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Abstract. The ubiquity of WiFi access points and the sharp increase
in WiFi-enabled devices carried by humans have paved the way for
WiFi-based indoor positioning and location analysis. Locating people
in indoor environments has numerous applications in robotics, crowd
control, indoor facility optimization, and automated environment map-
ping. However, existing WiFi-based positioning systems suffer from two
major problems: (1) their accuracy and precision is limited due to inher-
ent noise induced by indoor obstacles, and (2) they only occasionally
provide location estimates, namely when a WiFi-equipped device emits
a signal. To mitigate these two issues, we propose a novel Gaussian pro-
cess (GP) model for WiFi signal strength measurements. It allows for
simultaneous smoothing (increasing accuracy and precision of estima-
tors) and interpolation (enabling continuous sampling of location esti-
mates). Furthermore, simple and efficient smoothing methods for loca-
tion estimates are introduced to improve localization performance in real-
time settings. Experiments are conducted on two data sets from a large
real-world commercial indoor retail environment. Results demonstrate
that our approach provides significant improvements in terms of preci-
sion and accuracy with respect to unfiltered data. Ultimately, the GP
model realizes continuous location sampling with consistently high qual-
ity location estimates.

Keywords: Indoor positioning · Gaussian processes
Crowd flow analysis · Machine learning · WiFi

1 Introduction

The increasing popularity of wireless networks (WiFi) has greatly boosted both
commercial and academic interest in indoor positioning systems. Requiring no
specialized hardware, WiFi-based positioning systems utilize off-the-shelf wire-
less access points to determine the location of objects and people in indoor envi-
ronments using wireless signals, emitted by a multitude of electronic devices.
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This location information finds a broad range of applications, including in
robotics, indoor navigation systems, and facility management and planning in
retail stores, universities, airports, public buildings, etc. [12,13].

WiFi-based positioning systems use sensors to capture the signals transmit-
ted by WiFi-equipped devices such as smartphones and laptops. Since the signals
are attenuated (i.e., reduced in strength) as they travel through physical space,
a sensor close to a device emitting a signal will measure a higher signal strength
than a sensor farther away from the device. By combining measurements of the
same signal by different sensors, indoor positioning systems can approximate the
signal’s origin. Two broad groups of localization techniques exist: fingerprinting-
based and model-based methods. The former can be regarded as a form of super-
vised learning, where a model is trained to predict a device’s location based on
grouped signal strength measurements by passing it pairs of measurement groups
(sample features) and known locations (labels). Consequently, fingerprinting-
based methods require training data [5,24]. Model-based methods, on the other
hand, require no training data and rely on physical models for the propagation
of signals through space to determine the most likely location of the device [20].
They include lateration-based methods, which estimate the distance to multiple
sensors based on the received signal strengths and use regression methods to
determine the most likely position of the device.

The first concern with all of these approaches is the unpredictability of sig-
nal propagation through indoor environments. Static obstacles such as walls,
ceilings, and furniture attenuate the transmitted signal and prohibit the con-
struction of an accurate model for the received signal strength. Furthermore,
the refraction of signals by these obstacles leads to multiple observations of the
same signal by a single sensor, but at different signal strengths (the multipath
phenomenon, see [16]). Dynamic obstacles such as people further complicate
the process, as these cannot be modeled offline. The resulting observation noise
results in significant variance of location estimates in all existing approaches
[12]. The second problem encountered using these methods is that they can only
estimate the location of a device when it transmits a signal. In practice, signals
are transmitted infrequently and at irregular intervals, thus only allowing for
intermittent positioning.

Both of these problems form major hurdles in the application of WiFi-based
location analysis to real-world issues. With intermittent, inaccurate, and impre-
cise location estimates, any further data mining and analysis becomes exceed-
ingly difficult. In this paper, we propose a novel method to mitigate these issues.
We employ a nonparametric approach to approximate sensors’ received signal
strength distributions over time. For this, we use a Gaussian process (GP) model
to obtain an a posterior estimate and associated variance information of signal
strengths, which simultaneously allows us to resample from the distribution at
any timestamp, and to sample only measurements with sufficiently low variance.
The proposed approach can greatly enhance any model based on signal strengths.
In addition to the Gaussian process model, we also compare several smoothing
methods for location estimates. Ultimately, our main contribution is an accurate
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model that addresses each of the problems outlined above, reducing localization
noise and providing accurate location estimates at arbitrary time intervals.

