®

Check for
updates

Analysis of Error-Correcting Codes
for Lattice-Based Key Exchange

(=)

Tim Fritzmann' , Thomas Poéppelmann?, and Johanna Sepulveda!

! Technische Universitit Miinchen, Munich, Germany
{tim.fritzmann, johanna.sepulveda}@tum.de
2 Infineon Technologies AG, Munich, Germany
thomas.poeppelmann@infineon. com

Abstract. Lattice problems allow the construction of very efficient key
exchange and public-key encryption schemes. When using the Learning
with Errors (LWE) or Ring-LWE (RLWE) problem such schemes exhibit
an interesting trade-off between decryption error rate and security. The
reason is that secret and error distributions with a larger standard devia-
tion lead to better security but also increase the chance of decryption fail-
ures. As a consequence, various message/key encoding or reconciliation
techniques have been proposed that usually encode one payload bit into
several coefficients. In this work, we analyze how error-correcting codes
can be used to enhance the error resilience of protocols like NewHope,
Frodo, or Kyber. For our case study, we focus on the recently introduced
NewHope Simple and propose and analyze four different options for error
correction: (i) BCH code; (ii) combination of BCH code and additive
threshold encoding; (iii) LDPC code; and (iv) combination of BCH and
LDPC code. We show that lattice-based cryptography can profit from
classical and modern codes by combining BCH and LDPC codes. This
way we achieve quasi-error-free communication and an increase of the
estimated post-quantum bit-security level by 20.39% and a decrease of
the communication overhead by 12.8%.

Keywords: Post-quantum key exchange + NewHope Simple
Error-correcting codes

1 Introduction

Recently, lattice-based key exchange [3,4,9], public-key encryption (PKE) [11,
22] and signature schemes [6,7,13] have attracted great interest due to their per-
formance, simplicity, and practicality. Aside from NTRU [19] and when focusing
on ephemeral key exchange and PKE, the Learning with Errors (LWE) problem
and the more structured Ring-LWE (RLWE) problem are the main tools to build
state of the art schemes. An interesting property of LWE and RLWE is that the
security of the problem depends on the dimension of the underlying lattices but
also on the size and shape of the distribution used to generate random secret and
© Springer Nature Switzerland AG 2019

C. Cid and M. J. Jacobson, Jr. (Eds.): SAC 2018, LNCS 11349, pp. 369-390, 2019.
https://doi.org/10.1007/978-3-030-10970-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10970-7_17&domain=pdf
http://orcid.org/0000-0002-5483-4292
http://orcid.org/0000-0003-3686-994X
https://doi.org/10.1007/978-3-030-10970-7_17

370 T. Fritzmann et al.

error elements. When constructing key exchange or PKE schemes this is critical
as error elements cannot always be removed by the communicating parties and
can lead to differences in the derived key (in key exchange) or differences in the
message (in most PKE instances). Thus, small differences in the shared key or
decrypted message have to be mitigated by encoding techniques or might finally
cause a re-transmission or lead to the inability to decrypt a certain ciphertext.

A reduction of the failure probability by using a better encoding opens up
the possibility to (a) increase the LWE/RLWE secret and error terms and thus
to strengthen security or (b) to decrease the size of ciphertexts, or in general
exchanged data, by removing more information. Moreover, it is important to
distinguish between the requirements for ephemeral key exchange and PKE
schemes. For ephemeral key exchange, a higher failure probability may be accept-
able (e.g., around 27%%) because key agreement errors do not affect the security
of the scheme. In the presence of errors, the two parties can just repeat the key
exchange process. The issue of decryption errors is more critical when using LWE
or RLWE-based schemes to instantiate a PKE scheme. The basic LPR10 [24]
scheme is only considered appropriately secured with respect to adaptive cho-
sen plaintext attacks (CPA), which is usually not sufficient in a setting where an
adversary has access to a decryption oracle. A commonly used tool for transform-
ing a CPA-secured PKE into a scheme secured against chosen-ciphertext attacks
(CCA) is the Fujisaki-Okamoto transformation [15,31]. However, a CCA secured
cryptosystem using this transformation requires a decryption/decoding routine
with a negligible error rate because an attacker could exploit decryption errors.
To increase the resilience against attacks exploiting decryption errors, the failure
rate is desired to be lower than 27128, As in Frodo [2] and Kyber [5], in this work
we aim for a failure rate lower than 27140 to have a sufficient margin on the error
probability. Note that existing works, such as Hila5 [29] and LAC [23], use an
independence assumption to calculate the protocol’s failure rate. This assump-
tion is related to the correlation between the coefficients of the error term in
LWE/RLWE based schemes. The effect of this correlation on the failure rate is
still an open research question and it is not in the scope of this work (see also
Sect. 3.2 in [28] for a discussion). However, to decrease decryption errors without
decreasing the security of the underlying lattice problem, the reconciliation and
en-/decoding techniques are important.

