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Abstract. Hypotension, defined as dangerously low blood pressure, is
a significant risk factor in intensive care units (ICUs), which requires a
prompt therapeutic intervention. The goal of our research is to predict an
impending Hypotensive Episode (HE) by time series analysis of continu-
ously monitored physiological vital signs. Our prognostic model is based
on the last Observation Window (OW) at the prediction time. Exist-
ing clinical episode prediction studies used a single OW of 5-120 min
to extract predictive features, with no significant improvement reported
when longer OWs were used. In this work we have developed the In-
Window Segmentation (InWiSe) method for time series prediction, which
splits a single OW into several sub-windows of equal size. The resulting
feature set combines the features extracted from each observation sub-
window and then this combined set is used by the Extreme Gradient
Boosting (XGBoost) binary classifier to produce an episode prediction
model. We evaluate the proposed approach on three retrospective ICU
datasets (extracted from MIMIC II, Soroka and Hadassah databases)
using cross-validation on each dataset separately, as well as by cross-
dataset validation. The results show that InWiSe is superior to existing
methods in terms of the area under the ROC curve (AUC).
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1 Introduction

Hypotension is defined as dangerously low blood pressure. It is a major hemody-
namic instability symptom, as well as a significant risk factor in hospital mortal-
ity at intensive care units (ICUs) [1]. As a critical condition, which may result
in a fatal deterioration, an impending Hypotensive Episode (HE) requires a
prompt therapeutic intervention [2] by ICU clinicians. However, HE prediction
is a challenging task [3]. While the clinical staff time is limited, the amount
of accumulated physiologic data per patient is massive in terms of both data
variety (multi-channel waveforms, laboratory results, medication records, nurs-
ing notes, etc.) and data volume (length of waveform time series). Even with
sufficient time, resources, and data, it is very hard to accurately estimate the
likelihood of clinical deterioration with bare-eye analysis alone.

HE may be detectable in advance by automatic analysis of continuously
monitored physiologic data; more specifically, the analysis of vital signs (multi-
parameter temporal vital data), may inform on the underlying dynamics of
organs and cardiovascular system functioning. Particularly, vital signs may con-
tain subtle patterns which point to an impending instability [4]. Such pattern
identification is a suitable task for machine learning algorithms. Smart patient
monitoring software that could predict the clinical deterioration of high risk
patients well before there are changes in the parameters displayed by the cur-
rent ICU monitors would save lives, reduce hospitalization costs, and contribute
to better patient outcomes [5].

Our research goal is to give the physicians an early warning of an impending
HE by building a prediction model, which utilizes the maximal amount of infor-
mation from the currently available patient monitoring data and outperforms
state-of-the-art HE prediction systems. We present and evaluate the In- Window
Segmentation (InWiSe) algorithm for HE prediction, which extracts predictive
features from a set of multiple observation sub-windows rather than from a single
long observation window.

This paper is organized as follows. Section 2 surveys the previous works in
several related areas, elaborates on the limitations of these works and introduces
the contributions of our method. Section 3 describes the studied problem and
proposed methods in detail and Sect. 4 covers the results of an empirical evalu-
ation. Finally, Sect. 5 presents the conclusions along with possible directions for
future research.

2 Related Work and Original Contributions

Several works studied the problem of clinical deterioration prediction in ICUs.
This section reviews their problem definitions, feature extraction methods, slid-
ing window constellations, and prediction methodologies. Finally, a discussion
of the limitations of existing methods is followed by a presentation of the con-
tributions of this study.



474 E. Tsur et al.

2.1 Clinical Episode Definitions

Previous works on clinical deterioration prediction vary mainly in two aspects [6].
The first one is an episode definition, which may be based on the recorded clinical
treatment or on the behavior of vital signs within a specific time interval. The
second one is the warning time, a.k.a. the Gap Window, which will be called in
brief the gap in this study.

The objective in [3] was to predict the hemodynamic instability start time
with a 2-h gap. The episode start time was defined by a clinical intervention
recorded in the ICU clinical record of a patient. In [7], instability was also defined
by some given medications and gaps of 15 min to 12 h were explored.

