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Abstract. Sensors deployed in different parts of a city continuously
record traffic data, such as vehicle flows and pedestrian counts. We define
an unexpected change in the traffic counts as an anomalous local event.
Reliable discovery of such events is very important in real-world appli-
cations such as real-time crash detection or traffic congestion detection.
One of the main challenges to detecting anomalous local events is to
distinguish them from legitimate global traffic changes, which happen
due to seasonal effects, weather and holidays. Existing anomaly detec-
tion techniques often raise many false alarms for these legitimate traf-
fic changes, making such techniques less reliable. To address this issue,
we introduce an unsupervised anomaly detection system that repre-
sents relationships between different locations in a city. Our method
uses training data to estimate the traffic count at each sensor loca-
tion given the traffic counts at the other locations. The estimation
error is then used to calculate the anomaly score at any given time
and location in the network. We test our method on two real traf-
fic datasets collected in the city of Melbourne, Australia, for detecting
anomalous local events. Empirical results show the greater robustness of
our method to legitimate global changes in traffic count than four bench-
mark anomaly detection methods examined in this paper. Data related
to this paper are available at: https://vicroadsopendata-vicroadsmaps.
opendata.arcgis.com/datasets/147696bb47544a209e0a5e79e165d1b0 0.
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1 Introduction

With the advent of the Internet of Things (IoT), fine-grained urban information
can be continuously recorded. Many cities are equipped with such sensor devices
to measure traffic counts in different locations [10]. Analyzing this data can
discover anomalous traffic changes that are caused by events such as accidents,
protests, sports events, celebrations, disasters and road works. For example, real-
time crash detection can increase survival rates by reducing emergency response
time. As another example, automatic real-time traffic congestion alarms can
reduce energy consumption and increase productivity by providing timely advice
to drivers [15]. Anomaly detection also plays an important role in city manage-
ment by reducing costs and identifying problems with critical infrastructure.

Definition 1. Anomalous local events: Events that occur in a local area of
a city and cause an unexpected change in the traffic measurements are called
anomalous local events in this paper. Local events can occur in a single location
or a small set of spatially close neighbor locations.

City festivals, such as the White Night event or the Queen Victoria night market
(QVM) in the Central Business District (CBD) of Melbourne, Australia, are
examples of anomalous local events. The White Night event causes a significant
decrease in the vehicle counts in some local areas in the CBD due to road closures.
The QVM night market causes a significant increase in the pedestrian traffic in
a market in the CBD.

Definition 2. Legitimate global traffic changes: Global traffic changes that
occur in almost all locations of the city are called legitimate global traffic changes
in this paper.

Global changes to traffic counts due to seasonal effects, weather and holidays are
examples of legitimate changes, and these changes should not be considered as
anomalies. Most existing anomaly detection techniques raise many false alarms
for these legitimate global traffic changes, making such anomaly detection tech-
niques unreliable for use in real-world applications. In this paper, we propose a
City Traffic Event Detection (CTED) method that is able to detect anomalous
local events while ignoring legitimate global traffic changes as anomalous.

Consider the case study of pedestrian and road vehicle traffic counts in the
Melbourne CBD. Pedestrian and vehicle count data is continuously measured
by sensors at different locations. For example, pedestrian counts are recorded
at hourly intervals at 32 locations, while vehicle traffic counts are recorded at
15 min intervals at 105 locations. This data has been made publicly available
[1,2]. Figure 1 shows the map of the locations of the pedestrian count sensors
in the CBD of Melbourne. Figure 2 shows some examples of legitimate global
vehicle traffic changes including two weekends and a weekday public holiday
(Australia Day), and also an anomaly that occurred due to a road closure at
a location in the vehicle traffic dataset in the Melbourne CBD on 16 January
2014. Our goal is to detect when and where an anomaly occurs in the pedestrian
and vehicle traffic data when a relatively small amount of training data exists.
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Fig. 1. Pedestrian counting locations in Melbourne, Australia.
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Fig. 2. Road vehicle traffic counts at two Melbourne locations (red and blue) over 12
days. (Color figure online)

