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Abstract. Nowadays, the increasing car accidents ask for the better
driver behavior analysis and risk assessment for travel safety, auto insur-
ance pricing and smart city applications. Traditional approaches largely
use GPS data to assess drivers. However, it is difficult to fine-grained
assess the time-varying driving behaviors. In this paper, we employ
the increasingly popular On-Board Diagnostic (OBD) equipment, which
measures semantic-rich vehicle information, to extract detailed trajec-
tory and behavior data for analysis. We propose PBE system, which con-
sists of Trajectory Profiling Model (PM), Driver Behavior Model (BM)
and Risk Evaluation Model (EM). PM profiles trajectories for reminding
drivers of danger in real-time. The labeled trajectories can be utilized to
boost the training of BM and EM for driver risk assessment when data
is incomplete. BM evaluates the driving risk using fine-grained driving
behaviors on a trajectory level. Its output incorporated with the time-
varying pattern, is combined with the driver-level demographic informa-
tion for the final driver risk assessment in EM. Meanwhile, the whole PBE

system also considers the real-world cost-sensitive application scenarios.
Extensive experiments on the real-world dataset demonstrate that the
performance of PBE in risk assessment outperforms the traditional sys-
tems by at least 21%.
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1 Introduction

Nowadays, the number of traffic accidents increases rapidly every year [6,16].
Meanwhile, researchers have found that the driver behavioral errors caused more
than 90% of the crash accidents [13], served as the most critical factor leading
to the crash accidents. Therefore, how to effectively analyze the driver behavior
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and assess the driver risk plays a significant role in travel safety, auto insurance
pricing and smart city applications.

In the last decades, the significance of this task has led to numerous research
efforts [15,16]. Most of the previous work used GPS from vehicle [27], various
sensors (e.g., magnetic and accelerometer sensors) from smartphone [5] and cam-
eras [21] to collect data for analysis. Generally, when dealing with high-dimension
and heterogeneous data, these work usually fails to take the fine-grained driver
actions into consideration. Therefore, the prediction and evaluation of the driver
behavior is limited. Besides, most traditional work does not consider the time-
varying driving behaviors, making the driver risk assessment not sufficient.

To overcome the above drawbacks, we develop PBE system, which is able
to fine-grained analyze the driving behavior based on the increasingly popular
On-Board Diagnostic (OBD) equipments1. Each vehicle in our experiment is
integrated with such an OBD device. So we have not only GPS-related infor-
mation, but also semantic-rich vehicle information including engine speed and
so on. Some recent work [6,20] also explores OBD. But, they usually focus on
each OBD data tuple not from the trajectory perspective, which can consider
the relationship among tuples and analyze from a global view for a better assess-
ment.

Our PBE system aims to build a 3-tier model: Trajectory Profiling Model
(PM), Driver Behavior Model (BM) and Risk Evaluation Model (EM). PM uti-
lizes our insight from the data (the alarm information of OBD) to predict the
trajectory class for profiling. It is able to remind drivers of danger in real-time.
Besides, the labeled trajectories can be utilized to boost the training of BM
and EM, when partial data is missing. BM evaluates the driving risk by fine-
grained behavioral information from the trajectory perspective. EM combines
the driver-level demographic information and BM’s trajectory-level evaluation,
to provide a comprehensive assessment for each driver to denote his/her risk.
Besides, the time-varying driving pattern is also incorporated in EM. Mean-
while, PBE fully employs a cost-sensitive setting to satisfy the real-world appli-
cation requirements, e.g., to lower the cost of misclassifying high risk as low risk
in the real-time alarming system and auto insurance pricing scenario.

Overall, the main contributions are listed as follows. (1) PBE builds a real-
time system via OBD device to remind drivers of danger. (2) Beyond fine-grained
trajectory profiling results, PBE integrates the time-varying patterns and driver-
level demographic information, to provide comprehensive evaluation scores for
drivers. (3) We deploy the cost-sensitive setting to provide the practical analy-
sis of drivers in the real-world application scenarios. (4) We perform extensive
experiments using real-world OBD data. The performance of PBE system in risk
assessment much better outperforms the traditional systems, by at least 21%.

1 https://en.wikipedia.org/wiki/On-board diagnostics.

https://en.wikipedia.org/wiki/On-board_diagnostics
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2 Related Work

The existing work usually used GPS [27] records of a vehicle to generate the
trajectory and mobility pattern for driver behavior analysis, due to the easy
accessibility of GPS [27]. However, it is hard for these work to capture fine-
grained driving actions. Besides, other work utilized smartphones (embedded
with GPS and inertial sensors) [14,23] and camera image information [21]. But,
some require the installation of external cameras in vehicles, which brings con-
cerns on cost and privacy. Alternatively, Chen et al. [6] used OBD data tuples
to judge the driving state. Furthermore, incorporated with OBD, Ruta et al.
[20] also used other kinds of data like map and weather information to infer
the potential risk factors. However, they mainly only emphasize on each data
tuple. Different from the previous work, via OBD, we extract the fine-grained
driving-action-related features to analyze drivers on a trajectory level.