The rest of the paper is structured as follows. First, related work is outlined
in Sect. 2. Section 3 gives a formal problem statement. Methods for smoothing
and interpolation and the proposed Gaussian process model are discussed in
Sects. 4 and 5. Experiments are covered in Sect. 6. Section 7 concludes.

2 Background and Related Work

Driven by the proliferation of WiFi-equipped devices, WiFi sensors have become
a popular choice for use in indoor positioning systems. Requiring no specialized
hardware, the accuracy of these approaches is generally in the range of 2 to
4 m [12]. This makes them a good candidate for indoor localization purposes in
many areas, including, among others, facility planning and indoor navigation.
In robotics, localization of robots in indoor spaces forms a key challenge [22].

Both physical models for signal propagation and machine learning methods
are broadly applied. The latter include methods based on traditional machine
learning techniques such as support vector machines and k-nearest neighbours
[12]. Notably, a Gaussian process model for generating a likelihood model of
signal strengths from location data is proposed in [5]. More recently, a neural
network approach was suggested by Zou et al. [24]. Such fingerprinting-based
models require training data to construct a prediction model, which has two
major drawbacks [14]. First, training data can be expensive to obtain: to con-
struct a proper localization model, training data consisting of signal strength
measurements and known device coordinates is required from locations through-
out the input space. Second, when extending a localization system to new envi-
ronments or with additional sensors, the system needs to be re-trained with
additional training data.

Approaches requiring no calibration data instead rely on physical models for
the propagation of signals through space, only requiring the locations of the
sensors to be known. They include approaches based on the measured angle
of the incoming signal (angle of arrival) and approaches based on the time a
signal takes to reach the sensor (time of flight) [8,15]. Furthermore, distance-
based models, localizing devices using a model of the propagation of signals
through space, are often used [10,23]. They exploit the fact that radio signals
reduce in strength as they propagate through space, utilizing lateration-based
techniques to find the most likely position of the device based on signal strength
measurements at multiple sensors. Lastly, approaches exist that require neither
training data nor knowledge about the environment (such as sensors locations).
These approaches, known as simultaneous localization and mapping (SLAM [22])
methods, simultaneously infer environment information and device locations.
Applications of this method using WiFi sensors include WiFi SLAM [4] and
distributed particle SLAM [2]. For an extensive review of WiFi-based positioning
systems and applications, we refer the reader to [3,8,12].

No single performance measure exists for evaluating localization quality, but
consensus exists in literature that both accuracy and precision are important.
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In [12] and [3], different performance criteria are discussed; we will use a sub-
set of these in our work. The main contribution of this paper is the proposi-
tion of a lateration-based model using Gaussian processes for signal strength
measurements, addressing the most important performance criteria of accuracy,
precision, and responsiveness simultaneously. Our approach enables high-quality
location estimates at arbitrary timestamps. To the best of our knowledge, this
is the first generic model for continuously estimating device locations.

3 Problem Statement

Our aim is to construct a (1) precise, (2) accurate, and (3) responsive (i.e.,
able to provide continuous location estimates) positioning system for indoor
environments where relatively few signal observations are present. Furthermore,
the method should be robust and cost-effective.

Assume we are provided with a set of n signal strength measurements X =
(x1, . . . ,xn) for a single device. Each measurement is generated by a device at
some unknown position. The vector xi consists of the observation timestamp, an
identifier of the sensor receiving the signal, the signal strength, and information
to uniquely identify the package transmitted by the device. Let dt denote the
position of the device at time t. Our objective, then, is to obtain a position
estimate d̂t for the device at any timestamp t based on the measurements X. We
wish to maximize the accuracy, i.e., minimize the distance between the expected
estimated location and the actual location, ||E[d̂t] − dt]||, where || · || denotes
the Euclidean norm. We also wish to maximize the precision, i.e., minimize
the expected squared distance between the estimated location and the mean
estimated location, E

[
||d̂t − E[d̂t]||2

]
.

