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Abstract. User online shopping experience in modern e-commerce web-
sites critically relies on real-time personalized recommendations. How-
ever, building a productionized recommender system still remains chal-
lenging due to a massive collection of items, a huge number of online
users, and requirements for recommendations to be responsive to user
actions. In this work, we present our relevant, responsive, and scalable
deep online ranking system (DORS) that we developed and deployed in
our company. DORS is implemented in a three-level architecture which
includes (1) candidate retrieval that retrieves a board set of candidates
with various business rules enforced; (2) deep neural network ranking
model that takes advantage of available user and item specific features
and their interactions; (3) multi-arm bandits based online re-ranking
that dynamically takes user real-time feedback and re-ranks the final
recommended items in scale. Given a user as a query, DORS is able to
precisely capture users’ real-time purchasing intents and help users reach
to product purchases. Both offline and online experimental results show
that DORS provides more personalized online ranking results and makes
more revenue.

Keywords: Recommender system · E-commerce · Deep learning
Multi-arm bandits

1 Introduction

Building a relevant and responsive recommender system is the key to the success
of e-commerce and online retailing companies. A desired recommender system
helps people discover things they love and potentially purchase them, which
not only makes companies profitable but also brings convenient online shopping
experience to people’s daily lives.
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There is a huge amount of data generated on e-commerce websites everyday,
such as user historical online behaviors, product inventory specifics, purchase
transactions, etc. However, how to utilize them and build a practical recom-
mender system that recommends billions of items to millions of daily active
users still remains challenging due to the relevance and responsiveness trade-
offs arising from online shopping scenarios. Briefly, when a recommender system
is designed to serve the most relevant items, it uses every piece of available
information about the users, such as demographical information, past shopping
habits, favorite and disliked items, etc., to score, rank and select recommenda-
tion candidates. Because of the tremendous dimensions of information and the
huge size of candidates, the entire recommendation process is time consuming
and cannot be finished in real time1. Hence, the recommended items become
stale to the most recent shopping interests of users. On the other hand, a good
recommender system needs to be responsive and is able to capture user shopping
intent in real time. User shopping intents drift quite a lot and users tend to shop
in different categories even within a single session2. Responsiveness is difficult
to achieve since given a limited time window (request time out window), only a
few features can be used to score and rank the results. The majority of exist-
ing approaches proposed for e-commerce recommendation in the literature only
focus on either improving recommendation relevance or achieving responsiveness
in a computationally expensive approach which is not affordable or applicable
when serving thousands of recommendation requests every second.

In this work, we address this problem by presenting our Deep Online Ranking
System, i.e., DORS which is relevant, responsive and scalable and is able to serve
millions of recommendation requests everyday. DORS is designed and imple-
mented in a three-level novel architecture, which includes (1) candidate retrieval;
(2) learning-to-rank deep neural network (DNN) ranking; and (3) online re-
ranking via multi-arm bandits (MAB). The candidate retrieval stage enables us
to incorporate various business rules to filter out irrelevant items, such as out-
of-stock items, etc. The learning-to-rank DNN stage fully utilizes all available
information about users, items and their corresponding interaction features and
conducts a full scoring, which provides a fine-grained high-recall set of candi-
dates. The last stage of online re-ranking takes the output of DNN top K rank-
ing results and incorporates user real-time online feedback, such as impressions,
clicks, purchases, etc. to adjust the final recommendations.

Overall this paper makes the following contributions:

– It presents a practical three-stage recommendation system that is able to
serve relevant and responsive recommendations to millions of users.

– It provides a robust and flexible production system that is easy to implement
and is superior in terms of computational efficiency and system latency.

– We evaluate our approach and benefits in our real-world scenarios with mil-
lions of real traffics.

1 Real time is defined as under 200 ms.
2 Session is defined as a 30-min window in this paper.
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2 Related Work

Various methodologies have been built by machine learning and data min-
ing community to conduct better recommendations in different scenarios
[14,21,35], which can be divided into the following categories: static recommen-
dation (Sect. 2.1), time-aware recommendation (Sect. 2.2) and online recommen-
dation (Sect. 2.3).