Existing work [5,6,13,18] has several limitations for use in real-world appli-
cations. Specifically:

– Unsupervised: A key challenge in detecting anomalous local events is the
lack of labeled (ground truth) data. Our proposed method, CTED, is unsu-
pervised, so it circumvents this problem. Moreover, insufficient training data
limits the use of anomaly detection methods that require a large number of
observations for training. For example, techniques based on One Class Sup-
port Vector Machines (OCSVMs) [19] and Deep Learning [7] methods are
limited by this requirement. CTED is able to work with a relatively small
amount of training data.

– Detecting both spatial and temporal anomalies: Most anomaly detec-
tion methods for data streams [7,10,14] can only identify the time but not
the location of anomalous traffic events. In contrast, CTED can detect when
and where an unexpected traffic change occurs.

– Independence of prior data distributional knowledge: Many existing
anomaly detection methods rely on prior distributional knowledge about the
data [6,7,18]. In contrast, CTED is based on a simple linear regression tech-
nique that avoids this requirement.
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– Robustness to legitimate global traffic changes: Existing anomaly
detection methods often misclassify legitimate global traffic changes as
anomalies. CTED offers greater robustness to legitimate global traffic changes
by using linear regression and modeling the relationships between traffic
counts at different locations. The main contributions of our paper are as
follows:

– To the best of our knowledge, we develop CTED, which is the first unsu-
pervised anomaly event detection method focused on legitimate global traffic
changes that identifies not only the time but also the location of anomalous
traffic changes in a city environment.

– Our distribution-free approach builds relative normal models instead of abso-
lute normal models for each location by investigating the typical relation-
ships between traffic counts in different locations (note that we use the term
“normal model” to mean “non-anomalous model” and not “Gaussian distri-
bution”). This resolves problems caused by using absolute traffic counts such
as declaring legitimate global traffic changes as anomalous.

– We conduct our experiments on two real datasets collected in the city of
Melbourne and evaluate our method on real events to verify the accuracy of
the proposed method in real applications.

– We show that our proposed method detects real anomalous local events more
accurately than the comparison methods used in this paper, while being more
robust to legitimate global traffic changes.

2 Related Work

Anomaly detection (AD) methods that can identify both the location and time of
anomalies [4–6,13,17] (Temporal and Spatial AD) use two different approaches
to compute an anomaly score at a specific location. The first approach, the
single-profile approach, relies solely on the traffic counts at the location itself.
The second approach, the cluster-profile approach, combines the traffic counts
at other locations when determining the anomaly score at a particular location.

Methods in [5,6,16,22–24] are single-profile anomaly detection approaches.
For example, in [24], anomalies in urban traffic are detected using Stable Prin-
cipal Component Pursuit (SPCP). The Global Positioning System (GPS) data
from mobile phone users in Japan is used in [23] to detect anomalous events
using 53 Hidden Markov Models (HMMs). In [5], anomalies in pedestrian flows
are detected using a frequent item set mining approach, which was improved in
[6] by using a window-based dynamic ensemble clustering approach.

Approaches reported in [3,9,13,18] allow traffic counts at other locations to
influence AD at a specified location. For example, in [9], anomalies that are
detected at a specific location are partially influenced by the traffic at locations
with similar behavior found using the k-means algorithm. Rajasegarar et al.
[18] detect anomalies in resource-constrained Wireless Sensor Networks (WSNs)
using multiple hyperellipsoidal clusters and calculating the relative remoteness
between neighbors. The method in [3] analyzes WiFi access point utilization
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patterns on a university campus to detect special events in physical spaces. This
method has many false alarms at the beginning of each working day.

The technique that is most similar to CTED is [13], where a framework for
temporal outlier detection in vehicle traffic networks, called Temporal Outlier
Discovery (TOD), is proposed. TOD is based on updating historical similarity
values using a reward/punishment rule.