The 10" annual PhysioNet/Computers in Cardiology Challenge [4] con-
ducted a competition to study an Acute Hypotensive Episode (AHE). They
defined AHE as an interval, in which at least 90% of the time the Mean Arterial
blood Pressure (MAP) is under 60 mmHg during any 30-min window within
the interval. Their goal was to predict whether an AHE will start in the next
60 min. In [1,8], the HE and AHE definitions were identical to [4], but a lower
MAP bound of 10 mmHg was added to prevent noise effects from outliers. Their
goal was to predict the patient condition in a Target Window (called herein
target) of 30 min, which occurs within a gap of 1-2h (See Fig. 1a), and label it
as hypotensive or normotensive (normal blood pressure). As expected, and as
concluded in [8], the problem is more challenging when predicting further into
the future, thus resulting in poorer performance. Note that, as indicated in [§],
the accepted HE definitions for adults vary in the range of 60-80 mmHg MAP
for 304+ min, where the lowest case of 60 mmHg is sometimes excluded under
the definition of AHE [1,4].

2.2 Predictive Feature Types

In most works, the future episode predictive features are usually extracted from
a sliding Observation Window (OW) over a record, which is a collection of vital
sign time series of one patient in a single ICU admission. A minute-by-minute
vital signs time series, like blood pressure and Heart Rate (HR) are usually used
to extract features, while a few studies used the clinical information (age and
temporal medications data) as well. A typically used benchmark database is
MIMIC II [9], a multi-parameter ICU waveforms and clinical database.
Statistical features are the most obvious source for the extraction of predic-
tive features, also called patterns, from intervals like OWs. In [5], the authors
calculate extremes, moments, percentiles and inter-percentile ranges for every
vital sign, whereas in [8] interquartile ranges and slope are extracted as well.
In a more pragmatic statistical approach [10], several episode predictive indices
were used, derived from the blood pressure signals only. These indices were six
types of averages from Systolic Blood Pressure (SBP), Diastolic Blood Pressure
(DBP), and MAP, each taken as a single feature. Another statistical approach
derives cross-correlation features which capture the coupling between two time
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series by computing the sum of products of their values [8], or by estimating
their variance and covariance [5].

A more recent and widely accepted feature extraction approach is the use of
wavelets, which captures the relative energies in different spectral bands that are
localized in both time and frequency. Wavelets were proven to perform well as
episode predictors [11] as well as vital sign similarity detectors [12]. In [5] and [§],
Daubechies (DB) and Meyer wavelet types were used, respectively, noting that
the DB type dominates the basic Haar type wavelets [13] in terms of vital sign
time series, which are non-stationary [5].

Apart from vital signs, patient age and vasopressors (blood pressure medica-
tions) given during OWs are added as features by Lee and Mark [8] but found
to have low correlation with the target. In their other work [15], they achieve
similar results without those features. Moreover, Saeced [11] mentions the low
reliability of vasopressor medication timestamps, which are very important for
the episode prediction task.

2.3 Observation Window Constellations

The sliding OW plays an important role in the episode prediction task. In this
section, we survey the different approaches to constructing and collecting OWs.

The first important attribute of an OW is its duration. In [1,3,5,8,10,14],
various OW sizes were applied (5, 10, 30, 60, 90, and 120 min). Having imple-
mented a 60-min OW, it is claimed in [1,8] that extracting features from a longer
window does not result in improvement of prediction performance.

In [15], Lee and Mark extended their previous work by implementing a
weighted decision classifier that consists of four base classifiers, each predict-
ing an HE in the same target but within different gaps (1, 2, 3 and 4h) using
a different corresponding 30-min OW. The final decision is made by weighting
the four posterior probabilities from each classifier. They report insignificant
improvement in prediction performance as well as independency of predictions
from the 3™ and the 4'" past hours (the earliest hours).

A second matter is how to collect OWs for training the prediction model.
One simple approach, applied by Cao et al. [3], is to compile an OW ending
gap-minutes before the start time of the first episode in every unstable record
(having one or more HEs). For each stable record, one or more OWs are then
sampled randomly. According to [8], collecting multiple OWs from both stable
and unstable records in a random fashion, which does not collect windows exactly
gap-minutes before an episode start, is proved to outperform the first method of
Cao [3]. A sliding target window (with no overlap) traverses each record (Fig. 1a),
and as many OWs as possible are compiled. However, they note that collecting
OWs all the time, even when no HE is impending, and doing it from both stable
and unstable patients will result in an extremely imbalanced dataset. Having
two OW classes (hypotensive or normotensive), one way to solve this issue is by
undersampling the majority class (normotensive) [5,8].
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2.4 Prediction Methodology

The problem of episode prediction is most logically approached by calculating
the probability of a future episode at a given time point, using features extracted
from the current OW, and then classifying the target window, which starts within
some gap-minutes, as hypotensive or not, based on a pre-defined probability
threshold. Multiple works tackled this problem by using numerous supervised
machine learning algorithms, particularly binary classifiers, with some exceptions
such as in [16], where a Recurrent Neural Networks approach is used to forecast
the target window MAP values, followed by a straightforward binary decision
based on the episode definition.