Of course, we cannot evaluate the expected accuracy and precision. Instead,
we optimize the empirical accuracy and precision. Assume our calibration data
consists of observations of a device at c different known locations (p1, . . . ,pc).
Each set Cj then consists of the estimated device positions when the device was
at position pj . Let p̂j be the mean of the estimated positions for calibration
point j, i.e., p̂j = 1

|Cj |
∑

d̂∈Ci
d̂. The accuracy and precision are then calculated

as an average over the accuracy and precision at all calibration points.
The empirical accuracy (Acc) is calculated as the mean localization error,

Acc =
1
c

c∑
j=1

||p̂j − pj ||. (1)

The empirical precision (Prec) per calibration point is calculated as the mean
squared distance between the estimated location and the mean estimated loca-
tion. This yields, averaged over all calibration points,

Prec =
1
c

c∑
j=1

⎛
⎝ 1

|Cj |
∑

d̂∈Cj

||d̂ − p̂j ||2
⎞
⎠ . (2)
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4 Lateration-Based Positioning

WiFi-equipped devices emit radio signals when connected to an access point,
and when scanning for a known access point. Sensors can be utilized to listen
for these signals, recording the received signal strength. We henceforth refer to
this received package and the associated signal strength as a measurement. Our
approach combines measurements of a signal by different sensors to determine
its spatial origin. It requires no prior knowledge besides the sensor locations.

To localize a device, we need measurements of the same signal from multi-
ple sensors. Each transmitted package contains information, including the pack-
age’s sequence number and a device identifier, by which we can identify unique
packages received by multiple sensors. We henceforth refer to these groups of
measurements of the same package by different sensors as co-occurrences.

4.1 Localization Model

Having identified a co-occurence, we wish to translate this set of the package’s
signal strength measurements into an estimate of the transmitting device’s loca-
tion. We do so by modeling the propagation of the signal through space, and find-
ing the device coordinates and parameters that minimize the difference between
the modeled signal strengths and the observed signal strengths.

To model the propagation of a signal in space from a transmitting antenna to
a receiving antenna, we make use of the Friis transmission equation [6]. It defines
the relation between the transmitted signal strength Pt (from an antenna with
gain Gt), the received signal strength Pr (at an antenna with gain Gr), the
wavelength λ of the signal, and the distance R between the antennas. Antenna
gain is a measure for the efficiency of the antenna, and is constant for each
antenna. Using the dBm unit for the signal strengths, we calculate Pr by

Pr = Pt + Gt + Gr + 20 · log
(

λ

4πR

)
, (3)

where log(·) denotes the logarithm with base 10. Equation 3 is premised on the
assumption that the path between the two antennas is unobstructed (the free
space assumption). This assumption is captured in the last term of the equation,
which is the logarithm of the inverse of what is known as the free-space path loss
(4πR

λ )2 (also known as the free-space loss factor [1]). However, in most real-world
indoor environments, we cannot assume free space. To combat this problem, we
make use of an empirically derived formula for modeling propagation loss from
[9]. It introduces the path loss exponent n as the exponent in the fraction of
the path loss equation. For free-space environments, n = 2, yielding the original
transmission equation. For environments with obstructions, generally n > 2 [18].
We introduce a method for estimating n in Sect. 4.2. We note that, by using
a physical model for estimating device locations based on measurements, our
lateration-based method does not require an expensive training phase. Further
motivation for using lateration-based methods over fingerprinting-based methods
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can be found in the fact that, unlike in most machine learning problems, the true
model generating our observations is known (up to corrections for the multipath
phenomenon). This valuable prior knowledge is discarded in most fingerprinting-
based methods.

Given the signal strength model, we formulate the localization problem as
a regression problem, minimizing the sum of squared differences between the
measured signal strength, and the signal strength obtained when calculating Pr

from the Friis transmission equation using our estimated location parameters.
Assuming i.i.d. measurements with additive Gaussian noise, this corresponds to
the maximum likelihood estimator. We define the model for the transmission
strength based on the Friis transmission equation from Eq. 3 and incorporate
sensor i’s path loss exponent ni, rewriting it for a single sensor as:

Pr = Pt + Gt + Gr + ni · 10 · log
(

λ

4πRi

)