None of the methods reviewed is robust to legitimate global traffic changes,
since these methods either do not consider other sensors while calculating the
anomaly score at a sensor, or only consider spatially close neighbor sensors to a
specific sensor in calculating its anomaly score. This study introduces a method
for detecting anomalous local events in traffic count data that is highly robust to
legitimate global traffic changes. Table 1 compares properties of several methods
that have been used for AD in sensor networks to those of CTED.

Table 1. Comparison of related methods for anomaly detection in sensor networks

3 Problem Statement

Suppose there are m different locations in a city, L = {1, ...,m}. We consider
the traffic counts in an hourly basis, H = {1, ..., 24}. Assume n

(h)
i (q) is the

traffic count for location i at hour h ∈ H of day q, denoted by (i, h, q), and
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let TD =
{

n
(h)
i (q) : 1 � i � m,h ∈ H, 1 � q � N

}
be the training traffic data

collected during N days. Our goal is to detect the location and time of unexpected
traffic counts (Definition 3) for q > N , which we regard as anomalous local
events (Definition 1). The proposed method should distinguish the anomalous
local events from legitimate global traffic changes (Definition 2). We assume that
the majority of the data in TD corresponds to normal traffic.

Definition 3. Unexpected traffic count: An Unexpected traffic count occurs
at (i, h, q) if its observed traffic count, n

(h)
i (q), is significantly different from its

expected traffic count, n̂
(h)
ij (q).

4 Proposed Method - CTED

4.1 Overview of the Method

The basic research questions that need to be addressed are: (a) How can we
find the expected traffic count at location i? (b) Do the traffic counts at other
locations affect the traffic count at location i? (c) How to reduce the false alarm
rate of anomaly detection on legitimate global traffic changes?

To address these research problems, CTED consists of two phases: an offline
phase, which builds a series of models to estimate the normal traffic for each
location i at hour h of the day, and weights the normal models, and an online
phase, which uses the accumulated weighted error of the normal models for each
location i at hour h and the current traffic measurements at the other locations
to compute the anomaly score at (i, h, q) for q > N .

Figure 3 presents the main steps of our system. Next, we explain each of these
phases in detail.

Step 1 Step 2. Calculating Anomaly Scores
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Fig. 3. Main steps of CTED for detecting anomalous events at location i.
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4.2 Step 1: Build and Weight Normal Models

In a legitimate global traffic change, traffic counts change with almost the same
ratio in all locations. This fact encouraged us to make our event detection model
insensitive to this ratio change. To this end, we investigated the relative traffic
counts between different locations. For example, we found that the traffic counts
at Elizabeth Street in the Melbourne CBD are usually two times higher than the
traffic at Spring Street. So, in a legitimate global traffic change, when the traffic
at the Elizabeth Street increases/decreases by 1.5 times, we expect the traffic at
the Spring Street to increase/decrease by almost 1.5 times. This suggested that
we deploy a linear regression model.
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Fig. 4. Linear regression and legitimate global traffic changes for the vehicle count
dataset. Linear regression considers observations affected by legitimate global traffic
changes (observation numbers 3 to 6) as normal observations for the vehicle count
dataset. (Color figure online)

Figure 4 shows an example where the traffic counts change almost linearly in a
legitimate global traffic change (weekday holidays in this example represented by
numbers 3 to 6) in two linearly correlated locations. The green linear regression
line models the normal behavior between two locations at 1 pm for the vehicle
traffic dataset. The blue star points (*) are training data observations and the
red circle points (O) are upcoming test observations. This figure shows how using
a simple linear regression for modeling the relative normal behaviours increases
the robustness of CTED to legitimate global traffic changes (see observation
numbers 3 to 6). This figure also shows that a linear regression models the
normal behavior of data better than other methods such as clustering. Clustering
techniques detect one normal cluster for the training observations and do not
generalize well to the legitimate traffic changes (observation numbers 3 to 6 in
the bottom left of the figure, which are affected by holidays in this example).