2.1 Static Recommendation

Static recommendation makes the assumption that both the users and items
rarely change over time and it tries to optimize the relatedness between users
and items given the entire history. All standard and classic recommendation
algorithms such as content based recommendations [18,20], user or item based
collaborative filtering [26], non-negative matrix factorization [24,36] fall into
this category. Such approaches are effective and serve as the core services in lots
of Internet companies [9,13,16]. However, the recommender system by nature
is a dynamic process, which means user online actions or events happened in a
sequential manner and user shopping interests drift over time. Moreover, with the
development of fast and easy Internet access, more frequent online user behaviors
are observed in real time (under 500 ms). It is challenging or even inapplicable
for static recommendation approaches to be responsive and get updated once
user feedback is observed.

2.2 Time-Aware Recommendation

Besides modeling the relations between users and items, various researches have
been done by taking time as the third dimension to capture the evolution of
user interest. Time-aware recommendation approaches aim at explicitly model-
ing user interests over time slices [15,28,29,32] and they can be combined with
various classic recommendation algorithms in static recommendation (Sect. 2.1).
For examples, Ding and Li introduced a personalized decay factor according to
purchase behaviors and proposed time weight collaborative filtering [11]. Koren
developed a collaborative filtering with temporal dynamics which each prediction
is composed of a static average value and a dynamic changing factor [17]. Yin
et al. proposed a user-tag-specific temporal interests model for tracking users’
interests over time by maximizing the time weighted data likelihood [34]. Xiong
et al. used a tensor factorization approach to model temporal factors, where
the latent factors are under Markovian assumption [33]. Lu et al. improved the
standard low-rank matrix factorization by using Kalman filter to infer changes
of user and item factors [22]. Gao et al. modeled the correlations between user
check-in timestamps and locations through an improved matrix factorization
approach [12]. Although many studies above have been considered the temporal
aspects of data, most of them are far away from being responsive. The majority
of proposed approaches model the temporal dependence by a pre-defined time
window, such as hours, days, or weeks, which is far away from serving real-time
recommendations.
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2.3 Online Recommendation

To capture user real-time feedback, several studies focus on improving online
learning algorithms so that recommendation models get updated immediately
once the user online actions happen [1,6,7,10,25]. Agarwal et al. developed an
online bilinear factor model to learn item-specific factors through online regres-
sion. The online regression for each item can be performed independently and
hence the procedure is fast, scalable and easily parallelizable [1]. Rendle et al.
derived an online-update algorithm for regularized kernel matrix factorization
models that allows to solve the cold start problem [25]. Diaz et al. presented
a stream ranking matrix factorization technique, which optimizes the person-
alized ranking of topics. They also proposed a selective sampling strategy to
perform online model updates based on active learning principles, that closely
simulates the task of identifying relevant items from a pool of mostly uninter-
esting ones [10]. Chang et al. viewed the online recommendation problems as an
explicit continuous-time random process, which generates user interested topics
over time. They also provided a variational Bayesian approach to permit instan-
taneous online inference [6]. However, even the majority work above presents
approaches to conduct parallelized online updates with user feedback there are
two drawbacks. First, recommendation model parameters tend to be resistant
to a single user feedback online update and hence it is not sufficient to provide
personalized results. Second, the majority work mentioned above doesn’t scale
well when building a recommender system to suggest billions of items to millions
of daily active users.

3 The Deep Online Ranking System

In this work, we develop a three-level recommender system architecture that is
able to flexibly provide the most relevant and responsive recommendation to our
millions of daily active users. The entire recommendation workflow in our system
includes three phases: (1) candidate retrieval that scans all available item inven-
tory by using forward and backward indices and trims out candidates violating
the business rules (Sect. 3.1); (2) full features scoring and ranking via DNN that
uses the pre-trained DNN to rank all candidates in order to optimize the gross
merchandise volume (Sect. 3.2); (3) online re-ranking via MAB that dynamically
adjusts the ranking results from DNN by using a novel multi-arm bandits algo-
rithm. It takes user real-time feedback such as clicks and captures user shopping
intents as fast as possible (Sect. 3.3). The entire workflow is illustrated in Fig. 1.

3.1 Candidate Retrieval

Candidate retrieval serves as the first phase of our recommendation system and
it is triggered when a user request is received. The recommender system fetches
both user historical data and item features. Then all these information are passed
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Fig. 1. Workflow overview of our recommender system.

to our retrieval system to select initial candidates for full feature scoring. Fur-
thermore, business rule based item trimming or filtering are also done in can-
didate retrieval phase. In a productionized e-commerce recommender system,
various business rules have to be enforced, such as out-of-stock items shouldn’t
be retrieved, the number of items from the same brand should be limited, etc.

