaining the higher probability to each trajectory.
When probabilities are in [0.4, 0.6] the mode is considered mixed.

5 Results

This section summarizes our main results. For the clustering we demonstrate
how we determine the number of clusters. We describe clusters according to
transport probabilities. From the Bayesian inference of trajectories’ transport
modes, we visualize transport flows per week day and observe the travel patterns.
We provide detailed results comparison with survey, at department scale, using
Pearson correlations as evaluation metric.

5.1 Clustering Evaluation

We first compare the three linkage types. Average and complete linkage fail to
separate sectors in the city center, with any distance metric. One huge centered
cluster is produced with tiny clusters located at the region borders. We retain



578 D. Bachir et al.

ward linkage with euclidean distance which produce clusters of comparable size,
evenly present across the region. In order to find the optimal number of cluster
we draw the dendrogram of the ward agglomerative clustering (see Fig.4). The
latter shows k = 2 is a good cluster number as it corresponds to the highest
distance gap between merges. A small k£ leads to a macroscopic partitioning.
We look for a higher k to detect finer transport modes tendencies. A clear cut
was possible for k € {3,4,5,9}, which were therefore also good candidates. We
decide to bound the cluster number between 2 and 10. We use additional intra-
cluster metrics. We calculate S and Sgp, with several k values (see Fig.5). The
silhouette reaches a maximum for k& = 4, for which separability is the highest.

0.9

+—e Silhouette
(881) 08 o—o Sdbw

(332)
(745)
(803)[—
(240)
(156)

(1732) 03
(604)

(398) }7 02, 3 4 5 6 7 8 9 10

0 5 10 15 20 25 30 35 40 K

Metrics

Fig. 4. Dendrogram for k € [2,10]. Fig. 5. Silhouette (blue) and Sgpw valid-
The x axis is the height i.e., distances ity index (red) plotted in function of the
between clusters leaves and nodes. The number of cluster k (Color figure online)
y axis shows the number of leaves per

cluster.

Fig. 6. t-sne projection for dataset D after normalization and z-score transformation.
Colors represent clusters for k varying from 1 to 9. The parameters are ncomponent = 2,
perplexity = 30, learningrate = 200, Niteration = 1000. Stars correspond to road
labels, Triangle to rails and crosses to unlabeled sectors. (Color figure online)



Combining Bayesian Inference and Clustering for Transport Mode Detection 579

According to the Sy, minimization criterion, the optimal number of clusters is
k =9, for which clusters are the most compact and dense. For k € [5,10] the
silhouette reaches a local maximum for k = 9. For our problem we favor the
larger k hence we select k = 9. We visualize the 9 clusters with t-sne (see Fig. 6)
and project them on the sectors map (see Fig. 7).

e

(d) C;, Cg and Cy

Fig. 7. QGIS clusters projection (Color figure online)

5.2 Sectors Probabilities and Visualization

We calculate the transport probabilities per cluster (see Table1). We describe
clusters regarding transport usage. Each cluster is displayed in Figs.6 and 7.

Table 1. Transport mode probabilities and cluster size for k =9

Cluster | C4 Cs Cs Cy Cs Cs Cr Cs | Cy
Size (%) | 14.7 850 124 4.67 2.20 |10.5 24.4 5.60 |17.1
Prarr 0.651 | 0.567 | 0.824|0.9490.421| 0.387| 0.095|0.071| 0.199
Proap 0.348 1 0.432| 0.176 | 0.0510.579| 0.613| 0.905|0.929| 0.801

— (4, C5: mixed-rail clusters with a higher probability for rails, depicted in blue
and cyan on Fig. 7a.

— (3, Cy: rail dominated clusters with many underground sectors located in the
city center. It corresponds to the red and yellow cluster on Fig. 7b.

— (5, Cg: mixed road clusters, shown in magenta and green on Fig. 7c.