Let functions f
(h)
ij , j �= i represent our normal models that estimate the traffic

counts at location i at hour h given the traffic counts at location j at the same
hour h. We learn linear regression models of the form f

(h)
ij (x) = a

(h)
ij x + b

(h)
ij for

the traffic data, where a
(h)
ij and b

(h)
ij are the coefficients of the model learnt using

the training data
{

n
(h)
i (q), n(h)

j (q)
}

, q = 1...N , where n
(h)
k (q) is the traffic count
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at location k at hour h of day q. We train a model f
(h)
ij for each hour h of the

day using the training data TD. Each trained model is then used to evaluate
new observations for the same hour h of the day.

Although the observed traffic counts at other locations are used to estimate
the traffic counts at location i at hour h, the locations that have the highest
linear correlation with location i are more important. Therefore, we assign higher
weights to the locations that have the largest linear correlation with location i

(step 1.2). To this end, we weight f
(h)
ij models by their standard errors, σ

f
(h)
ij

using the training data (Eq. 1).

σ
f
(h)
ij

=

⎡
⎢⎣

∑N
q=1

(
n
(h)
i (q) − f

(h)
ij (n(h)

j (q)
)2

N

⎤
⎥⎦

1
2

(1)

where f
(h)
ij (n(h)

j (q) is the estimated traffic count at (i, h, q) using the observed

traffic count at location j at hour h of day q, n
(h)
j (q).

4.3 Step 2: Calculate Anomaly Scores

In this step, we use the trained models f
(h)
ij to evaluate the observations

(i, h, q), q > N . The expected traffic count at (i, h, q > N), n̂
(h)
ij (q), based on the

current traffic counts at location j, n
(h)
j (q), is calculated in Eq. 2 (see also step

2.1 in Fig. 3).
n̂
(h)
ij (q) = f

(h)
ij (n(h)

j (q)), q > N (2)

For each upcoming observation at location i, the absolute estimation error
based on the traffic counts at j ∈ CK

(h)
i , for (h, q) is calculated in Eq. 3.

e
(h)
ij (q) =

∣∣∣n(h)
i (q) − n̂

(h)
ij (q)

∣∣∣ (3)

To give more importance to the locations that have high linear correlation
with location i, we weight the estimation error of the traffic count at (i, h) as
shown in Eq. 4 using σ

f
(h)
ij

.

W
(h)
ij (q) =

e
(h)
ij (q)
σ
f
(h)
ij

(4)

where σ
f
(h)
ij

is the standard error of the trained normal model f
(h)
ij from Eq. 1.

Measuring Anomaly Scores. The anomaly score at (i, h, q) is calculated in
Eq. 5.

AS
(h)
i (q) =

∑

j∈CK
(h)
i ,j �=i

W
(h)
ij (q) (5)
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AS
(h)
i (q) is the sum of the weighted estimation errors of the traffic counts at

(i, h, q). An anomalous traffic event is declared at (i, h, q) if its anomaly score,
AS

(h)
i (q), exceeds a pre-specified threshold, thrCTED. We discuss the selection

of this threshold in Sect. 5.
Why do we ignore lag effects? In building normal models and calculating

anomaly scores, we do not consider lag effects. Usually, vehicles move in “waves”,
i.e., a high traffic count at location i at time h is expected to correspond to a
high traffic count at a spatially close neighbor correlated location j at the next
time h + 1. However, we do not consider lag effects because of the properties
of our datasets, i.e., the low sampling rate (15-min for the vehicle traffic data
and one-hour for the pedestrian data) and the small distances between loca-
tions (many of the locations are just one block apart). We considered lag effects
in our studies, and noticed a small reduction in the accuracy of our anomaly
event detection method. When distances between sensors and/or sampling times
increase, accounting for lag becomes more effective.

4.4 DBSCAN for Removing Outliers from the Training Data

We examined the linear correlation between different locations using the Pearson
Correlation Coefficient (PCC) and we found that in some pairs of locations, the
linear regressions are affected by outliers in the training data, resulting in a low
PCC (see Fig. 5(a)).