Concerning the driver behavior analysis techniques, fuzzy logic [5,20] and sta-
tistical approaches [18] were explored. But, they need to manually set the rules.
Besides, Bayesian Network [26] and its variants (Hidden Markov Model (HMM)
[8,21], Dynamical Bayesian Network [1]) were used to find the inner relationship
between the driving style and sensor data for the driving behavior inference.
However, they have practical challenges due to the model complexity and the
required large amount of data. Additionally, some work used AdaBoost [6] and
Support Vector Machine [26] classifiers to determine the driving state. Although
they can achieve high precision sometimes, these work fails to consider the cost-
sensitive setting with the real-world application requirement. Meanwhile, tradi-
tional trajectory classification methods [2] mainly utilized HMM-based model,
which are difficult to capture the driver behaviors when encountering the fine-
grained multi-dimension data. On the other hand, time-series classification can
also be used to classify driving trajectories for the behavior pattern analysis, e.g.,
the 1-nearest neighbor classifier [24,25]. But, the trajectories in our applications
are quite different from time series with each point having multi-dimension points
rather than only real values. Unlike the mentioned approaches, PBE considers the
cost-sensitive setting and time-varying pattern, and analyzes comprehensively
from multiple perspectives of the trajectory and driver level.

3 Preliminary

3.1 Data Description

OBD is an advanced on-board equipment in vehicles to record data. Each OBD
data tuple x is defined as <ux, tx, lonx, latx, φx, ψx> where: (1) ux is the driver
identification; (2) tx is the data recording timestamp (in second); (3) lonx, latx
are the longitude and latitude location record where x is created; (4) φx (φx =
[vx, ax, ωx, Ωx]) is a four-dimensional vector representing the real-time physical
driving state of speed, acceleration, engine speed (Round Per Minutes (RPM))
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Table 1. Data description (the semantic driving state is set by domain experts).

Physical driving state Semantic driving state Description

Speed Vehicle speeding (vs) Speed higher than the road speed

limit after matching with road types

by GPS

Acceleration Abnormal acceleration (aa) Acceleration value ≥ 1.8m/s2

Abnormal deceleration (ad) Acceleration value ≤ −1.8m/s2

Engine speed Engine high RPM warning

(ehrw)

Engine speed higher than the default

upper engine speed of a vehicle

Abnormal engine speed

increase (aesi)

Engine speed increases sharply in a

short time

Vehicle angular velocity Sharp turn (st) Vehicle angular velocity ≥ 30Rad/s

Lane change (lc) 10Rad/s < vehicle angular

velocity < 30Rad/s

and vehicle angular velocity (Radian per second (Rad/s)); (5) ψx is a seven-
dimensional vector representing the semantic driving state to denote the real-
time warning message about the vehicle. It is derived from physical driving state,
where ψx = [vsx, aax, adx, ehrwx, aesix, stx, lcx] (More details are in Table 1 and
the value type is binary (i.e., 1 means driver u is in this driving state at time t,
and vice versa.). Besides, OBD can offer the crash alarm message to denote
whether the car is highly likely to have a crash accident or not2. Each data
tuple z is defined as <uz, tz, cz> where: (1) uz, tz are similar to aforementioned
identification ux and timestamp tx; (2) cz is the crash alarm. Like mentioned
ψx, cz also uses the binary value to denote the state.

Then, given a driver’s massive OBD driving data, we analyze a driver’s behav-
ior by trajectory [27] with the following definition:

Definition 1 (Trajectory). Given a driver’s physical driving state record
sequence S = x1x2 . . . xn and a time gap3 Δt, a subsequence S′ = xixi+1 . . . xi+k

is a trajectory of S if S′ satisfies: (1) vxi−1 = 0, vxi
> 0, vxi+k

> 0, vxi+k+1 = 0;
(2) if there exists a subsequence S′′ = xjxj+1 . . . xj+g ∈ S′, where for ∀0 ≤ q ≤
g, vxj+q

= 0, then, txj+g
− txj

≤ Δt; (3) there is no longer subsequences in S that
contain S′, and satisfy condition (1)(2).

A trajectory essentially leverages the speed and time constraints to extract
reliable record sequences in the huge-volume driving records for effective studies.