— (%, Cs, Cg: road clusters represented in black, orange and purple on Fig. 7d.
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5.3 Trajectories

We infer transport probabilities for one month trajectories, filtering bank holi-
days. We count the number of rail and road trips (see Fig.8). Only 3% trips have
probabilities in range [0.4,0.6]. We consider such trips have mixed (or uncertain)
mode. In Fig. 8 we observe hourly travel patterns for a typical week. For business
days, peak hours occur in the morning and early evening, with a smaller midday
peak at lunch time. Morning and evening peaks appear unbalanced. One reason
is that mobile phone usage tends to be more important in the evening thus we
detect more users and more trips. A second reason could be that users travel
more at the end of the day. This phenomenon is more pronounced for road trips,
the highest gap being on friday evening.

450000
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— road
—  mixed

400000
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Fig. 8. Estimated trip counts are averaged per week day, per hour and per transport
mode. Results are given for 1 month data from the Greater Paris.

5.4 Comparison with Survey

We compare our results with the latest household travel survey, from 2010,
for the Greater Paris. About 43000 residents were asked about their travels
during their past day, outside holidays. We calculate mobility statistics from
survey and MP results (see Table2). We average survey trip counts per resi-

LS iy Nexw
dent: C = W
for the day he was questioned. The weight w; was calculated during sur-

vey with socio-demographic information to rescale the individual to the entire
population. Similarly we average CDR trip counts per day and per device:
cMP Zlel Zle %%n“ where U is the number of phones, T is the num-
ber of days and n;; is the number of trips detected for phone 7 for day ¢. In
the survey, transport modes are separated in two categories, motorized modes
including public transport, cars and motorbikes, and unmotorized modes i.e.,

where an individual i of weight w; reported N; trips
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walk and bike. Our model outputs the majority mode of a given CDR trajectory,
between rail and road. We first examine results for all residents (see Table 2).
The survey indicates the average trip number per user during a business day
is 4.16 for all modes and 2.45 for motorized trips. We found an average of 2.10
daily trips per person. It seems we were able to detect 86% motorized modes.
Because of the coarseness of the mobile network, walkers might be considered
as non moving as their movement occurs at a too microscopic scale. In addition,
the detection of travels is affected by CDR frequency. When a device is turned-
off or unused for a long period of time, users are undetected. Compared to the
survey, 14% daily motorized trips are undetected in average. We further ana-
lyze results for residents aggregated by home given for the city center, first ring,
second ring and department scale (first two digits of postcode). We calculate
Pearson correlations between survey and CDR estimates for all trips, motorized,
road and rail trips. In addition we calculate the ratio between road and rail

trips: Cratio = % There is a negative correlation between total survey trips

and CDR trips, die to the possible undetection of unmotorized modes. Correla-
tions for rail, road and ratio are all above 0.96 for the three rings scale and the
department scale. Still we have smaller ratio than the survey. The department
obtaining results most similar with the survey is the city center (Paris). For the
latter we detect the same number of motorized trips. This means that all users’
trips were detected, suggesting that mobile phone activity of travelers is more
important in the city center. From these observations we emit several hypoth-
esis to explain remaining differences. First, because of their cost, surveys are
performed on small population samples. Despite the use of weights to scale the
sample to the total population, results can still contain sampling bias in addition
with users’ responses bias. Second, travel surveys are performed every 10 years
because of their high cost. The latest complete survey is anterior to our study
(seven years difference) which can lead to differences in results. In particular,
transport policies over the past years were oriented to favor public transport in
the Greater Paris (e.g., introduction of a unique price for transport pass that
reduced the price for suburbs). This could have influenced users to take public
transports, especially in the suburb. In our opinion trips segmentation might
impact results. Indeed our trajectories are segmented based on stay times. Pub-
lic transport users sometimes experiment waiting times in stations e.g., when
users change lines, and signals loss when entering the underground. This could
cause higher trip segmentation for CDR rail trips. At last we detect 100% trips
in the city center versus 80% in the suburb. In parallel the city center has the
highest rail transport usage. This could indicate a bias in mobile phone usage
i.e., public transport users are more likely to call, text or navigate on the web
than drivers. Therefore some road trips could possibly be undetected (Table 3).
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Table 2. Mobility statistics for average trip number per user during a business day
(Monday-Friday). Results are given per home location (i.e., 2nd ring, 1st ring and the
8 departments including city center). Left: results for survey (source: EGT 2010-Ile de
France Mobilités-OMNIL-DRIEA) Right: results with CDR

Home scale Survey (S) Mobile Phone (MP)