= Pt + Gt + Gr + ni · 10 · log
(

λ

4π

)
− ni · 10 · log Ri

= ρ − ni · 10 · log Ri,

where ρ = Pt+Gt+Gr +ni ·10·log
(

λ
4π

)
is the bias term to be estimated, and the

path loss exponent ni is assumed known and constant. The model corresponds to
the transmission strength model defined in [9]. The resulting system of equations
is underdetermined in the general case where Gr is dependent on the sensor.
Thus, we assume that Gr is constant across all sensors, making the system
overdetermined. In our case, as all WiFi sensors are of the same type, this is
reasonable. Expressing Ri in terms of the sensor location vector s(i) = (s(i)x , s

(i)
y )T

and the device location estimate vector d = (dx, dy)T , we obtain our model:

fi(θ) ≡ fi(θ|s(i), ni) = ρ − ni · 10 · log ||s(i) − d||, (4)

where θ ≡ (ρ, dx, dy)T are the parameters to be estimated. We are now in place
to define our loss function J :

J(θ) ≡ J(θ|s(1), . . . , s(N),n) =
N∑

i=1

(P (i)
r − fi(θ))2, (5)

where P
(i)
r is the measured signal strength at sensor i. We wish to minimize this

function, i.e., we want to find θ̂ ∈ arg minθ J(θ). The loss function is nonconvex,
and has no closed-form solution. Therefore, we make use of Newton’s method,
which iteratively minimizes the loss function using the update rule θt+1 = θt −
f ′(θt)
f ′′(θt)

for determining the set of parameters θ at iteration (t + 1). The initial
state can be chosen in several ways, e.g., by taking the weighted mean position
of all sensors that received the signal.

The positioning procedure described thus far localizes each co-occurrence
independently, without taking into account previous or future estimated device
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positions. In other words, it assumes the locations over time for a single device
are independent. Furthermore, it is premised on the assumption that the signal
propagates through free space, which does not generally hold. In the remainder
of this section, we propose several methods to overcome these shortcomings and
improve the quality of fits in the sense of the outlined performance criteria.

4.2 Estimating the Path Loss Exponent

The general Friis transmission equation is premised on the assumption that the
radio signal propagates through free space, which is generally not the case in
indoor environments. To combat this, [9] proposes an empirical adjustment to
the model, introducing path loss exponent n in the Friis transmission equation,
where n grows as the free-space assumption is relaxed.

Considering Eq. 4, we see that the received signal strength can be rewritten
as Pr = ρ − nx, where x = 10 · log(R). As all parameters in ρ are assumed to be
constant with respect to R, Pr is linear in log(R). Now, using calibration data
for which R, the distance between device and sensor, and Pr, the received signal
strength at the sensor, are known, we can apply linear regression to estimate ρ
and n. Having estimated path loss exponent n, we can use it in our model to
account for attenuation effects induced by the surroundings.

4.3 Smoothing and Filtering Fits

Another improvement on fit quality, in the sense of in particular precision,
but also accuracy, can be achieved by exploiting the knowledge that, during
short periods of time, the position of a device is not expected to change signifi-
cantly. This opens up the possibility of simply smoothing the estimated locations
through time. Here, we outline the most common smoothing and filtering meth-
ods, which can be applied to the estimated x- and y-coordinates individually.

First, we consider using the exponential moving average (EMA) [7]. Due to its
O(1) complexity in smoothing a single data point, and because it only depends
on previous observations, it is a good candidate for systems requiring large-scale
and real-time localization. In its simplest form, the EMA assumes evenly spaced
events, and calculates the smoothed value x′

i at step i as a weighted average
of x′

i−1, the smoothed value at step i − 1, and xi, the unsmoothed input value.
Using α to control the amount of smoothing, we obtain x′

i = xi ·α+x′
i−1 ·(1−α).

Second, we consider Gaussian smoothing [21], which can be seen as the con-
volution of the signal with a Gaussian kernel. Like EMA, the filter generally
assumes evenly spaced observations. However, by adjusting the weighting of each
sample based on its observation timestamp, we can apply it to non-evenly-spaced
observations as well. In discrete space, we calculate the smoothed value x′

i as
the weighted average of all observations, where the weight of xj is dependent on
the time difference between observations j and i. Denoting n as the number of
observations and ti as the observation timestamp of sample i, we write

x′
i =

∑n
j=1 wjxj∑n

j=1 wj
, where wj =

1√
2πσ2

exp
(

− 1
2σ2

(tj − ti)2
)

. (6)
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Thus, the filter simply smooths the locations’ x- and y-coordinates. Theoret-
ically, the filter has time complexity O(n) for a single observation, but this can
be reduced to O(1) for observations sorted by timestamp. As a large part of a
Gaussian’s density is concentrated close to its mean, we can simply use a small
central section of the Gaussian without expecting significant changes in results.