2 The OBD equipment made by JUWU IoT Technology Company (www.szjuwu.com)
is incorporated with multiple processing units and domain experts’ knowledge to
decide the crash alarm state upon receiving sensor data.

3 Four minutes is usually selected by domain experts for practical applications.

www.szjuwu.com
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Fig. 1. Architecture of PBE system.

3.2 Problem Formulation

Given a driver set U = {ui} and their historical OBD data X = {xi}, Z = {zi}:

(1) How to profile driving trajectories?
(2) Based on trajectories, how to model drivers’ driving risk?
(3) How to assess drivers as safe, risky or dangerous?

3.3 System Overview

In this subsection, we present PBE system as our solution to the problem. As
shown in Fig. 1, it consists of four major components: Preprocessor performs
preprocessing of OBD data, including generating trajectories, features and labels.
The labels come from the claimed insurance data and domain experts. Concern-
ing the correlation and causality to crash accidents, the generated features are
divided into trajectory indicator features and driver behavior features. Trajec-
tory indicator features are those trajectory variables (e.g., crash alarms) which
indicate a vehicle is apt to crash accidents. They have no interpretation for
the driving behavior. While, driver behavior features (e.g., abnormal acceler-
ations/decelerations) denote driving actions during a trajectory, served as the
possible reasons for crash accidents. Trajectory Profiling Model (PM) lever-
ages trajectory indicator features to predict the trajectory class quickly for real-
time alarming systems. When data is incomplete, PM’s predicted label is able to
give a boost for the latter training of BM and EM as a trajectory’s pseudo label.
Driver Behavior Model (BM) utilizes driver behavior features to model
driving risk for behavior analysis from the trajectory level. Finally, Risk Eval-
uation Model (EM) computes drivers’ risk evaluation scores considering both
the time-varying trajectory-level pattern and demographic information.

4 Preprocessor

Preprocessor takes OBD data as the input and performs the following tasks to
prepare the data for future processing:

Trajectory Generation reads a driver’s OBD records to generate trajecto-
ries according to Definition 1. The filtering of noisy data tuple is conducted with
a heuristic-based outlier detection method through speed information [27].
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Fig. 2. Trajectory amount
distribution.

Fig. 3. Trajectory
ratio distribution.

Fig. 4. Time-varying
pattern of driver’s
risk score.

Feature Construction computes features with a trajectory S (S =
x1x2 . . . xn):

(i) Trajectory Indicator Features: First, we utilize trajectory begin-
ning time tx1 and ending time txn

to query which crash alarm records exist
during the trajectory period, and construct the crash alarm record sequence
Z = z1z2 . . . zm. Then, we compute features: (1) trajectory’s running time
(txn

− tx1); (2) trajectory’s distance (
∑

1≤i≤n−1
1
2 (vxi

+ vxi+1)(txi+1 − txi
)); (3)

Crash Alarm Counts per trajectory (cac) cac =
∑

1≤i≤m 1(czi = 1) where 1(·)
is an indicator function.

(ii) Driver Behavior Features: Driver behavior features (πS , a eleven-
dimensional vector) is defined as <k, dscq> where:

(1) k =
∑

1≤i≤n−1
1
2 (kxi

+kxi+1 )(txi+1−txi
)

txn−tx1
, k ∈ {v, a, ω,Ω}, represents the aver-

age speed/acceleration/engine speed/vehicle angular velocity ;
(2) dscq =

∑
1≤i≤n 1(qxi

=1)

txn−tx1
, q ∈ {vs, aa, ad, erhw, aesi, st, lc}, is the Driving

State Count per unit of time for different semantic driving state q.
Trajectory Labeling sets the real-world ground truth label yS of trajectory
S by domain experts from insurance and transportation companies. There are
three-class labels: Safe Class (SC), Risky Class (RC) and Dangerous
Class (DC). Dangerous Class means the vehicle has crash accidents during the
trajectory period according to auto insurance accident records. For the remaining
trajectories with no accidents, domain experts judge them into Safe and Risky
Class according to the driving smoothness of each trajectory.

5 Trajectory Profiling Model (PM)

In this section, we first conduct data statistics about generated trajectories to
find data insights. Then based on the discovered insights, we develop two PMs
of decision stump and decision tree to predict a trajectory label for profiling.
Finally, we explain the PM boosting when data is incomplete.

5.1 Data Insight

After preprocessing, we count the trajectory amount distribution and the safe,
risky and dangerous trajectory ratio with different trajectory types (i.e., different
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Table 2. Cost matrix C.