Concurrent to our work, the lattice-based algorithms Hila5 [29], KCL [32],
ThreeBears [18] and LAC [23] where developed. They explicitly use forward error
correction to achieve better resilience against decryption errors. Except of LAC,
which uses a powerful Bose-Chaudhuri-Hocquenghem (BCH) code, all aforemen-
tioned schemes apply an error correction that is only capable of correcting a few
errors. In this work, we investigate the applicability of more elaborated and
modern codes for lattice-based cryptography. Generally, error-correcting codes
can be applied in LWE/RLWE schemes when the exchanged key (or message) is
chosen by only one of the parties. For example, Frodo, Kyber and NewHope Sim-

Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 371

ple can benefit from the application of powerful error-correcting codes'. For our
case study, we focus on the RLWE-based NewHope Simple scheme [3], which was
submitted with small changes to NIST’s call for post-quantum proposals [25].
Compared to an earlier version (called just NewHope) [4], NewHope Simple fea-
tures a simpler message encoding scheme that uses an additive threshold encod-
ing algorithm and which exhibits a failure rate of less than 2751, Note that the
version of NewHope submitted to the NIST process reaches a failure rate lower
than 27140, This was achieved by reducing the variance of the error distribution.
However, in this paper we analyzed different approaches to reduce the failure
rate without decreasing the level of security.

Contribution. In this work, we perform an exploration of more powerful error-
correcting codes for key exchange mechanisms in order to obtain a quasi-error-
free communication and to improve important performance parameters. Our
work intensively studies the behaviour of the failure rate when different error-
correcting codes and security parameters are applied. For the first time, modern
codes, more specifically low-density parity-check (LDPC) codes, are used in this
context and compared with the performance of classical BCH codes. In general,
the results of the exploration of the design space show that there are several
design decisions that make it possible to decrease the failure rate to a value
lower than 270 increase the security and decrease the communication over-
head between the two parties. The selection of a coding option is driven by the
requirements of the application. In addition, regarding the protocol’s failure rate
calculation, we extend the works of [9,10,28], to apply the approach to NewHope
Simple. Additionally, we provide first benchmark results. However, we leave the
optimization of the implementations with regard to cache and timing attacks to
future work as we focus on the exploration of the large design space.

2 NewHope Simple

NewHope Simple, proposed by Alkim, Ducas, Péppelmann and Schwabe in
2016 [3] as a simplification of NewHope [4], is a lattice-based key exchange,
or more specifically a key encapsulation mechanism (KEM), that is built upon
the RLWE problem. It allows two entities (Alice and Bob) to agree on a 256-bit
shared key u that is selected by Bob. In the following subsections, the description,
security considerations and parameters of NewHope Simple are summarized.

2.1 Notation

Let R = Zg4[z]/ (2™ +1) be a ring of integer polynomials. All elements of the ring
R can be written in the form f(z) = ag + a1x + asx® + -+ - + a,_12" 1, where
the integer coefficients ag, a1, ...,a,—1 are reduced modulo g. We write a A

for sampling a value a from the distribution S, where sampling means to take

! In order to apply error-correcting codes, some changes in the protocol may be nec-
essary, e.g. different parameter selection and/or encoding/decoding functions.

372 T. Fritzmann et al.

a random value from a set S. Let ¥} be a binomial distribution with parameter
k. The distribution is determined by ¥, = S>¥" " b; — b], where b;,b; € {0,1}
are uniform independent bits. The binomial distribution is centered with a zero
mean, approximates a discrete Gaussian, has variance k/2, and gives a standard

deviation of ¢ = /k/2.

2.2 Protocol

Protocol 1 shows the underlying algorithm of NewHope Simple. Eight steps
are highlighted due to the relevance to the present work. For a more detailed
description of the algorithm and for details about the application of the CCA
transformation, we refer the reader to [3] and [1].

Alice (server): Bob (client):
@ seed & {0,1}25¢
a <« Parse(SHAKE(seed))
@ $,€ i winﬁ @ Slae/>e// i WILG
mg =encodeA (b,seed)
@ b—as+e ®) (b,seed) « decodeA(m,)
a «—Parse(SHAKE(seed))
@ v & {0,177
d «— NHSEncode(v)
@ u<«—as +eé
c+—bs'+e" +d
® (u,¢) < decodeB(my,) (6) ¢ « NHSCompress(c)
¢’ «— NHSDecompress(c) u — SHA3-256(v)
@D d —c —us
v’ « NHSDecode(d')
u — SHA3-256(v")

my =encodeB(u,)

Protocol 1. NewHope Simple protocol. All polynomials are elements of the ring R =
Zqg|z]/(z™ + 1), where n = 1024 and ¢ = 12289 [3].

1. Alice samples the seed from a random number generator. The seed is
expanded with the SHAKE-128 extendable-output function. The expanded
seed is used to generate the public polynomial a.