Third, we consider a more sophisticated smoothing approach: the Savitzky-
Golay filter [19], which smooths values by fitting a low-degree polynomial (cen-
tered around the observation to be smoothed) to the observed values in their
vicinity. It then predicts the smoothed value at time t by evaluating the fit-
ted polynomial function at its center. This corresponds to the bias term in the
fitted polynomial. Each observation is smoothed independently, and makes use
of the observations within some pre-specified window around the observation
to be smoothed. For evenly spaced observations, an analytical solution exists;
numerical methods are required for our non-evenly-spaced observations.

5 Gaussian Processes for Measurement Resampling

Smoothing and filtering approaches address the first of the two most significant
problems of WiFi-based indoor localization: they improve accuracy and preci-
sion. However, they do not tackle the second problem, concerning the scarcity
of measurements. We introduce a method to address both of the issues simulta-
neously, allowing arbitrary resampling of measurements while limiting variance.

Our method generates a model for the signal strengths measured by the
sensors for a single device, and then resamples signals from this model. The
model is constructed by means of a Gaussian process, making use of the fact
that the signal of a device as measured by a sensor is expected to vary only
slightly over small time intervals. Resampling facilitates the construction of new
measurements at arbitrary timestamps, and reduces variance in signal strengths
at the same time, by interpolating between signals received from the device
around the requested timestamp. Before continuing to the implementation of
this method, we provide a brief explanation of Gaussian processes; for details on
prediction with Gaussian processes, we refer the reader to [17].

5.1 Gaussian Processes

Assume that we have a data set consisting of n observations, and that each
observation is in R

d. We denote D = (xi, yi)n
i=1, where xi ∈ R

d and yi ∈ R denote
the feature vector and the target value, respectively, for the ith data point. The
observations are drawn i.i.d. from some unknown distribution specified by

yi = f(xi) + εi, (7)

where εi is a Gaussian distributed noise variable with 0 mean and variance σ2
i .

Since we want to predict a target value for previously unseen inputs, our
objective is to find a function f̂ that models f . A Gaussian process estimates
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the posterior distribution over f based on the data. A model is sought that finds
a compromise between fitting the input data well, and adhering to some prior
preference about the shape of the model. This prior preference touches on a
fundamental concept in Gaussian processes: they are based on the assumption
that some similarity measure between two inputs exists that defines the corre-
lation between their target values based on their input values. More formally,
it requires a kernel function k(x,x′) to be specified that defines the correlation
between any pair of inputs x and x′. Furthermore, a Gaussian process requires
a prior mean μ (usually 0) and variance σ2 (chosen to reflect the uncertainty in
the observations).

5.2 A Gaussian Process Model for Signal Strength Measurements

We propose a method for modeling the signal strength over time for a single
device and a single sensor. We assume that each measurement consists of at
least a timestamp, the measured signal strength, and information to uniquely
identify the co-occurence (see Sect. 4), the device, and the sensor. In our model,
we instantiate a single Gaussian process with one-dimensional feature vectors
for each sensor to model the development of the signal over time. We will later
elaborate on possibilities to extend this model to include additional information.

For our GP models, we propose using the exponential kernel or a similar
kernel that exploits the fact that signal strengths vary relatively little over time.
The measurements variance σ2 should be chosen based on prior knowledge from
the calibration data, and should reflect the observed variance in signal strength
measurements. An important aspect of the GP is that it includes approximations
of the variance on the posterior distribution. Consequently, we can reason about
the certainty of our prediction at a specific timestamp. We exploit this knowledge
in sampling from our signal strength distributions, discarding timestamps where
the variance exceeds a predetermined upper bound. By sampling measurements
for multiple sensors at the same timestamp, we can generate new co-occurences
at arbitrary timestamps, provided that the variance is below our prespecified
threshold. The latter reveals the true power of the GP model: resampling means
that we are much less affected by the intermittence in the transmittal of signals
by devices. Furthermore, we have estimates of the quality of the measurements,
and we can vary in the trade-off between the number of measurements to gen-
erate, and their quality. We note that this capability is not natively present in
existing techniques, even in those that are based on Gaussian processes: their
models output device locations independently based on given measurements.