Predict SC Predict RC Predict DC

Actual SC 0 C(SC,RC) C(SC,DC)

Actual RC C(RC,SC) 0 C(RC,DC)

Actual DC C(DC,SC) C(DC,RC) 0

crash alarm counts per trajectory). As shown in Figs. 2 and 3, when crash alarm
counts increase, the amount of the corresponding trajectory type decreases and
the dangerous ratio increases. Interestingly, we find that the trajectories in the
zero-crash-alarm-count type are all Safe Class. Furthermore, if a trajectory has
more than one crash alarm, it can only be Risky or Dangerous Class. The reason
may be that during the trajectory period, zero crash alarm means that the driver
is driving smoothly without any risk or danger, leading to Safe Class. While, the
generated crash alarm indicates the driver’s aggressive driving, which results in
a high probability of having crash accidents, lying in Risky or Dangerous Class.
Thus, based on theses observations, we develop an insight that crash alarm can
be a critical factor to predict a trajectory’s label, so that it can be utilized for
profiling trajectories in real-time.

5.2 Decision-Stump-Based Model

We first profile trajectories with only focusing on crash alarms (i.e., crash alarm
counts per trajectory feature cac). To this end, we develop Decision-stump-based
model to predict a trajectory S’s label. Detailedly, we set two thresholds θ1, θ2
to generate a trajectory S’s predicted label ŷS as: ŷS = {SC : if cac ≤ θ1;RC :
if θ1 < cac ≤ θ2;DC : Otherwise}.

To learn the parameters, we minimize a cost-sensitive objective function
C(θ1, θ2) with predicted label ŷS and actual label yS (ground truth label) by:

C(θ1, θ2) =
∑

S∈ all S

1(yS �= ŷS) · C(yS , ŷS), (1)

where C(i, j) is a cost matrix C (designed in Table 2). It means the cost that
class i is mislabeled as class j and i, j ∈ {SC,RC,DC}. The value of the cost
matrix is discussed in Sect. 8.6.
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5.3 Decision-Tree-Based Model

Besides crash alarms, we also consider other trajectory indicator features (i.e., a
trajectory’s running time and distance) for profiling. Due to multiple features, we
utilize decision tree rather than decision stump. The Classification and Regres-
sion Tree with Gini index is selected [4]. To achieve the cost-sensitive setting,
we do not prune the decision tree with the max depth [9].

5.4 PM Boosting

Considering the real-world scenarios, the collected data sometimes is incomplete,
e.g., labeled data missing in transmission or non-access to the private insurance
claim data. Under such condition of lacking ground truth label, we use PM’s
predicted label instead as a pseudo label to boost the training of BM and PM.

6 Driver Behavior Model (BM)

6.1 Problem Formulation

In this part, we start to model each driver’s driving behaviors from trajectories.
This problem aims to predict the probability (P k

S ) of a trajectory lying in safe,
risky or dangerous class given a trajectory S’s driver behavior feature πS as:

P k
S = P (yS = k|πS), k ∈ {SC,RC,DC}. (2)

This formulates the problem to a typical multi-class classification problem. Then,
we employ the popular Gradient Boost Machine (GBM) with tree classifier [7] as
the multi-class classifier (Open for other classifiers to plug in). However, different
from traditional GBM, we include the cost-sensitive setting for the practical
applications.

6.2 Cost-Sensitive Setting Design

Given the whole trajectory set Sall = {S1, S2, . . . SN}, we first build N ∗ 3 basic
regression tree classifiers. Each N classifiers classify Safe/Risky/Dangerous Class
respectively through One-vs-All strategy and output Jk

S to denote the score of
trajectory S belonging to class k. Then, with Softmax Function, we have trajec-
tory S’s risk probability P k

S = eJ
k
S/(eJ

SC
S + eJ

RC
S + eJ

DC
S ), k ∈ {SC,RC,DC}.

Importantly, during the process, to learn the parameters and achieve a cost-
sensitive purpose, we design and minimize the following objective function,
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Ψ = λ −
∑

S∈Sall

∑

k∈{SC,RC,DC}
lkSwk ln P k

S , (3)

where λ is the regularized parameter for all tree classifiers, lkS is a binary value for
selecting which P k

S to compute. Detailedly, if ground truth label yS = k, lkS = 1.
Otherwise, lkS = 0. wk is class k’s weight for the cost-sensitive setting, achieved
by multiplying different wk values (different priorities) with the corresponding
class k’s cross entropy. By default, we set weights by ratio as wSC : wRC : wDC =
C(SC,RC) : C(RC,SC) : C(DC,SC) from cost matrix C.