The classifiers used by some other papers are Logistic Regression [3], Artificial
Neural Network [8,15], Majority Vote [1], and Random Forest [5]. To the best
of our knowledge, the most accurate HE prediction so far is reported in [8,15],
which we reproduce and use for comparison in Sect. 4.

2.5 Limitations of Published Methods

Advanced methods and evaluation schemes such as in [1,5,8,14,15], solved some
of the problems found in the early works [3,10], yet left some open issues, includ-
ing low precision (14% in [8]) and a strict episode definition that is still far from
the practical definitions used in ICUs. Moreover, a machine learning solution
to a high precision HE prediction will probably need much more training data,
while the current MIMIC II [9] contains only several thousands® of vital sign
records that are matched with the clinical data.

Unfortunately, there is a lack of comprehensive public sources of ICU mon-
itored vital signs beyond the existing MIMIC database. Consequently, the cur-
rent episode prediction studies miss the crucial cross-dataset validation, which
is needed to find a generic model that should work for any ICU, disregarding
availability of retrospective patient records for training.

Recent papers [1,5,8] include predictions of future episodes even if the patient
is going through an ongoing episode. These predictions may be less relevant to
the physicians and possibly excluded from the evaluation metrics.

Finally, studies conducted over the last decade show no improvement in uti-
lizing OWs greater than 120 min (and usually even 60 min), implying there are
no additional predictive patterns to be found in the near past. On the contrary,
the results from [1,5,7,8,14] show an accuracy decrease of only 1-2.5% when
switching from a 60-min gap window to a 120-min one, which may imply that
earlier observations may have a just a slightly lower correlation to the target.
Thus, there may be additional predictive patterns, which are not utilized prop-
erly by the existing methods.

! Recently, The MIMIC III waveform database Matched Subset, four times larger than
the MIMIC II subset, was published
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2.6 Original Contributions

The main contribution of this paper is the In-Window Segmentation (InWiSe)
method, which aims to utilize the local predictive patterns in long OWs. The
method, presented in Sect. 3.2 and Fig. 1b, differs from previous methods by the
following: (i) it extracts hidden local features by splitting the OW into multiple
sub-windows, which improves the model predictive performance; (ii) it is flexible
in terms of OW definition - if a complete sub-window set is not valid for use at
the prediction time, a single OW option is used instead.

As mentioned in Sect. 2.3, a step towards multiple OW utilization was taken
in [15] by combining weighted predicted posteriors of four OWs, each making an
independent prediction with a distinct gap. Their approach is different from ours
mainly in that we let the classifier learn the association between cross-window
features, which is not possible in a weighted posterior decision. Another very
recent work (DC-Prophet) [19], published while writing this paper, combines
features from consecutive time series intervals (lags) to make early predictions
of server failures. Their approach is similar to ours, but it has neither been
applied to clinical episode prediction, nor it has handled invalid lags.

A further contribution of our work is evaluation of both our method and
earlier episode prediction methods in a cross-dataset setting, in addition to the
in-dataset cross-validation. Finally, our experiments are extended by a new eval-
uation approach, which excludes the clinically irrelevant in-episode predictions.

3 Methodology

This section starts with the problem definition, continues with introducing
InWiSe, and concludes with the description of the data compilation, feature
extraction, and classification methods used in this study.

3.1 Problem Definition and Prediction Modes

This study explores the problem of predicting a patient condition (hypotensive
or normotensive) within a 60-min gap. Following the work in [1,8], we define
a hypotensive episode (HE) as a 30-min target window where at least 90% of
MAP values are below 60 mmHg. Any valid target (see the validity definition in
Sect. 4.2) not meeting this criterion is labeled as normotensive. At the prediction
time, each sub-window set is labeled with respect to its corresponding target.

Considering the implementation of the proposed method in the clinical set-
ting, we distinguish between two alternative prediction modes: (i) all-time pre-
diction, where the assumption (found in previous papers) is that episode predic-
tion is needed continuously regardless of the clinical condition at the prediction
time; (ii) exzclusive prediction, where episode prediction is needed only when the
patient is not in a currently recognized HE (the last 30 min of the ICU stay are
not an HE by definition).
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Fig. 1. (a) Basic Method: traversing over a patient record with an impending HE is
demonstrated by the observation, gap and target windows with respect to the prediction
time. (b) InWiSe: a given OW is split into a sub-window set of size N, followed by a
prediction that is based on the combined feature set of the N sub-windows (SubWs).