To prevent the effect of outliers, we use the Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) method [8] to remove outliers before
building linear regression models. We chose DBSCAN as it is a high performance
unsupervised outlier detection method used in many recent research papers
[12,20,21]. Figure 5(b) shows the linear regression model after using DBSCAN
for removing outliers from the training data, which confirms that the linear
regression model after removing outliers is a more reliable fit.
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Fig. 5. Linear regression at two locations. (a) Before removing outliers, (b) After
removing outliers using DBSCAN.
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For the pedestrian data, removing outliers reduced the proportion of locations
with low PCC values (lower than 0.6) from 6% to 0.6%. For the vehicle traffic
data, this value reduced from 15% to 4%. When we used DBSCAN, we assumed
that 20% of the training data are outliers. We changed this assumed outlier
percentage in the range from 5 to 30 and there was little variation in the results.
The effect of outliers on the linear correlations in the training vehicle traffic data
is less than their effect on the coefficients in pedestrian data because the time
resolution of the training data is lower in the vehicle traffic data than for the
pedestrian traffic data. The smaller the sample size, the greater the effect of
outliers on the normal models.

5 Experiments

5.1 Datasets and Ground Truth

We use the real datasets of the pedestrian count data [2] and the vehicle traffic
count data [1] as described in Sect. 1. We ignore missing values in the training
data. In the vehicle traffic data, only 3% of the training data is missing.

The performance of our method is compared to the benchmark algorithms
based on some known real anomalous local events and real legitimate global
traffic changes (see Table 2). For anomalous local events, we choose winter fire-
works in Waterfront City (Docklands) and night market festivals in the Queen
Victoria Market (QVM) in 2015 for the pedestrian data where an uncharac-
teristic pedestrian flow is experienced. We also consider the White Night event
that happened in some parts of the city in 2014 as an anomalous local event for
the vehicle traffic data as only some road segments in the CBD are blocked or
partially affected by this event. Normal traffic patterns in April are the normal
ground truth for both datasets. We also consider weekday holidays in Melbourne
such as New Year’s Eve, Good Friday and the Queen’s Birthday as legitimate
global traffic changes for both datasets (see Table 2).

Table 2. Normal and anomaly ground truth

Dataset Scenario GTNormal GTAnomaly (anomalous
local events)

Pedestrian 1 Normal traffic patterns in April QVM night market,
Docklands winter fireworks

2 Weekday holidays (Legitimate
global traffic changes)

QVM night market,
Docklands winter fireworks

3 Normal traffic patterns in April
and weekday holidays

QVM night market,
Docklands winter fireworks

Vehicle 4 Normal traffic patterns in April White night

5 Weekday holidays (Legitimate
global traffic changes)

White night

6 Normal traffic patterns in April
and weekday holidays

White night
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5.2 Comparison Methods

We compare our method with four other methods: OCSVM [11], TOD [13],
Boxplot [22], and k-sigma rule [16]. OCSVM models a training set comprising
only the normal data as a single class. Dense subsets of the input space are
labelled as normal whereas observations from other subsets of the input space
are labelled as anomalies. We train an OCSVM model with the Radial Basis
Function (RBF) in an unsupervised manner given the technique proposed in [11].

TOD proposed in [13] for detecting anomalies in vehicle traffic data, and is
similar to CTED. The main differences are that TOD considers all locations
to have the same importance (weight) when determining the anomaly score of
each location and uses absolute traffic counts. TOD uses a reinforcement tech-
nique and expects two historically similar locations to remain similar and two
historically dissimilar locations to stay dissimilar.

The last two comparison methods are the extended versions of the standard
Boxplot [22] and the 3-sigma [16] anomaly detection methods. Boxplot constructs
a box whose length is the Inter Quartile Range (IQR). Observations that lie
outside 1.5 * IQR are defined as anomalies. In this paper, we learn IQR for each
hour h using the training data, and then we consider different ratios of IQR as
the threshold for anomalies. We define observations that are outside kthrB ∗IQR
as anomalies and investigate the overall performance of Boxplot for different
threshold values, kthrB . The 3-sigma rule calculates the mean (μ) and standard
deviation (σ) of the training data and then declares the current observation
(n(h)

i (q)) anomalous if
∣∣∣n(h)

i (q) − μ
∣∣∣ > 3σ. We learn μ and σ for each hour h of

the day using the training data. We then use a general version, k-sigma rule,
where observations that are outside

∣∣∣n(h)
i (q) − μ

∣∣∣ > kthrSσ are defined as the
anomalies.