Figure 1 displays an example, where we apply the Gaussian process model to
measurements of a device from a single sensor. We use data of a person carrying
a device along a predefined path in a store over a time period of 15 min. We
fit a Gaussian process model with an exponential kernel to these measurements,
optimizing the hyperparameters 	 and σ2 using the Limited-memory BFGS algo-
rithm [11]. The resulting mean estimate and 95% confidence interval are plotted
in Fig. 1. As can be seen from this image, the posterior variance decreases in
regions where many observations are present. This makes sense, considering we
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Fig. 1. Gaussian process model applied to a single sensor’s signal measurements.

assume additive Gaussian noise: when multiple measurements are made in a
small time range, we can more accurately estimate the target value for that
time. Resampling the mean, i.e., maximum-likelihood prediction of the obtained
distribution, we can generate arbitrarily many new measurements. Using a fixed
upper bound on the variance at which to resample points allows us to quantify
the quality of the obtained measurements.

An additional advantage of Gaussian processes is that we can incorporate
additional information about the measurements in our kernel function k. For
instance, we can amend the feature vectors to include the sensors’ x- and y-
coordinates, and make use of the fact that nearby sensors should obtain similar
signal strength measurements for the same device at nearby timestamps.

6 Experiments and Results

We are now ready to evaluate the performance of our localization algorithm and
the various suggested improvements. Our two experimental setups, data sets,
and methods of comparison to baseline approaches are described in Sect. 6.1.
We first optimize the path loss exponent hyperparameter in Sect. 6.2. Based
on these experiments, we evaluate the smoothing approaches and our proposed
Gaussian process model in Sects. 6.3 and 6.4, respectively.

6.1 Experimental Setup

Our experiments were conducted in an 84 × 110 m indoor retail environment.
A total of 85 sensors were positioned throughout a single floor of the store at
irregular locations, at around 3 m above ground level. The sensors, off-the-shelf
WiFi access points, report integer dBm signal strengths. A multitude of obstacles
were present, including furniture and walls.

The Gaussian process model generates new measurements by sampling from
the modeled signal strength distributions for all sensors at regular intervals,
discarding measurements with variance exceeding a certain threshold. We set
this threshold such that it is just below the observation noise passed to the
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model. This way, we essentially require a significant contribution from multiple
nearby measurements to generate a measurement at a specific timestamp: if only
a single measurement is near the input timestamp, the estimated variance will
be close to the observation noise, and thereby above our variance threshold.
However, it is possible to adjust this threshold to balance measurement quality
and quantity.

Table 1. Properties of fixed calibration and visitor path data sets.

Data set # Measurements # Fits Time span

Fixed 107 751 3170 90.3 min

Visitor path 202 528 9004 248.8 min

Two data sets, listed in Table 1, were used. The fixed calibration data set was
constructed by positioning a device at several fixed, known locations through-
out the store, and emitting packages for a known amount of time. The path
travelled was approximately 500 m long. A person carrying the device moved
at roughly 1.4 ms−1, and traversed the path a total of 22 times. Close to 6,000
packages were received from this device during the evaluated time period. The
positioning system’s accuracy and precision can be evaluated by comparing the
estimated locations to the real locations. This corresponds with most well-known
experimental setups from literature [12]. The second visitor path data set was
constructed by moving a device along the same known path through the envi-
ronment several times in a row. The path travelled by the device is unique and
known, but the associated timestamps (where the device was at what time) are
not. Thus, we cannot evaluate accuracy and precision in the same way as with
fixed calibration data. Instead, we rely on the shortest distance to the path, i.e.,
the length of the shortest line segment from the estimated location to the known
path, referred to as distance of closest approach, or DOCA.

As data sets used in indoor localization and implementations of indoor local-
ization methods are generally not open-source, we compare our methods to a
baseline, namely the lateration-based model applied to the raw co-occurrences
of measurements. The performance of this baseline corresponds with empirical
results from other studies using similar methods [3].