3.2 Splitting Obervation Windows with InWiSe

In our study, which was developed based on the observation-gap-target windows
scheme demonstrated in Fig. 1a, we hypothesized that taking longer OWs, split-
ting them into several equally sized sub-windows, also called the sub-window set,
and combining all their features together (see Fig. 1b) would improve the predic-
tive accuracy of the induced model versus using a smaller feature set of a single
long or short OW. For example, a set of the mean MAP values from four, three,
two and one hours before the same target window may be more informative for
predicting the target label than the mean MAP value of a single 4-h OW.

The InWiSe method does not use a classifier based on a combined set of
features if one of the current sub-windows in the set is invalid (see Sect.4.2). In
that case, the prediction is made by a simpler classification model using only the
features extracted from the latest sub-window (SubWy in Fig.1b) unless that
window is invalid. Consequently, InWiSe misses less prediction points than the
single OW method (more details are in Sect. 4.4, in-dataset paragraph).

3.3 Feature Extraction

We use three basic vital signs (SBP, DBP, and HR) to derive two additional
vital signs for each record: Pulse Pressure calculated by PP = SBP — DBP,
and Relative Cardiac Output calculated by CO = HR x PP. Next, we extract
the following three groups of features from each sub-window.
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Statistical Features: mean, median, standard deviation (Std), variance,
interquartile range (Iqr), skewness, kurtosis and linear regression slope are cal-
culated for each of the vital signs. Missing values are ignored.

Wavelet Features: Similarly to [5], multi-level discrete decomposition of each
vital sign can be conducted with DB wavelets. The decomposition of a single
time series (signal) X is denoted by Wx = [a,, dp, dn—1 ... di], where n is the
decomposition level (window size depended), a,, is the signal approximation, and
dy, is the detail signal of level k. The elements in Wx are then utilized as features
by calculating the relative energy for each of them as in [8,15]. Missing values
are interpolated.

Cross-Correlation Features: the cross correlation of two time series X =
{z1,29,...; 2, and Y = {y1,¥2,...,yn} is defined as pxy = %Z;viyi and cal-
culated for each pair of vital signs.

The total amount of features extracted from a sub-window set is equal to the
number of sub-windows N multiplied by the feature set size.

3.4 Classification

Each instance in the training dataset is composed of a sub-window set feature
vector and a class label which is positive or negative (the target is either hypoten-
sive or normotensive, respectively). Before training a binary classifier, we both
normalize the training dataset (to zero mean and unit standard deviation) and
undersample it to overcome the imbalance issue (Sect. 4.3).

Our classifier produces a posterior probability of the positive class, which
may lead to an HE alert depending on the probability threshold determined
from the Receiver Operating Characteristic (ROC) curve built on the target
(testing) dataset. Following [3,8,15], the following selection criterion for the
optimal threshold can be used: Thgejecteda = argmaxpy,{sensitivity(Th) +
speci ficity(Th)}.

4 Experiments

The experimental setup of this study includes multiple prediction modes, meth-
ods, and model configurations. We first perform an in-dataset evaluation for
each prediction mode (all-time and exclusive) and for each method (single OW
and InWiSe). Next, we proceed with a cross-dataset validation for each dataset
pair. This section describes the datasets and their compiled OW and window-set
statistics, followed by the experiments and analysis of results.

4.1 Data Description

Three databases of adult ICU admission records were prepared for this study:
Soroka Medical Center in Beer Sheva (4,757 records), Hadassah Hospital,
Ein-Karem, Jerusalem (8, 366 records), and MIMIC II [9] (downloaded from [17,
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18] and comprising 5, 266 records). All time-series sampling rates are minute-by-
minute (some second-by-second MIMIC II records were undersampled by taking
each minute median). The common-shared vital signs among the three databases
are HR, SBP, DBP, MAP, peripheral capillary oxygen saturation and respira-
tion. Similarly to Lee and Mark [8,15], we included only the HR, SBP, DBP and
MAP vital signs in our data.