3.2 Learning-to-Rank via DNN

In the ranking stage, we develop our novel learning-to-rank DNN model to score
all candidates returned from the retrieval stage by using full sets of features and
hence generate a fine-grained set of items S. Generally speaking, this is achieved
by sophisticated machine learning models such as factorization machines [23],
pairwise learning-to-rank [4,27], listwise learning-to-rank [5], etc. In this work,
the ranking module is implemented by a pairwise learning-to-rank DNN.

The Ranking Problem. Let xi be the m-dimensional feature vector of item
i. Each item i belongs to its category ci. A category in e-commerce generally
represents a group of products that share the same utilities or have similar
functionalities: e.g. apparels, cellphones, snacks, etc. Each item i also associates
with its gross merchandise volume (GMV) gmvi which represents the product’s
retail value and it in most cases corresponds to the item’s final price.

In this work, the goal is that given all retrieved items, select the top K
items so that the discounted cumulative gain (DCG) of GMV is optimized and
the DCGK is defined as follows DCGK =

∑
si∈S gmvsi

I(si)/ log2(i + 1) and
I(si) is the indicator function such that I(si) = 1 when si is purchased and
otherwise, I(si) = 0.3

Learning. In order to optimize the DCG objective, we develop a learning-to-
rank DNN model [3,8]. More specifically, our DNN model is implemented by a

3 The motivation for optimizing GMV is related to the e-commerce company’s business
model. Since investors and shareholders utilize the settled GMV from all e-commerce
transactions generated to estimate the current health and future potential of the
corresponding company, maximizing GMV becomes critical. In general, if each item’s
GMV sets to be 1, optimizing GMV degrades to optimizing the sales conversion.
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Fig. 2. Pairwise architecture of our learning-to-rank DNN.

pair of 5-layer DNNs that share the same set of model parameters. Each DNN
includes 1 input layer, 3 fully-connected layers and 1 output layer. The input
layer takes feature xi, which contains both item and user information via one-hot
encoding. The high level model structure is shown in Fig. 2 (Left).

In our training, instead of using the binary labels which indicate whether
items are bought, we conduct calibrations on binary labels and convert them
into real-valued labels yis, where 0 ≤ yi ≤ 1. The calibrated labels (yis) are
computed by using item si’s GMV gmvsi

that represents how much revenue will
be generated if si is impressed comparing against the maximum gmv under the
same category csi

, shown in Eq. (1).

yi = Y(gmvsi
, I(si)) = gmvsi

maxs∈csi
gmvs

× I(si) (1)

To train our pairwise DNN model (shown in Fig. 2), we generate training
example pairs by combining a positively scored item and a randomly selected
zero scored item (y = 0.0). Furthermore, we define the loss function of the
proposed DNN as follows.

L =
∑

j

[(ŷ1j − y1j)2 + (ŷ2j − y2j)2 + λ max(0, γ − (ŷ1j − ŷ2j)(y1j − y2j))] (2)

where <x1j , y1j> and <x2j , y2j> are the first and second examples in the j th
pair. ŷ1j and ŷ2j are the outputs of the DNN predictions of the first and second
sample: ŷ = DNN (x). λ is the weighting parameter that balances the square
loss of each prediction and the hinge loss of the prediction distance for such pair.
γ serves as the classification margin to make sure that separability between each
pair is preferred.

Prediction. In the prediction phase, each item xi ∈ S passes through the well
trained learning-to-rank DNN predictor (Fig. 2 (Right)), and DNN predicts the
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output score ŷi, i.e., ŷi = DNN (xi). ŷi is later served as the candidate score of
item xi for the online MAB based ranker to make further re-ranking.

3.3 Online Re-ranking via MAB

Even the pre-trained DNN model in Sect. 3.2 is good at selecting items, it fully
relies on the historical aggregated user information, which tends to be out-
dated and cannot reflect the up-to-date user intents. Furthermore, user shopping
intents vary with time and they change even within a single session. For exam-
ple, tens or hundreds of impressions without a single click may indicate users are
bored of current recommendations and it may be worthwhile to make “broader”
recommendation and let users explore products in other categories. On the other
hand, if a few clicks or purchases are observed, the following recommendations
probably need to be “focused” and allow users to fully exploit relevant products.
It is necessary to have such responsive recommender systems that keep track of
transient shopping intentions while users are browsing the product feeds.