6.2 Results: Path Loss Exponent

We estimate the path loss exponent (see Sect. 4.2) using the fixed calibration
data. The true distance between device and sensor is combined with the received
signal strength in a linear regression model. We apply the approach to estimate
the path loss exponent globally, using 65 000 measurements with 81 unique sen-
sors. The regression yields a path loss exponent of approximately 2.48 with an R2

coefficient of 0.38. We validate this result by comparing predictor accuracy and
precision using different path loss exponents. Figure 2a shows the mean of the
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distances to the calibration points, and the distance variance, for different path
loss exponent values. Path loss exponent 2.0 (solid, black line) corresponds to
the original localization model (which assumes free space), whereas the dashed
black line corresponds to the path loss exponent calculated based on the linear
regression model. The figure shows that the accuracy of the calculated expo-
nent (2.48) is very close to that of the empirical optimum; the variance, however,
is slightly higher. Precision is relatively constant for n ∈ [2.0, 2.5], and accuracy
only marginally improves with an adjusted path loss exponent.

(a) Results of path loss exponent experi-
ments.

(b) DOCA and DOCA variance for varying
sample counts in GP model.

Fig. 2. Result diagrams for experiments in Sects. 6.2 and 6.4.

6.3 Results: Smoothing and Filtering

Our smoothing and filtering approaches, introduced in Sect. 4.3, attempt to
improve localization accuracy and precision by averaging the estimated x- and
y-coordinates over small time periods. All experiments were conducted using the
path loss exponent estimated in Sect. 6.2. Based on empirical experiments with
multiple hyperparameter combinations, hyperparameters of the smoothing and
filtering algorithms were set:

– Exponential Moving Average: a constant smoothing factor α was used,
with α = 0.5. Experiments were conducted with α ∈ [0.1, 0.9].

– Gaussian smoothing: a Gaussian with standard deviation σ = 5000 ms was
used. We experimented with σ ∈ [1000, 20000].

– Savitzky-Golay filtering: a third-degree polynomial was fitted to a window
of 50 s centered around the data point to be smoothed. Experiments with
polynomials of degree 2 and 4 demonstrated inferior performance.

Results are shown in Table 2, demonstrating how, on the fixed position cal-
ibration data, all smoothing methods vastly outperformed the baseline. The
average distance between the mean estimated location and the true location was
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reduced by 37%. Gaussian smoothing outperformed both EMA and Savitzky-
Golay filtering, but the differences in accuracy were minimal. All smoothing
methods show a significant improvement in precision (variance was reduced by
75% for Gaussian smoothing), which is expected as they generally shift estimates
towards the mean.

Table 2. Smoothing and filtering results on fixed and visitor path data set. Results
are in meters.

Method Fixed data Visitor path data

Accuracy Precision DOCA Variance

Unfiltered 3.44 6.01 2.08 5.65

EMA 2.26 1.75 1.90 1.81

Savitzky-Golay 2.29 2.12 1.66 1.44

Gaussian smoothing 2.17 1.49 1.42 1.18

For the visitor path data set, we note from Table 2 that the DOCA (see
Sect. 6.1) forms a lower bound on the distance between the estimated location
and the actual location. This results from the fact that each actual location
is on the path, but it is unclear where on the path the device was located at a
given timestamp. Especially for methods with a higher deviation from the actual
location, this improves observed performance, as a significantly misestimated
location can still have a small DOCA when it is close to another path segment.

In general, the visitor path test results are in conformity with the fixed
calibration test results. Every smoothing and filtering approach substantially
improves on the baseline accuracy, and Gaussian smoothing outperforms the
other two smoothing approaches. A decrease of 32% in mean DOCA relative to
the baseline method was attained, and variance was significantly reduced. To
visualize the effect smoothing has on our original location estimates, we include
a visualization of the location estimates of a single traversal of the path. The
actual path, the originally estimated path, and the smoothed path (using Gaus-
sian smoothing) are depicted in Fig. 3a. This visualization shows the noisy nature
of the original estimates, and the extent to which smoothing ensures that the
estimated path corresponds with the actual path followed.

6.4 Results: Gaussian Process Measurement Resampling

Lastly, we consider the Gaussian process measurement resampling model intro-
duced in Sect. 5, operating on the raw measurements obtained by the sensors.
Because it outputs location estimates based on newly generated measurements
sampled from this model, both the number of location estimates and their times-
tamps differ between the Gaussian process model and the smoothing approaches.
To still allow for a comparison between the results of the other approaches and
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(a) Gaussian smoothing. (b) Gaussian process.