4.2 Data Compilation

As a pre-processing step, any outlier (out of the rage 10-200 for any vital sign) is
considered as a ‘missing value’. When compiling OWs from each admission record
we used the observation-gap-target window scheme (Sect. 3.2) called the single
OW method, as well as a first step for InWiSe. The window sizes of the single
OW were 30, 60, 120 or 240 min, while the gap and target sizes were constant
at 60 and 30 min, respectively. Furthermore, we followed Lee and Mark [8] who
claimed that a prediction rate of every 30 min should represent the performance
of a real-time system. Therefore, a 30-min. sliding target window was traversed
with no overlaps over each record and as many OWs as possible were compiled,
depending on the prediction mode. Following [8], targets with more than 10%
missing MAP values were excluded from this study, as their true labels are
unknown. Turning to OW validity, to prevent a classifier from learning outlier
instances, more than 5% missing values for any vital sign made the window
invalid and, consequently, excluded it from our work as well.

Five InWiSe configurations of window splitting were selected for this study:
60[m] — 2 x 30[m], 120— 2 x 60, 120 — 4 x 30, 240 — 2 x 120 and 240 —
4 x 60. For each configuration and for every record in the dataset, at the predic-
tion time, we combine a sub-window set ([SubW1, ... ,SubWy], Fig.1b) if all
N sub-windows are valid. The label of a complete sub-window set is the same as
of its latest sub-window, which is labeled according to its corresponding target
window.

Following the window label counts, the imbalance ratio for the all-time com-
pilation was found to be 1:20 to 1:40 in favor of normotensive (negative) windows
(increasing with the observation window size), as opposed to the exclusive com-
pilation (no in-episode predictions), which was two times more imbalanced. As
for the window set method, the bigger the set size N the less positive and nega-
tive examples are available. Like in a single OW, we observed an increase in the
window-set labeling imbalance with an increase in the window size that reached
1:100 in the exclusive mode.

The reduction of sub-window sets availability with increasing N varied over
datasets and was caused by differences in the amount of missing values (i.e.,
MIMIC IT misses more values than Soroka). Moreover, the reason behind cross-
dataset differences in terms of total OW count with respect to record count was
the variance in ICU stay duration, which was higher in Soroka than in other
datasets. Last, we note that using the exclusive mode resulted in a decrease
of over 50% in the positive window count, probably because the average HE
duration was much longer than 30 min (i.e., Hadassah average HE duration was
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98 min), increasing the time intervals where we do not make a prediction under
this mode.

4.3 Experimental Setup

In-dataset Evaluation: For each dataset, mode and algorithm a 5-fold cross-
validation (CV) was performed. To allow the classifier to successfully learn the
imbalanced data, training folds were undersampled (5 times without replace-
ment) to attain equal counts of stable and unstable admission records within
each training fold (test folds were left unbalanced). Moreover, for each record
all OWs or sub-window sets were either in training or test dataset to prevent
record characteristics from leaking into the test dataset. In total, the classi-
fier produced 25 outputs (5 folds x 5 samples) which were evaluated by five
metrics: area under the ROC curve (AUC), accuracy, sensitivity, specificity and
precision. Furthermore, to compare between the two methods fairly, we opti-
mized the hyper-parameters of each classifier: an inner 5-fold CV was utilized
in each undersampled training fold of the outer CV and the best chosen hyper-
parameters found by a grid search were used to train the outer fold (Nested CV).

To choose the prediction model, three classifiers were evaluated using a 60-
min OW (single OW method) and a 4 x 60-min set (InWiSe) on all datasets
combined and in the all-time prediction mode (with hyper parameters opti-
mization). The AUCs were (0.932, 0.936) for Random Forest, (0.937, 0.940) for
Artificial Neural Network (ANN) with a single hidden layer of 100 neurons, and
(0.939, 0.943) for Extreme Gradient Boosting (XGBoost) [20], where each tuple
represents a <single OW, sub-window set> pair. Since XGBoost outperformed
Random Forest and ANN with p-values = 0.03 and 0.08, respectively (using
t-test), we chose XGBoost for inducing prediction models in this study. Still,
ANN was used as a baseline of [8].

XGBoost is a scalable implementation of the Gradient Boosting ensemble
method that affords some additional capabilities like feature sampling (in addi-
tion to instance sampling) for each tree in the ensemble, making it even more
robust to feature dimensionality and helping to avoid overfitting. Moreover,
considering our minimum training dataset size of approximately 2k instances
together with the maximal feature vector size of 392 features, the built-in fea-
ture selection capability of XGBoost is important.

The XGBoost classifier was grid-search optimized for each dataset or mode
and for each OW size or sub-window set configuration C, where the best hyper-
parameters were reproduced for all datasets, in most of the CV folds. The opti-
mized hyper-parameters were: number of trees (500, 1000, 1500), maximum tree
depth (8, 5), learning rate (0.001, 0.01, 0.1), instance sample rate (0.8, 0.4),
and feature sample rate (0.9, 0.6). The best choices are shown above in bold.