It is very difficult to achieve such responsiveness by using the DNN model
in the second phase (Sect. 3.2) since doing full scoring of all the candidates after
each user click or purchase event is computationally prohibitive. Moreover, it is
not easy to have an online update to incorporate most recent events into the
ranking model and hence the ranking model may become stale.

In this work, we develop a dynamic online re-ranking algorithm by revising
the classic Thompson sampling. We pick Thompson sampling out of other MAB
approaches due to its implementation straightforwardness. Further, by careful
revising, the revised -Thompson sampling turns out to be superior in terms of
performance metrics which we will elaborate in more detail. Our MAB based
re-ranking algorithm is able to

– promote recommended items that users are potentially interested in;
– demote items that users are intentionally ignored;
– explore items from different categories to diversify the ranking results.

Here, we follow the problem settings of the contextual multi-arm bandits
problem in [19], and define the contextual bandits (see Definition 1) and rewards
(see Definition 2) in DORS as follows.

Definition 1 (Contextual Bandits in DORS). Let each arm represent a
product category c and S be a set of K top ranked items from DNN. Such K
items are then divided into different arms based on their own product categories.
The player pulls one arm ci at round i, selects the top item xi from the chosen
arm which has not been displayed yet and contiguously places the item to the
item selected from round i − 1. The reward at round i is observed as gmviI(xi).
Ideally, we would like to choose arms such that the total rewards are maximized.

Definition 2 (Rewards in DORS). The rewards are defined as the total GMV
generated from S that users place orders on. In general it can be written as:
Revenue(K,S) =

∑
si∈S gmvsi

I(si).
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The revised -Thompson sampling algorithm is triggered after learning-to-rank
DNN. After taking the DNN output as the static ranking results, DORS orga-
nizes items by categories, and fine tunes the local orders of the DNN static
ranking, which enables more efficient convergence by enforcing DNN scores as
the warm starts and analyzing user feedback including impressions and clicks as
rewards signals for the Thompson online re-ranking.

At the initialization stage, we group the pre-ranked items based on their
categories, and define each group as a single arm, which is modeled by a unique
beta distribution as follows

f(r;αc, βc) =
Γ (αc + βc)
Γ (αc)Γ (βc)

rαc−1(1 − r)βc−1 (3)

where αc and βc are two hyper-parameters.
Let avgc represent the average DNN scores of all items in category c. We

initialize αc, βc, avgc by DNN pre-ranked scores which represent how likely the
user be interested in those items based on recent history. At round i, the revised -
Thompson sampling randomly draws M samples {r}M based on M estimated
beta distributions, and then selects the item associated with the highest adjusted
score ŷi for exposure at round i. If the item is clicked, the algorithm updates
αci in arm ci. Otherwise, the algorithm updates βci in arm ci. The details of
the MAB algorithm in DORS are described in Algorithm1. Please note that the
values of θ1, θ2, θ3, δ in our current production are selected by grid searches in
online A/B experiments.

One challenge that stops people from using the multi-arm bandits model to
the real production system might be the lack of existence of researches regard-
ing the multi-arm bandits convergence analysis. Such convergence efficiency is
important since most customers in average only browse less than one handred
items per visit. In this section, we prove that the revised -Thompson sampling in
DORS guarantees the efficient convergence and provide the regret boundaries in
two cases.

As described in earlier sections, arms are pulled based on the beta distribu-
tions f(r;α, β) = Γ (α+β)

Γ (α)Γ (β)r
α−1(1−r)β−1, and for each item, the rewards are set

to be gmvsi
I(si), indicating whether a gmv related user action would happen

at the current round. Without loss of generality, by assuming each item’s gmv
identity and taking the expectation, we simplify the total rewards and translate
it into the modified total expected regrets as:

E(Regret(K,S)) = E[
K∑

k=1

(μ∗ − μi(k))] =
∑

i

ΔiE[hi(K)] (4)

where Δi = μ∗ − μi(k) denotes the regret for pulling the ith arm and hi denotes
the number of plays for ith arm up to round k − 1, μ∗ denotes the maximum
reward (calibrated revenue) the system could possibly reach for exposing item i
in round i, here in our case μ∗ = 1.0. Suggested in Algorithm 1, unlike traditional
Thompson sampling updating strategies, we utilized DNN score ŷs to update



194 Y. Yan et al.

hyper parameter α and β for each beta distribution with smoothing factors
under our GMV identity assumptions.