Fig. 3. Result diagrams for experiments in Sect. 6.

the measurement resampling model, we choose the sampling interval (the time
between potential measurements to be sampled) such that the number of result-
ing location estimates roughly corresponds to the number of location estimates
for the raw measurements. The results of the Gaussian process model on the
fixed and visitor path data sets are listed in comparison to the original model
and the Gaussian smoothing model in Table 3. The number of location estimates
is listed alongside the performance metrics.

Table 3. Gaussian process measurement resampling results on fixed and visitor path
data set. Results are in meters.

Method Fixed data Path data

# Fits Accuracy Precision # Fits DOCA Variance

Unfiltered 3170 3.44 6.01 9004 2.08 5.65

Gaussian smoothing 3170 2.17 1.49 9004 1.42 1.18

Gaussian process 3463 2.16 1.76 9095 1.54 1.50

The model is able to greatly improve the quality of location estimates when
compared to the unfiltered estimates: on the fixed calibration data, accuracy
improved from 3.44 m to 2.16 m, and precision improved from 6.01 m to 1.76 m.
On the visitor path data, DOCA decreased from 2.08 m to 1.54 m, and the
variance in DOCA decreased from 5.65 m to 1.50 m. As such, the observed
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performance of the Gaussian process measurements resampling model is gen-
erally similar to the performance measured using the top-performing smoothing
method (Gaussian smoothing). The similarity in performance of these two differ-
ent approaches is remarkable, as the smoothing model operates on the location
estimates, whereas the Gaussian process model operates on the signal strength
measurements. As can be expected, the Gaussian process model achieves less
variance reduction than the Gaussian smoothing approach. This can be explained
by the fact that the Gaussian smoothing approach operates on the location esti-
mates, thereby directly impacting the precision performance criterion.

In general, our results show that the Gaussian process model is able to signif-
icantly improve localization accuracy and precision. However, its true advantage
surfaces when considering the responsiveness performance criterion: the Gaus-
sian process model allows for arbitrary resampling, meaning that we can generate
arbitrarily many measurements. We investigate this property further by evaluat-
ing the effect the number of potential sampling points has on the accuracy and
precision of the location estimates. To this end, we sample at different numbers
of equally spaced intervals over a time period of approximately 45 min, during
which the path was traversed 5 times. In Fig. 2b, the tradeoff between the num-
ber of resulting location estimates and accuracy and precision is depicted. The
accuracy remains constant, and the precision converges as the number of samples
increases, substantiating the claim that the number of location estimates can be
increased arbitrarily, without significantly impacting performance.

A visualization of the path estimated by the GP model when using an exceed-
ingly large number of location estimates is provided in Fig. 3b. Here, the baseline
model from Fig. 3a is compared with a Gaussian process model where approxi-
mately 3 times as many points were sampled. The figure highlights the ability
of the Gaussian process to provide location estimates at points in time where,
previously, no location estimates were possible.

7 Conclusion and Future Work

In this paper, we have presented a novel method for continuously estimating
device positions in indoor environments based on intermittent WiFi signals.
Using a Gaussian process model for signal strength measurements at WiFi sen-
sors, we realized continuous location estimation, while also significantly improv-
ing estimation accuracy and precision. Moreover, we have investigated several
smoothing approaches for indoor positioning systems, which improve accuracy
and precision to a similar degree, bypassing the computational costs of Gaussian
processes. On our validation set of known, fixed device positions, our algorithms
improved localization accuracy from 3.44 m to 2.17 m and precision from 6.01 m
to 1.49 m. Performance on the visitor path data set of movements along a known
path also significantly improved: the mean distance to the true path was reduced
from 2.08 m to 1.42 m, and the distance variance was reduced from 5.65 m to
1.18 m. These results accomplish the goals set out in Sect. 1: an accurate, precise
location estimator that is able to sample locations at arbitrary timestamps.
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Further research opportunities and novel applications are manifold. The
results pave the way for significant improvements in dwell-time analysis, visitor
tracking, and other major application areas. In future work we aim to derive
movement patterns of visitors through time. Such approaches could also be
used to automatically infer layouts of indoor environments, identifying obsta-
cles, paths, and open space based on the shape of the estimated movement
distributions.
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