Finally, each algorithm was tried with several OW sizes and sub-window sets
Cs: four OW sizes for the single OW method and five C's for InWiSe sub-window
sets (see Sect.4.2). As a result, a total of 54 in-dataset CVs were conducted (3
datasets x 2 modes x 9 window-set C's and single OW sizes).
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Cross-Dataset Validation: The model induced from each dataset was evalu-
ated on other datasets using the all-time mode. XGBoost was trained on one full
dataset and tested on the two other datasets separately. The source dataset was
undersampled only once, justified by a mostly very low variance of AUC (<0.1%)
between undersamples, in each fold of the in-dataset CV. Both the single OW
size and the window-set C' were chosen to optimize the AUC performance in
the in-dataset evaluation: 120/240-min sized OW for the single OW method and
4 x 60-min sub-window set for InWiSe. The hyper-parameters of the classifier
(XGBoost) of each method were chosen by a majority vote over the folds in
the in-dataset evaluation. A total of 18 experiments were performed (3 training
datasets x 2 test datasets x 3 window-set Cs and single OW sizes).

4.4 Analysis of Results

This subsection presents the results, followed by the feature importance analy-
sis. The reader should recall that all sub-window set results include some test
instances which were classified using the latest sub-window (SubWy in Fig. 1b),
if valid, in case that the sub-window set was invalid.

In-dataset: As a baseline, we reproduced the single OW method results of Lee
and Mark [8] on MIMIC II with ANN. In Fig. 2, we use MIMIC II to compare
the single OW method with ANN, using two more methods: single OW with
XGBoost (single OW method) and sub-window set best split using XGBoost as
well. In comparison with the baseline, the AUC of the 4 x 60 sub-window set
(XGBoost) was significantly higher than for the single OW method with ANN
(60, 120 or 240-min OW size) with p-values 0.009 and 0.05 for all-time and
exclusive modes, respectively.

From Figs. 2 and 3, we first conclude that in terms of AUC, splitting a single
OW into several sub-windows is usually better than using a single OW; we note
that, the advantage of OW splitting grows with an increase in the OW duration,
which emphasizes the benefit from splitting a single OW that is longer than the
longest OWs used by current methods (240 — 4 x 60 versus 120 min).

Turning to XGBoost-only comparison on MIMIC II, InWiSe outperformed
the single OW in the all-time prediction mode, but only with a p-value of 0.13,
while performing only slightly better than the single OW in the exclusive mode
(in terms of AUC). However, while these all-time prediction trends are similar
in the Soroka dataset where InWiSe is better with p = 0.15 (Fig.3), in the
Hadassah dataset InWiSe significantly outperforms the single OW method with
a p-value of 0.03. In addition, in Table 1 that shows the in-dataset best results on
its diagonal, we see that, although not always statistically significant, the sub-
window set method is better than the single OW alternatives in each dataset
and in all metrics (in bold) when evaluating in the all-time prediction mode.
Note that our significance test comparisons were between the best results of
each method rather than sub-window set versus its matching long window and
they were calculated with four degrees of freedom (due to five folds).

As for the exclusive mode, the AUC was lower, as expected, since less posi-
tive OW instances were available, making the prediction task harder in general.
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Fig. 2. The single OW method compared with its InWiSe best split, and with the ANN
baseline on MIMIC II (all-time mode at the left and exclusive mode to the right).

The smaller improvement of InWiSe in comparison with a single OW is prob-
ably related to the considerable decrease in available positive sub-window sets
relatively to the single OW count, compared to a small decrease in the case of
the all-time mode. For example, Soroka HE labeled OW count decreases by 5-7%
for the all-time mode, but by 35-45% for the exclusive mode, between the 4-sub-
window set and the single OW methods. Table 2 shows further in-dataset metric
results as Table 1 did for the all-time mode. In contrast to the all-time results,
in the exclusive mode the AUC is still better with InWiSe (relatively to single
OW), whereas other metrics domination depends on the posterior probability
threshold.

Finally, we observed an average increase of 2.5% in valid prediction times
when using InWiSe in comparison with a single OW in the size of NV x SubWg;,e.
This was mainly caused by the relaxed validation conditions in terms of missing
values when splitting the windows, as well as by being able to use a single
sub-window instead of a sub-window set at the beginning of a record when the
available OWs are too short to be valid.