Then, for the iterative gradient tree boosting processing [7], the first and
second order approximations (i.e., gradient greds and Hessian matrix hessS)
are used to quickly optimize Ψ :

gredS =
∑

k∈{SC,RC,DC}

∂Ψ

∂Jk
S

=
∑

k∈{SC,RC,DC}
(P k

S − lkS)wk,

hessS =
∑

k∈{SC,RC,DC}

∂2Ψ

∂Jk
S

2 =
∑

k∈{SC,RC,DC}
2(1 − P k

S )P k
Swk.

(4)

7 Risk Evaluation Model (EM)

In this part, we first evaluate drivers from two perspectives: Mobility-aware from
trajectories and Demographic-aware from driving habits (driver level). Then, we
comprehensively consider the two evaluation scores and deploy the percentile
ranking for the driver assessment.

7.1 Mobility-Aware Evaluation

For a trajectory S, after BM processing, we have the probability
PSC
S , PRC

S , PDC
S . Then, we compute a trajectory S’s risk score, riskS by:

riskS = PSC
S dSC + PRC

S dRC + PDC
S dDC , (5)

where dSC/RC/DC is the risk level of probability P
SC/RC/DC
S . By default for

the cost-sensitive goal, we set dSC : dRC : dDC = C(SC,RC) : C(RC,SC) :
C(DC,SC) by ratio. Next, we generate driver u’s m-th week’s risk score riskm

u

with this week’s whole trajectory set ({S1, S2, . . . , SN}) by:

riskm
u =

1
N

∑

S∈{S1,S2,...,SN}
riskS . (6)

Thus, with driver u’s M -week OBD data, ru (ru = [risk1
u, risk2

u, . . . , riskM
u ])

denotes the risk score sequence. By generating and plotting the whole drivers’
risk score sequences in Fig. 4, we find three typical time-varying patterns over
time (i.e., increasing/stable/decreasing). Therefore, when rating drivers, it is
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Table 3. Demographic-aware variable (habit) description. (Set by domain experts)

Group Variable (per month) Variable description

Time of day Daytime hours ratio Fraction between 8 a.m. to 8 p.m.

Nighttime hours ratio Fraction between 8 p.m. to 8 a.m.

Day of week Weekday hours ratio Fraction between Monday to Friday

Weekend hours ratio Fraction between Saturday to Sunday

Road type Urban roads hours ratio Fraction on urban roads

Highway hours ratio Fraction on highways

Extra-urban hours ratio Fraction on extra-urbans (countryside)

Mileage Mileage per month Overall exposure 30-day average

necessary to pay more attention to the present than the past. Then, we employ
a Linear Weight Vector w (|w| = M,wi = i) to compute driver u’s time-varying
Mobility-aware evaluation score EvalMob

u by: (Note that, concerning different
time-varying patterns, open for other weight vectors to plug in)

EvalMob
u =

1
|w|w

Tru. (7)

7.2 Demographic-Aware Evaluation

We can also evaluate drivers by driving habits like the nighttime/daytime
driving hours fraction per month (More driving habits in Table 3). On the
other hand, viewing drivers’ past τ -month trajectory data, according to domain
experts (τ = 6 for half of a year), there are three types of drivers: Accident-
Involved (AI) (having more than two dangerous trajectories), Accident-
Related (AR) (having less than one dangerous trajectory but more than fifteen
risky trajectories), Accident-Free (AF) (the remaining). Based on these, our
Demographic-aware evaluation problem aims to predict driver u’s probability
(P k

u , k ∈ {AI,AR,AF}) of lying in AI, AR and AF by utilizing the driving
habit variables.

Similar to BM, this problem also leads to a cost-sensitive multi-class clas-
sification task. After employing similar cost-sensitive solutions in BM (Due to
space limit, we omit to present again), for driver u, we generate the probability of
PAI
u , PAR

u , PAF
u . Then, we have Demographic-aware evaluation score EvalDem

u

as:
EvalDem

u = PAI
u mAI + PAR

u mAR + PAF
u mAF , (8)

where mAI/AR/AF is the risk level of probability P
AI/AR/AF
u and we set mAF :

mAR : mAI = C(SC,RC) : C(RC,SC) : C(DC,SC), similar to Eq. 5.
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Fig. 5. PM grid search
cost.

Fig. 6. PM
comparison.

Fig. 7. BM
comparison.

7.3 Driver Evaluation

Finally, for driver u, we sum the two scores as a driver evaluation score Evalu:

Evalu = αEvalMob
u + βEvalDem

u , (9)

where EvalMob
u , EvalDem

u are normalized due to their different value ranges and
α, β are weight parameters to indicate the significance/priority of corresponding
evaluation score. The higher value leads to the higher importance. Generally, we
set α = β = 1

2 to denote the equal significance in evaluating a driver (Flexible
for other preferences to plug in for different user requirements). Finally, Evalu
suggests a comprehensive risk score of driver u. The higher the score is, the more
risky the driver is.