Cu | CRrotor | Chait | CRoaa | Chatio | CAil | Chast | Chioaa | Chiatio
All population 4.16 | 2.45 0.61 |1.85 3.03 2.10 [0.80 |1.30 1.62
City Center (CC) | 4.37 |1.93 1.11 |0.83 0.75 1.94 |1.22 |0.72 0.59
1st Ring (R1) 4.03 | 2.25 0.61 1.64 2.69 2.07 080 |1.27 1.60

2nd Ring (R2) 4.18 | 2.86 0.38 |2.49 6.55 2.24 1050 |1.74 3.45

Dep 77 (D2) 4.12 12.90 0.30 |2.60 8.79 2.37 1049 |1.88 3.83
Dep 78 (D3) 4.23 | 2.88 0.41 |2.47 6.03 2.21 [0.52 |1.69 3.28
Dep 91 (D4) 4.30 | 3.07 0.34 |2.73 7.91 2.15 044 |1.71 3.92
Dep 92 (D5) 4.18 | 2.22 0.62 |1.60 2.56 1.98 0.83 |1.15 1.38
Dep 93 (D6) 3.84 | 2.20 0.62 | 1.58 2.57 2.15 [0.80 |1.35 1.69
Dep 94 (D7) 4.05 | 2.34 0.60 |1.74 2.91 2.11 |0.75 |1.35 1.79
Dep 95 (D8) 4.06 | 2.57 0.45 |2.13 4.76 2.21 |0.57 |1.65 2.90

Table 3. Pearson correlation coefficients between survey and results. We calculate
correlations across the 3 rings (city center, rings 1 and 2) and across the 8 departments.

S MP S MP s MP s MP S MP
Home scale (Ca1s Cau )|(CRiotor> Cati )|(CRoad> CRroad) | (CRaits CRait)|(CRatio> CRatio)
Rings (CC, R1-2)|—0.496 0.993 0.995 0.990 0.999
Deps (CC, D2-8) |—0.348 0.751 0.960 0.986 0.978

6 Conclusion

From mobile phone data mining we can capture travel behavior of urban popu-
lations on multimodal transport networks. Compared to traditional travel sur-
veys, Call Detail Records are a low-cost and up-to-date knowledge base for smart
transport research. In this paper, we have introduced a novel transport mode
detection method using CDR trajectories from the Greater Paris. Our model
uses three data sources: mobile network data, transport networks and house-
hold travel survey. After significant data pre-processing, we combine clustering
on mobile network areas, called sectors, with Bayesian inference for trajectories.
From the clustering we find 9 clusters best described transport usage in the
region. Three clusters exhibit high road probabilities, two had high rail proba-
bilities while four had mixed usage. We compare our final results on trajectories
with the household travel survey. Trips are aggregated by users’ home location,
at the department scale. We calculate the average number of trips per day for
each user, averaged over all users. We obtain Pearson correlations above 0.96
for motorized, rail and road modes. It seems we detect exclusively motorized
trips, as walkers movements are too microscopic regarding the mobile network
scale. To our knowledge this is the first method separating road from rail trips
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considering all CDR trajectories from all users, with substantial comparison
with survey data. Still it is hard to obtain exact same results as the survey. First
we might have a different trip segmentation. When users travel, their path on
the network are likely to be segmented into subtrips because CDR are affected
by waiting times and signals loss. This phenomenon could be more pronounced
for public transport travels, as users often change lines and wait in stations.
In addition, the detection of travels is impacted by usage frequency of phones.
We observe that trips are most likely to be undetected when road usage is pre-
dominant. At last, surveys might contain bias, be outdated and miss particular
events. This makes validation a difficult task as no available data source is a
perfect ground truth. Our work shows encouraging results yet we have several
pending issues we want to address in future works. First, although our model
proved to be robust to noisy locations, oscillations filtering could be enhanced
during CDR pre-processing. Second, as our model outputs one dominant mode,
we need to address multi-modal and uncertain behaviors. For future work, we
will extend model evaluation with finer scale Origin-Destination trips. We look
forward to adding a fourth data source (e.g., travel cards data) for validation.
We aim to enrich our model with additional transport modes. Our final model
will be implemented by the mobile phone provider for B-2-B with transport
operators and urban planners.
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