Cross-Datasets: The results of the cross-dataset experiments for the all-time
prediction mode are shown in Table 1. First, one can observe the expected, but
relatively small, drop in performance when training with one dataset and testing
with another (0.1-0.5% in AUC). Nevertheless, we see that InWiSe outperforms
other methods in terms of the AUC metric, even when applying the model to a
new dataset. However, similarly to the in-dataset exclusive mode case, the other
metrics domination in the cross-dataset validation (all-time mode) is threshold
dependent, but this time with dependence on the source dataset. For example,
the Soroka dataset sensitivity of the single OW method is higher than the sub-
window set one (0.897 vs. 0.868, respectively) in the case where the model was
trained on MIMIC II, while the opposite is true when it was trained on Hasassah
(0.920 vs. 0.940). The reason for these results is probably the difference between
the optimal threshold values in the source and the target datasets.

Feature Importance: The goal of splitting OWs was to let the classifier learn
feature correlations with the target window from each sub-window separately, as
well as their association and cross-window correlation. Table 3 presents the top
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Fig. 3. In-dataset comparison between the single OW method and its InWiSe best split
on the Hadassah and Soroka datasets (both prediction modes, XGBoost only).

Table 1. In-dataset and cross-dataset methods comparison (InWiSe best configuration
vs. single OW best size vs. window-set matching single OW size) using all-time predic-
tion. Metrics from top to bottom: AUC, accuracy, sensitivity, specificity and precision

Source Dataset (Train)

3
:v(% MIMIC IT Soroka Hadassah
4x60 120 240 4x60 120 240 4x60 120 240
AUC 0.937+0.003 0.9310.006 0.93140.007 0.933 0.929 0.932 0.937 0.933 0.934
E Acc. 0.878+0.007 0.864+0.013 0.866+0.011 0.846 0.828 0.860 0.898 0.903 0.902
\’:1 Sens. 0.84940.011 0.847+0.025 0.843+0.023 0.869 0.873 0.849 0.829 0.807 0.803
= Spec. 0.879+0.008 0.865+0.013 0.86640.011 0.846 0.826 0.861 0.900 0.906 0.905
Prec. 0.168+0.007 0.150+0.011 0.15140.016 0.136 0.124 0.146 0.187 0.194 0.192
AUC 0.939 0.935 0.935 0.944+0.003 0.94140.003 0.9414-0.003 0.942 0.938 0.939
(é’ Acc. 0.867 0.822 0.858 0.870+0.007 0.861+0.005 0.856+0.004 0.761 0.800 0.793
% Sens. 0.868 0.897 0.865 0.875+0.014 0.875+0.011 0.875+0.014 0.940 0.915 0.920
Spec. 0.867 0.820 0.857 0.869-+0.008 0.860+0.006 0.856+0.007 0.754 0.796 0.789
Prec. 0.187 0.150 0.178 0.191:£0.015 0.182+0.016 0.177+0.017 0.119 0.137 0.134
AUC 0.936 0.933 0.932 0.938 0.935 0.935 0.941+0.002 0.938+0.002 0.937+0.002
g Acc. 0.842 0.816 0.815 0.838 0.814 0.834 0.870-£0.006 0.86740.007 0.861+0.006
z Sens. 0.889 0.899 0.896 0.894 0.904 0.888 0.871£0.006 0.866+0.005 0.866+0.006
= Spec. 0.839 0.812 0.811 0.835 0.809 0.831 0.870+0.007 0.86740.007 0.860+0.007
Prec. 0.207 0.184 0.182 0.204 0.183 0.198 0.241+0.011 0.23540.011 0.226+0.010

Table 2. In-dataset methods comparison (InWiSe best configuration vs. single OW
best size) in the exclusive prediction mode

MIMIC II Soroka Hadassah

2 X 60 120 2 X 60 120 2 X 60 120
AUC 0.884 +0.011 | 0.884 +0.006 |0.906 + 0.002|0.904 +0.002 |0.895 + 0.003 | 0.894 + 0.003
Accuracy [0.790+0.020 |0.816 +0.013|0.7874+0.011 |0.809 +0.010|0.783+0.009 |0.807 £+ 0.007
Sensitivity | 0.826 +0.021 | 0.793 £ 0.023 |0.875 4+ 0.009 |0.851 +0.012 |0.855 4+ 0.009 |0.829 + 0.007
Specificity |0.789 +0.021 |0.817 +0.014|0.785+0.010 |0.808 +0.010|0.782+0.009 |0.807 £+ 0.007
Precision |0.054 +0.006 |0.060 + 0.004|0.069 +0.004 |0.075 4+ 0.004|0.082+0.003 |0.089 + 0.003
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Table 3. Top 10 features rank in terms of frequency over trees in the XGBoost ensemble