After generating all drivers’ evaluation scores, we deploy the percentile rank-
ing4 to assess the drivers. According to domain experts’ knowledge, 20% drivers
can cause 80% crash accidents. Then, we set the percentile 80% drivers as the
Dangerous Drivers. Among the rest drivers, usually 20% drivers are risky. Moti-
vated by this, we set 80% percentile as the Risky Drivers and the final remaining
as Safe Drivers (Available for other percentiles to plug in). Finally, by this set-
ting, we can obtain two evaluation scores as thresholds to quickly assess a driver
as safe, risky or dangerous.

8 Experiment

8.1 Setting and Dataset

During the experiments, we generated the equal number of trajectories in each
class by resampling to balance the data. Besides, the 10-fold cross validation
was conducted to present robust results. The real-world dataset collected drivers’
OBD data from August 22, 2016 to March 27, 2017 for nearly 30 weeks, provided
by a major OBD product company in China. After preprocessing, we have basic
data statistics: 198 drivers, 98, 218 trajectories (Safe 91, 687, Risky 5, 853 and
Dangerous 678), average trajectory time of 25.22 min and distance of 12.95 km.

4 https://en.wikipedia.org/wiki/Percentile rank.

https://en.wikipedia.org/wiki/Percentile_rank
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Table 4. BM feature performance study.

Experiment setting

Column ID (COL. ID) 1 2 3 4 5 6 7 8

Feature∗ Speed+ � � � � � � � �
Acceleration+ � � � �
Engine Speed+ � � � �
Vehicle Angular

Velocity+

� � � �

Metrics Precision (%) 49 61 53 60 62 64 62 69

Recall (%) 48 58 53 57 61 62 62 70

F1 score (%) 49 57 53 56 61 61 62 69

Cost ratio (%) 100 91 69 99 73 86 75 63
∗Feature+ means the physical driving state
feature plus its corresponding semantic
driving state features (E.g., Speed+ means
Speed plus Vehicle Speeding in Table 1).

Fig. 8. BM feature significance.

8.2 Trajectory Profiling Model (PM) Evaluation

In this part, we first employ the grid search to find the optimal θ∗
1 , θ

∗
2 in Decision-

Stump-based model (DS) with the minimal cost-sensitive objective in Sect. 5.2.
Then, we utilize the optimal DS and Decision-Tree-based model (DT) to pro-
file trajectories, by predicting a trajectory’s label through trajectory indicator
features (i.e., crash alarm counts, distance and running time information).

After the grid search, as shown in Fig. 5 (Where cost is divided by its maximal
cost as a ratio), we have the optimal thresholds of θ∗

1 = 0, θ∗
2 = 5. Explicitly,

θ∗
1 = 0 means if a trajectory has no crash alarm records, it is Safe. It is consistent

with the trajectory data statistics (Sect. 5.1). Besides, θ∗
2 = 5 denotes that if

OBD generates crash alarm records during a trajectory, the crash alarm count
of five is used to quickly judge whether the trajectory is Risky or Dangerous, for
sending timely messages to drivers and reminding them of danger.

Figure 6 shows results for profiling trajectories in metrics of Precision, Recall,
F1 score, as well as the cost (i.e., the misclassification cost in Eq. 1). We see that
DT gets Precision, Recall and F1 score, close to 0.9, with the lowest cost. It
outperforms the compared methods of multi-class Logistic Regression (LR) [10],
Trajectory Clustering (TC) [11,12] and robust cost-sensitive Naive Bayes (NB)
[9]. Furthermore, we also compare our two profiling models of DT and DS. As
shown, DT is much better than DS. The reason may be that DT uses more
rules (i.e., the higher depth in tree) and more features to sufficiently judge a
trajectory’s label, even in complex conditions. However, DS can quickly judge
by only using one feature. According to the positive feedbacks from domain
experts, DS is much easier to be implemented in current OBD device and has a
great potential in real-time driving alarming systems with the easiest portability.
Therefore, both DT and DS have their own advantages and suitable application
scenarios. When users prefer the better performance, they may choose DT. For
example, in PM boosting, by default, the predicted label is generated from DT.
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Otherwise, if they want to quickly obtain results, DS is a good choice. The
impact of the cost-sensitive setting. By examining the results of DS and
Pure Decision-Stump-based model (P-DS), which removes the cost-sensitive set-
ting when learning parameters, we find DS performs better with higher Recall
and F1 score than P-DS. It validates the effectiveness of the cost-sensitive setting
in the real-world application scenario to retrieve more risky/dangerous trajecto-
ries for higher Recall and F1 score.