5.3 Experimental Setup

We evaluate the performance of CTED by computing the Area Under the ROC
Curve (AUC) metric. Table 2 shows the ground truth (GT) that we use for
both real datasets under different experimental scenarios discussed in Sect. 5.1.
In calculating the AUC metric, true positives are anomalous local events,
(location, hour, day) triples, belonging to GTAnomaly that are declared anoma-
lous, and false positives are normal traffic changes (including legitimate global
ones), (location, hour, day) triples, that belong to GTNormal but are misdetected
as anomalous events.

Setting Parameters. The threshold that is compared to anomaly score values
is the parameter that defines anomalies in all the comparison methods and the
proposed method: thrAS in CTED, thrSVM in OCSVM, kthrB in Boxplot and
kthrS in k-sigma. This parameter is the only parameter required by CTED.

In OCSVM, to extract features for training the models, nc correlated sensors
are identified for each sensor. The features of OCSVM are the ratio of the counts



564 M. Zameni et al.

in two correlated sensors. On our experiments, we change nc ∈ {5, 10, 15, 20} for
the number of correlated locations to each location and we report the best results.
Note that by increasing nc from 20, we observed reduction in the accuracy. We
train a model for each hour of the day using the training data. These models are
used for evaluating the current observations.

In TOD, in addition to the anomaly score threshold, a similarity threshold
and three other parameters, α1 < 1, α2 ≥ 0 and β > 1, must also be determined.
Setting appropriate values for these parameters is difficult and is best done using
prior knowledge about the dataset. In our experiments, we changed α1 in the
range [0−1), α2 in the range [0−10] and β in the range (1−10] for the test data.
We found that the values of 0.7, 2 and 1 respectively for α1, α2 and β lead to
the highest AUC value for the test data in the pedestrian traffic data and the
values of 0.99, 0 and 1.1 respectively for α1, α2 and β lead to the highest AUC
value for the test data in the vehicle traffic data. We used these parameters for
TOD in our experiments. In practice, the necessity to tune the TOD parameters
using test data makes this approach difficult and time consuming.

In the Boxplot and k-sigma rule methods, we estimate IQR, the observation
mean μ and the observation standard error of the estimate σ for each hour h of
the day using training data.

Table 3. AUC values for CTED and the benchmarks

Dataset Scenario OCSVM
[11]

TOD
[13]

Boxplot
[22]

k-sigma
[16]

CTED Proposed
method

Pedestrian 1 0.86 0.71 0.85 0.84 0.86

2 0.78 0.71 0.78 0.71 0.84

3 0.84 0.71 0.83 0.82 0.86

Vehicle 4 0.82 0.8 0.79 0.79 0.87

5 0.77 0.79 0.64 0.65 0.88

6 0.82 0.79 0.77 0.78 0.88

5.4 Results

Figure 6 and Table 3 compare the resulting ROC curves and AUC values for
the comparison methods against CTED produced by changing the threshold of
anomaly scores for three different experimental scenarios in Table 2 as discussed
in Sect. 5.1. In OCSVM, we set nc ∈ {5, 10, 15, 20} for the number of correlated
locations to each location and we found that OCSVM is sensitive to the choice of
this parameter. Specifically, increasing nc from 20 resulted in a large reduction
in the accuracy of OCSVM. We changed the number of correlated locations to
each location for CTED and we found that CTED has a low sensitivity to nc. In
OCSVM, best results for the pedestrian dataset was achieved at nc = 15, while
we got the best results for the vehicle dataset when we set nc = 10.
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The bolded results in Table 3 show that the AUC values of CTED are higher
than all the benchmark approaches for all the above-mentioned scenarios in
both the pedestrian counts and the vehicle traffic datasets. In Fig. 6, we plot the
Receiver Operating Characteristic (ROC) curve for the vehicle traffic dataset
against the three benchmarks. This figure confirms that CTED performs better
than other benchmarks for all the scenarios.
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Fig. 6. ROC curves for vehicle traffic data for the real anomalous events in Table 2.
(a) Legitimate global traffic changes are the normal ground truth, (b) Normal traffic
patterns in April are the normal ground truth.