All-Time Prediction Exclusive Prediction
60-min  240-min 4x60-min 60-min  120-min 2x60-min
SubWy  SubWy  SubWs  SubWi SubWy  SubW

SBP Slope 10 10 9 10 9
SBP Skewness 9

DBP Slope - - - - - - - - - 10
MAP Mean 1 1 5 - 6 1 1 1 4 1
MAP Std 6 8 - - - - 8 9 - -
MAP Median 2 3 7 - - 2 3 3 7 5
MAP Iqr 9 - - - - - 10 - - -
MAP Skewness 8 7 6 6 8
MAP Slope 4 2 3 5 4 3
HR Slope 5 6 - - - 8 4 5 - 6
SBP Cross Correlation w/ DBP 7 5 - - - 10 7 7 - -
PP Cross Correlation w/ RCO 3 4 - - - 4 2 2 - 2
MAP Wavelet Detail Level-3 - - - - - - - 8 - -
HR Wavelet Approximation - 9 - - - - - - - -

ten important features of XGBoost (most frequent over the ensemble trees) for
the best InWiSe configuration compared with its sub-window sized OW as well
as the corresponding single OW (in two prediction modes). The sub-window set
columns are divided into their sub-windows, where SubWy is the sub-window
ending at the prediction time and SubW; is the earliest in the set (Fig. 1b).

We first see that the Mean Arterial blood Pressure (MAP) mean is clearly
dominant in all cases, which makes sense since MAP values are the ones that
define an HE. Next, we observe that features from all three types (statisti-
cal, cross-correlation and wavelets) are top-ten-ranked, with the statistical ones
(especially of MAP) used more frequently. Moreover, the two derived param-
eters, Pulse Pressure (PP) and Relative Cardiac Output (RCO), are proved
to contribute particularly in their cross correlation with the target. Turning to
sub-window sets, while SubWy has obviously more weight, the algorithm repeat-
edly chooses to combine the MAP mean and median from early sub-windows as
well, with a surprisingly high rank. The early sub-window features are in favor
of other higher ranked features in the single OWs (i.e., HR Slope and SBP
cross-correlation with DBP). These findings support and explain our hypothesis
that the model may be improved by using local sub-window features instead of
extracting features from a single long OW.

5 Conclusions and Future Work

The current study presented and explored InWiSe, an enhanced feature extrac-
tion algorithm for clinical episode prediction, where physiological features are
extracted from a set of observation sub-windows instead of a single OW. Our
evaluation experiments have shown that the prediction performance may be
improved by combining local sub-window features instead of extracting the same
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features from a single OW (of any size), observing an increased improvement
when splitting longer OWs than used in existing methods (i.e., 240-min OW).
The importance of sub-window features is confirmed by a feature importance
analysis. Moreover, in the all-time prediction mode, used by the recent works,
we show an improvement in comparison with the single OW method over all
three experimental datasets w.r.t. all evaluated metrics®> (up to 1% in accuracy
and specificity and up to 10% in precision, while maintaining the sensitivity
equal or better). We particularly focus on the AUC metric that was improved
by up to 0.6%, with a statistically significant improvement in AUC performance
in the case of the Hadassah dataset.

In addition to the above, we successfully evaluated the methods in a cross-
dataset fashion, showing that the induced models are capable of predicting
episode on a new dataset, with just a little degradation in the performance.
Moreover, the AUC metric repeatedly favors the InWiSe method, even when
testing the model on a new dataset. Furthermore, we explored a new prediction
mode (exclusive) which may better reflect ICU needs.

With regard to InWiSe future improvements, better accuracy results may
be achieved in the case of an invalid sub-window set, especially in the exclu-
sive prediction mode. One may also evaluate alternative approaches to multiple
OW utilization such as the weighted ensemble method of [15]. Another possible
approach to episode prediction may be built on predicting the Mean Arterial
blood Pressure (MAP) values in the target window with multivariate time series
forecasting models.

From the dataset perspective, any future analysis should use the recently pub-
lished MIMIC III dataset mentioned in Sect.2.5. Applying an existing model on
a new dataset should be further investigated in terms of determining a dataset-
specific optimal classification threshold. Finally, the proposed methodology can
be extended to other episode prediction domains.
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