Algorithm 1. MAB in DORS: the revised -Thompson sampling.
INPUT:
δ: control the intensity of negative feedbacks
θ1, θ2, θ3: control how much the DNN scores to be tuned
αc, βc: the hyper parameter of beta distribution for category c.
S: the items that are top ranked by the DNN algorithm
Uc: the items that are not selected in category c.
Ec: the items that are impressed but not clicked in category c.
Ac: the items that are impressed and clicked in category c.
M : the total number of categories / arms
| · |0: the cardinality operator.
procedure INITIALIZATION

for each 〈x, ŷ〉 ∈ S do
for arm c such that x ∈ c do

αc = αc + ŷ
βc = βc + (1 − ŷ)
Uc = Uc ∪ {〈x, ŷ〉}

avgc = αc/|Uc|0
procedure At round-i MAB ranking

PULLING ARMS:
for each arm c do

sample r ∼ f(r; αc, βc)
update all ŷ = ŷ × (1 + r/θ1) for 〈x, y〉 ∈ c

pick category c = arg maxc{r1, r2, . . . , rM}
pick item 〈xi, ŷi〉 = arg maxi{ŷ ∈ c}
Uc = Uci − 〈xi, ŷi〉
FEEDBACK:
if 〈xi, ŷi〉 is impressed but not clicked then

Ec = Ec ∪ {〈xi, ŷi〉}
βci = βci + (1 − avgci) × (1 − exp(− |Eci

|0
δ

)) × θ2

if 〈xi, ŷi〉 is impressed and clicked then
Aci = Aci ∪ {〈xi, ŷi〉}
αci = αci + avgci × (

|Aci
|0

|Eci
|0 ) × θ3

Theorem 1. For the 2-armed case the revised-Thompson sampling holds the
expected regret:

E(Regret(K,S)) ≤ 40 ln K

Δ
+

48
Δ3

+ 18Δ = O(
ln K

Δ
+

1
Δ3

) (5)

where Δ indicates the difference in mean between the reward from the optimal
arm μ∗ and the reward from the suboptimal arm μsub: Δ = μ∗ − μsub.
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Theorem 2. For the M -armed case (M > 2) the revised-Thompson sampling
holds the expected regret:

E(Regret(K,S)) ≤ O(
Δmax

Δ3
min

(
M∑

a=2

1
Δ2

a

) ln K) (6)

Detailed proof can be found in supplemental materials. With convergence
guarantees, we know that the revised -Thompson sampling helps the system
achieve the overall optimized GMV performance with the expected regret no
greater than O(Δmax

Δ3
min

(
∑M

a=2
1

Δ2
a
) ln K).

4 Experiments

4.1 Case Study

We first walk through a simple case study to evaluate different bandit algo-
rithms under the streaming recommendation use cases. We pick three state-of-
the-art bandit algorithms: ε-greedy [31], Upper Confidence Bound (UCB) [2],
and Thompson sampling [30]. Specifically, we simulate two versions of Thomp-
son sampling:

– revised-Thompson: the revised Thompson sampling with learning-to-rank
DNN initializations (Algorithm1);

– normal-Thompson: the normal Thompson sampling without initializa-
tions.
The random selection is also evaluated as a näıve baseline.

In the simulation, we design M = 5 arms. If the user clicks, we set each item’s
reward as 1, and 0 otherwise. The way we simulate “click”s is by presetting
a thresholding probability τ . When an item is selected by different algorithms
at each round, we sample another probability fitem based on that item’s real
unknown beta distribution. If fitem ≥ τ , we assume the “click” happens; other-
wise we assume the user is not interested in the item which results in “no click”
at that round.

We run this simulation 10 times and at each time we operate 10, 000 rounds.
The average performance is shown in Figs. 3 and 4. The left subfigures are the
cumulative gains/regrets for different methods and the right subfigures zoom in
the early stage of different algorithms’ performance. As shown, ε-greedy remains
suboptimal regarding both rewards and regrets; UCB and normal -Thompson
perform almost equally well; while the revised -Thompson performs the best in
terms of faster convergence comparing to UCB and normal -Thompson. This
is because the revised -Thompson initializes its arms based on the DNN scores
of each item and updates its hyper-parameters via the user feedback. Hence,
the revised -Thompson converges in less steps relative to other standard MAB
approaches. The random selection no-surprisingly performs the worst against
other approaches. Regarding with implementation, the revised -Thompson is
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straightforward and the overall system latency remains very low (the details
are reported in Sect. 4.5). From this case study, the revised -Thompson proves
itself to be the best choice out of many other MAB approaches for the online
re-ranking module in DORS.