8.3 Driver Behavior Model (BM) Evaluation

To evaluate BM, alternatively, we perform the formulated classification task
(Sect. 6.1). We set the following compared methods: Logistic Regression (LR), Tra-
jectory Clustering (TC), Support Vector Machine (SVM) [17], Bayesian Network
(BN) [22] and Pure-BM (P-BM) where we remove BM’s cost-sensitive setting.

The experiment result is shown in Fig. 7. It is observed that, BM has high
Precision, Recall and F1 score close to 80% and the lowest cost. It beats SVM,
LR, BN and TC in all metrics. This means that in our application, BM is more
suitable to process the high-dimension trajectory feature data for the multi-class
classification task. But, as mentioned before in Sect. 6.1, BM is open for other
classifiers to plug in. The impact of the cost-sensitive setting. Compared
to P-BM, BM outperforms in Recall and F1 score about 8% improvement with
27.70% lower cost. The reason may be that BM’s cost-sensitive setting guides
BM to give more priority to more risky classes like Risky and Dangerous class.
This leads to the final prediction of Risky and Dangerous class more accurate
than Safe class with higher Recall/F1 and lower cost. The impact of feature
(feature performance study). We also test the effects of the driving behavior
features under various feature combinations. The result is shown in Table 4.

It is observed that: (1) Compared to traditional GPS-related Speed+ fea-
tures, adding any unique OBD-related feature like Acceleration+, Engine
Speed+ and Vehicle Angular Velocity+ can improve the performance with higher
Precision, Recall, F1 score and lower cost (See COL. 1 vs. COL. 2−8). It is natu-
ral to understand it because with more driving features, we can get larger feature
space to describe the trajectory, leading to better predictions. Then, it effectively
suggests the advantage of OBD for its involvement of more fine-grained driving
features. (2) Seeing two comparing pairs: (i) (COL. 1 vs. COL. 2) vs. (COL. 1 vs.
COL. 4) and (ii) (COL. 3 vs. COL. 5) vs. (COL. 3 vs. COL. 7), Acceleration+
and Vehicle Angular Velocity+ seem to have similar improving effects. The rea-
son may be that both Acceleration+ and Vehicle Angular Velocity+ directly
manifest the driving actions. Then, the improvement of adding either one fea-
ture is almost the same. However, adding Engine Speed+ leads to lower improve-
ment in Precision, Recall, F1 score (see COL. 1 vs. COL. 2−4) probably because
Engine Speed+ indicates the putting state of the drivers’ feet on the oil pedal. It
may not directly reflect the driving behaviors in the road like Acceleration+ and
Vehicle Angular Velocity+. But viewing COL. 8, all the features together lead to
the best performance. (3) Furthermore, in experiment setting 8, we investigate
the significance of the whole features by measuring how many times a feature
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Fig. 9. EM comparison. Fig. 10. System
comparison.

Fig. 11. Effect of
parameter.

is used in BM’s tree classifiers to split a subtree. As shown in Fig. 8, the top
two features of Acceleration and Vehicle Angular Velocity validate our previous
analysis of their similar high improvements in performance compared to Speed.

8.4 Risk Evaluation Model (EM) Evaluation

In this subsection, we evaluate EM under the following enterprise scenario: with
the whole driver set and the first 20-week data, after EM, we get a dangerous
driver set with 80% percentile. Then, in the following 10-week dataset, we check
whether these dangerous drivers have crash accident records or not. If Yes, our
predictions are accurate and vice versa. We choose Accuracy as the metric. The
compared methods are: (1) Pay as you Drive model (PD) is a state-of-the-art
technique to evaluate drivers by conducting the vehicle classification task [19].
The generated classification probability is used for the evaluation and the param-
eters are carefully tuned to give the best performance. (2) M-EM/D-EM only
contains the Mobility-aware/Demographic-aware evaluation score. (3) Unified-
weight EM (U-EM) ignores the time-dependent pattern (Fig. 4) and utilizes the
unified weight week vector to evaluate drivers (i.e., wi = 1 in Eq. 7).