Comparing Fig. 6(a) and (b) reveals that the difference between the perfor-
mance of CTED and the other benchmarks is mostly larger when legitimate
global traffic changes are the normal ground truth. This larger difference stems
from the lower false positive rate of CTED because it is more robust to legitimate
global traffic changes compared to the benchmark techniques.

Reliable anomaly detection is difficult in practice. Reducing false positives
is very important as this makes the anomaly detection system more reliable for
city management purposes. A system that is not robust to legitimate global
traffic changes generates many false alarms. This makes existing anomaly event
detection methods unreliable for use in real applications, such as vehicle accident
detection and traffic congestion detection systems.

5.5 Robustness to Legitimate Global Traffic Changes

Figure 7 compares the ratio of the false positive rate of CTED to the other three
benchmarks for different values of True Positive Rate (TPR). Figure 7 shows that
the False Positive Ratio (FPR) ratio between CTED and the benchmarks for the
legitimate global traffic changes is lower than the local events, which confirms the
greater robustness of CTED compared to the benchmarks for legitimate global
traffic changes.
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Figure 7(a) and (b) highlight that the k-sigma and Boxplot methods produce
much higher false positives for legitimate global traffic changes than local events
for vehicle traffic data. However, Fig. 7(c) and (d) show that TOD and OCSVM
are more robust than the k-sigma and Boxplot methods to legitimate global
traffic changes but still less robust than CTED. The greater robustness of TOD
and OCSVM to legitimate global traffic changes is mainly due to considering
traffic counts at other locations (relative traffic counts) when computing the
anomaly score at each location.

Fig. 7. The ratio of FPR produced by comparison methods compared to CTED for
the same values of TPR for the vehicle traffic dataset. The anomaly ground truth is
the the White Night event in all the cases. The dashed red lines show the results when
the normal traffic patterns in April are considered as the normal ground truth while
the blue lines show the results when legitimate global traffic changes are considered as
the normal ground truth. (Color figure online)

5.6 Time Complexity

CTED is composed of an offline and an online phase. The complexity of the offline
phase in the worst case is O(m2n2

TD), where m is the number of locations, and
nTD is the number of observation vectors in the training data. The complexity of
DBSCAN in the worst case is O(m2n2

TD), and the time complexity for building
normal linear regression models and weighting them is O(m2nTD). The offline
phase only executed once. Note that nTD � n, as we discussed in Sect. 4.4.
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The online phase is executed whenever a new observation vector arrives. The
time complexity for processing each new observation is O(m2) as we find the
estimation error for the current observation in each location based on the other
locations.

6 Conclusions

In this paper, we proposed a new unsupervised method for detecting anomalous
local traffic events, called CTED. This method that is highly robust to legiti-
mate global traffic changes. This method builds normal models for each location
by investigating the linear relationships between different locations in the city
and uses the models to detect anomalous local events. Our experiments on two
real traffic datasets collected in the Melbourne CBD, the pedestrian count and
the vehicle traffic count datasets, verify that our simple linear regression-based
method accurately detects anomalous real local events while reducing the false
positive rate on legitimate global traffic changes compared to four other bench-
mark methods for anomaly detection in traffic data.

Changes in the city infrastructure can change the normal behaviour of the
traffic in several locations of a city. As a future direction of our research, we aim
to exploit time series change point detection methods to find the time of these
behavioural changes in the traffic, and automatically update CTED when it is
necessary.
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