Fig. 3. MAB rewards simulation. Fig. 4. MAB regrets simulation.

4.2 Experiment Setup

We conduct large-scale experiments on www.jd.com, which processes millions of
requests in a daily basis. The total traffics have been divided into 11 buckets:
the biggest bucket serves as the control bucket which takes about 20% of the
total traffics and the rest 10 buckets gets about 8% traffics each, each of which
is served as one testing bucket.

We first deploy DORS to one testing bucket for one week, and track the fol-
lowing metrics: GMV, order numbers, overall and page-wise (Eq. (7)) normalized
discounted cumulative gains (NDCG).

DCGp,k =
p∑

i=1,k∈page

gmvkiI(xki)
log2(i + 1)

IDCGp,k = max
H

DCGp,k

NDCGp,k = DCGp,k/IDCGp,k

ΔNDCGp,k
= (NDCGtest

p,k /NDCGcontrol
p,k − 1.0) × 100.0% (7)

H : all possible arrangement of items in page − k

Since the item lists are presented to users in a page-wise fashion and each
page contains 4–20 items (front-page typically contains 8 items per page), page-
wise NDCGp (p = 8) is a perfect metric for evaluating how DORS is performing
in real world and how much gains observed are due to DORS online re-ranking.

Experiments include four methods and we briefly explain each of them as
follows:

www.jd.com
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– DORS: our proposed online ranking framework which is composed
by learning-to-rank DNN and the revised -Thompson sampling as online
re-ranking;

– DNN-normal-Thompson: a right straight combination of learning-to-rank
DNN and normal Thompson sampling without the specialized initialization.
This model explains how the non-contextual bandits algorithm performs as
the online ranker in the production system;

– MAB-only: is implemented via a normal Thompson sampling without
learning-to-rank DNN and using the historical click through rate to update
the beta distributions;

– DNN-rt-ft : utilizes another learning-to-rank DNN with the same model
structure. The difference is that besides utilizing offline features used in
DORS, DNN-rt-ft takes most recent user feedback into the DNN training
process to generate its own ranking results.

We report the performance of 7-day average page-wise NDCG gain in Fig. 5.
At the first glance, it is clear that MAB-only performs the worst among all
four algorithms, which explains the importance of the learning-to-rank DNN
serving as the static ranking phase. Further, similar to what has been observed
in the previous case study, without the specialized initialization, DNN-normal -
Thompson fails to DNN-rt-ft due to the fact that by limited online signals, the
normal -Thompson is slow in convergence. By our design, the proposed DORS
beats the production baseline DNN-rt-ft by efficiently learning the user online
intents.

4.3 Production Performance

Taking a closer look, we evaluate the DORS page-wise NDCG percentage gains
over DNN-rt-ft in Table 1 and Fig. 6. By understanding each user recent behav-
iors via the personalized initialization and learning the real-time signals for online
ranking, although they are not quite visible at page-1 (+1.47%), the gains for
DORS at page-2 (+9.96%) and page-3 (+8.90%) quickly boost up, and then
gradually diminish along with more items users browse. In the end, the gap
between DORS and DNN-rt-ft becomes closer again at page-7 (+1.54%) and
page-8 (+1.34%).

In terms of overall ranking performance, we report the final ranking NDCG
percentage gain between DORS and DNN-rt-ft in a daily basis as shown in
Table 2, as one can see, DORS consistently beats DNN-rt-ft. In average DORS’s
overall NDCG is 4.37% better comparing against DNN-rt-ft.

We also report the daily GMV gain/loss for DORS, DNN-normal -Thompson
and MAB-only over DNN-rt-ft. In average we see DORS has increased 16.69%
over DNN-rt-ft (Table 3). Daily GMV gains that are greater than 1.0% are typ-
ically translating into revenue in hundreds of thousands of dollars. On the one
hand, DORS has proved its superiority against the current production DNN-rt-
ft ranking algorithm in terms of operating revenue; on the other hand, without
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Fig. 5. 7-day page-wise NDCG for DORS,
DNN-rt-ft, DNN-normal-Thompson, MAB-
only.