As shown in Fig. 9, EM has the highest accuracy. EM outperforms PD with
21% improvement. It may be caused from PD’s vehicle classification part, which
fails to consider the mobility-aware perspective. The impact of the time-
dependent pattern . By examining the performance of EM and U-EM, we find
that EM is more effective and improves the accuracy by about 13%. As aforemen-
tioned, we should give more priority to the latest driver behaviors rather than
the very early, due to the changes of driving proficiency over time. The impact
of the Mobility-aware and Demographic-aware evaluation . Compared
with M-EM and D-EM, the accuracy of EM is about 47% better on average. It
suggests that multiple perspectives lead to a more comprehensive evaluation for
better performance. If only focusing on Mobility-aware or Demographic-aware
information, we lose something for the evaluation. By viewing M-EM and D-
EM only, one interesting finding is that M-EM is better. The reason is that
M-EM evaluates drivers by the fine-grained driving behaviors from the trajec-
tory perspective. It tells the dynamic mobility pattern so that it better describes
and distinguishes drivers for the risk assessment. But, D-EM’s rating is mainly
based on general, less-distinctive and static variables like the per-month traveled
mileage.
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8.5 PBE System Evaluation

We investigate PBE system’s performance by the same task described in EM
evaluation in Sect. 8.4. To fully test the boosting effect, we consider the extreme
condition with no ground truth labels, by setting PM’s predicted labels as the
whole trajectories’ ground truth labels. The compared methods are: (1) Two-
class PBE (T-PBE), which considers the two-class setting rather than PBE’s
three-class setting. Specially, it regards Dangerous class as one class while Risky
and Safe class as another class. (2) Pure-PBE (P-PBE), one removes the cost-
sensitive setting in the whole system. (3) Behavior-centric Risk-level model (BR)
is a state-of-the-art method to evaluate drivers [3]. It is incorporated in an insur-
ance pricing model to rate drivers’ risk for evaluation.

The result is shown in Fig. 10. It can be found that: (1) PBE outperforms
T-PBE with 9% improvement. The reason may be that PBE additionally utilizes
the Risky Class trajectory to develop more semantic-rich descriptions of a tra-
jectory and a driver (i.e., more probabilities to describe). This result suggests
the advantage of the multi-class fine-grained analysis. Furthermore, PBE system
is open for other multi-class settings to plug in not limited to current three
classes. (2) By viewing the result of PBE and P-PBE, we observe that PBE has
higher accuracy than P-PBE by 15%. It suggests that the cost-sensitive setting
is effective in the whole system. The reason is aforementioned that through the
cost-sensitive guidance in the system, Risky and Dangerous Classes get more
priority to retrieve more risky trajectories/drivers in the real-world enterprise
scenario like auto insurance. (3) Examining PBE and BR’s performances, we note
that PBE beats BR by 28%. Different from PBE, BR’s evaluation from classifi-
cation fails to consider trajectories’ fine-grained driving behaviors, which leads
to the lower performance. (4) Comparing the results of PBE’s predicted label
and the ground truth label (in Sect. 8.4), current PBE is only slightly worse by
7%. Such slight difference is acceptable in the real-world applications when the
ground truth label is hard to assess and data is incomplete. It justifies the effec-
tiveness of PM for boosting the training of BM and EM.

8.6 Parameter Tuning

In PBE, the major parameter is the cost matrix C in Table 2. Considering
the trade-off between the cost-sensitive requirement and the scalable training,
we set C(SC,RC) : C(SC,DC) : C(RC,DC) : C(RC,SC) : C(DC,RC) :
C(DC,SC) = 1 : 1 : 1 : μ : μ : μ2. Through studying cost μ by Decision-
Stump-based model’s cost-sensitive objective C(θ1, θ2) (in Sect. 5.2), where C
is used for the first time in PBE, we can examine the impact of C. As shown
in Fig. 11, μ greatly influences θ∗

2 without affecting θ∗
1 . Specifically, μ increases

with θ∗
2 decreasing. When μ is too low (μ < 4)/high (μ > 6), the optimal θ∗

2

is just around θ2’s max/min value, leading to improper results. Thus, we select
the middle value μ = 5, resulting in a middle threshold value θ∗

2 = 5 in the
experiment.
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Table 5. The running time of PBE system.

Week # 1 5 10 15 20 25 30

Time (in second) 7 43 88 138 189 227 285

8.7 Efficiency Study

We report the running time of PBE when the week number increases (i.e., when
more data is collected). As shown in Table 5, the time cost increases with more
data. The reason is that with more data, more trajectories are generated and
more tree classifiers are built, which result in more running time.

9 Conclusion

In this paper, we proposed PBE system, including PM, BM and EM, to assess
the driver behaviors. PM utilizes the insight from the collected data for real-
time alarming. BM assesses the driver behavior risk by fine-grained analyzing
the trajectory data. EM evaluates drivers from multiple perspectives and gives
comprehensive scores to reflect different risky scores. PBE is evaluated via exten-
sive experiments and outperforms the traditional systems by at least 21%. In the
future, we will consider more spatial factors like location/road type for analysis.
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