Fig. 6. 7-day page-wise NDCG per-
centage gain for DORS v.s. DNN-rt-ft.

decent learning-to-rank DNN static ranking or carefully designed initializations,
DNN + normal -Thompson (Table 4) and MAB-only (Table 5) both failed to beat
the baseline by losing 8.08% and 19.57% in revenue respectively.

Table 1. Page-wise NDCG gain A/B test comparison: DORS v.s. DNN-rt-ft.

Page Page-1 Page-2 Page-3 Page-4 Page-5 Page-6 Page-7 Page-8

ΔNDCG +1.47% +9.96% +8.90% +7.55% +6.40% +6.95% +1.54% +1.34%

Table 2. Daily NDCG gain A/B test comparison: DORS v.s. DNN-rt-ft.

Date Day1 Day2 Day3 Day4 Day5 Day6 Day7 Average

ΔNDCG +5.60% +10.23% +2.90% +1.93% +1.59% +6.96% +2.34% +4.37%

Table 3. GMV and orders comparison for DORS v.s. DNN-rt-ft.

Date Day1 Day2 Day3 Day4 Day5 Day6 Day7 Summary

GMV +22.87% +45.45% +20.20% +2.73% +0.91% +23.15% +1.50% +16.69%

Orders +2.14% +1.57% +5.18% +0.42% +2.79% +4.19% +2.20% +2.64%

Table 4. GMV and orders comparison for DNN + normal-Thompson v.s. DNN-rt-ft.

Date Day1 Day2 Day3 Day4 Day5 Day6 Day7 Summary

GMV −12.08% −9.33% −4.74% −3.24% −18.31% −7.49% −1.43% −8.08%

Orders 0.30% −4.72% −1.34% −0.67% −10.67% −4.69% −0.81% −3.23%

Table 5. GMV and orders comparison for MAB-only v.s. DNN-rt-ft.

Date Day1 Day2 Day3 Day4 Day5 Day6 Day7 Summary

GMV −29.52% −17.46% −37.17% −8.99% −32.61% −5.21% −6.04% −19.57%

Orders −8.33% −12.51% −7.66% −5.91% −15.35% −7.64% −3.87% −8.75%
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4.4 Distribution Analysis

It is worth analyzing the page-wise click distribution in a daily basis between
DORS and DNN-rt-ft to better understand why the GMV has been significantly
driven. Figure 7 is the daily page-wise click distributions over 7 days. For the
figure readability, we display y-axis in the log10 scale, keep three significant digits
and round up all numbers that are smaller than 1.0 to 1.0 (log10(1.0) = 0.0).
Since each page displays 8 items for recommendations, the page-wise clicks could
at most reach 8. The x-axis indicates the number of clicks people make and y-axis
indicates the number of people making certain clicks at that page.

At page-1, the DORS histogram resembles the DNN-rt-ft histogram. This is
due to the fact that the online user signals have not been fed into the MAB yet,
so DORS is not expected to behave differently from DNN-rt-ft. At page 2–7, we
observe the DORS histograms consistently “flatter” than DNN-rt-ft histograms.
Note that from page 2–7 DORS wins most cases against DNN-rt-ft. This could
be explained by the fact that the revised -Thompson is better in capturing user
online intents so the online ranking results are optimized and people tend to
click more frequently. Finally, the DORS histogram at page-8 resembles DNN-
rt-ft again, due to the fact that at page-8 most users either have their intents
captured or they abandon the site visit.

4.5 System Specifications

Our current DORS ranking framework is maintained by hundreds of Linux
servers4. Each machine processes 192 queries per second in average (peaking
at 311), and the 99% percentile end-to-end latency is within 200.0 ms. In our
current production, the feature dimension is 5.369 × 108.

Fig. 7. Daily page-wise click distribution: DORS v.s. DNN-rt-ft.

4 We could not release the exact number of operating servers due to the company
confidentiality.
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5 Conclusion

In this paper, we presented a novel three-level recommender system for
e-commerce recommendation, which includes candidate retrieval, learning-to-
rank DNN and MAB based online re-ranking. Compared to the traditional rec-
ommender systems, our approach is relevant, responsive, scalable and is run-
ning in production to serve millions of recommendations everyday. Our offline
case studies have empirically demonstrated the efficiency for learning-to-rank
DNN serving as the static ranking as well as the warm start for the revised-
Thompson initializations that enable the quick convergence. Furthermore, online
A/B experiments have been used to prove DORS is superior in terms of page-
wise/overall NDCG as well as the operating revenue gains when serving in the
real production system.
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