2. Alice and Bob sample the coefficients of the secret polynomials s and s’, and
the error polynomials e, € and e’ according to the error distribution ¥.

3. Alice calculates b = as + e and sends it together with the seed to Bob.
Extraction of the secret s from b is hard due to the error term e and because
b is exactly an RLWE instance. Similar to Alice, Bob can use the seed to
generate the public polynomial a.

4. Bob samples 256 bits from a random number generator and assigns them to
the secret key vector v. Then, Bob encodes v into the most significant bit of
the coefficients of polynomial d = NHSEncode(v). The function NHSEncode,

Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 373

which is given in Appendix A, maps one bit of v into four coefficients of d.
This redundancy is used by the NHSDecode function in Step 7 to average out
small errors.

5. Bob calculates u = as’ + ¢’ and hides the secret key polynomial d in ¢ =
bs' +e" +d = ass’ +es’ +€"” +d. The polynomials u and c are again instances
of the RLWE problem.

6. Bob sends to Alice the polynomial v and the compressed polynomial ¢. The
goal of the compression of polynomial ¢ is the reduction of the communication
overhead between Alice and Bob.

7. Alice removes the large noise term ass’ from the decompressed polynomial ¢’
by calculating d’ = ¢ —us =~ bs' +e”" +d—(as’'+€')s =ass’+es’ +e”" +d—
ass’' —e's = (es' —e's) + €” + d. Alice obtains the term v’ after decoding d’,
using the function NHSDecode, which is also provided in Appendix A.

8. After the decoding, Alice and Bob can use v' and v, respectively, as input for
the SHA3-256 function to obtain the shared key.

The functions NHSEncode and NHSDecode of NewHope Simple build an error-
correcting code, which is used to remove small errors and to increase the prob-
ability that Alice and Bob share a similar key. For the remainder of this paper,
this error-correcting code is denoted as additive threshold encoding algorithm.

2.3 Security of NewHope Simple

The security level of NewHope Simple depends on three parameters: the dimen-
sion n of the ring, the modulus ¢, and the parameter k that determines the
standard deviation of the noise distribution ¥. In this work, the parameters
n and ¢ are not modified. Only k is used to improve the security of NewHope
Simple as larger noise also leads to a higher security level. For determining the
security level, the test script and methodology? from [4] can be used.

2.4 Noise Sources of the Protocol

NewHope Simple contains two noise sources: the difference noise and the com-
pression noise. As noise we define all terms that have an influence on the cor-
rectness of the decryption/decoding or reconciliation mechanisms. The reason is
that we can model the distortion caused by the convolutions of the secret and
error polynomials as noise that is added to encoded data transmitted over a
channel.

The difference noise emerges from the design of the protocol. Alice is able
to remove the strongest noise term ass’ from polynomial ¢ (Step 7), but a small
noise term remains. This noise term is called difference noise and is equal to
(es’ —e€’'s) + €”. The coefficients of the secret and error polynomials are sampled
from the error distribution ¥;. When k is increased, the probability of receiving
a stronger difference noise increases as well.

2 Script PQsecurity.py in https://cryptojedi.org/crypto/#newhope.

https://cryptojedi.org/crypto/#newhope

374 T. Fritzmann et al.

The compression noise is introduced by the function NHSCompress (Step 6).
It compresses the polynomial ¢ = ass’ + es’ + €” + d to reduce the communica-
tion overhead between Alice and Bob. This is possible as lower-order bits carry
a high amount of noise and have low information content. To remove such lower
order bits, a coefficient-wise modulus switching between the security parameter
q and 2" is performed, where 7 is the number of remaining bits. To reduce the
number of transmitted bytes between Alice and Bob, the transmitted polynomi-
als b, ¢ and u can be compressed. In the original implementation of NewHope
Simple, the compression is only applied on polynomial ¢, where each coefficient
of ¢ is reduced from 14 bits to 3 bits. In this work, we further reduce the com-
munication overhead by compressing polynomial u as in Kyber [10]. To obtain
a moderate compression noise, a weaker compression on the coefficients of poly-
nomial u has to be applied. As the uniformly distributed compression noise of u
is multiplied with the binomially distributed secret s, the compression noise of
u gets magnified.

3 Failure Rate of NewHope Simple

In the original implementation of NewHope Simple, the failure rate is bounded
applying the Cramér-Chernoff inequality [3]. This approach provides a proba-
bility bound that can be far away from the real failure probability. Previous
works, such as Frodo [9], Kyber [10] and Hila5 [28], use probability convolutions
to determine the probability distribution of the difference between the keys of
Alice and Bob. With the probability distribution of the difference, it is possi-
ble to derive the protocol’s failure rate. In the following subsections, we shortly
explain how to calculate the probability distributions of the two noise terms,
difference noise and the compression noise, mentioned in Subsect. 2.4, and how
to calculate the failure rate by a given error distribution.

3.1 Mathematical Operations with Random Variables

In this subsection, the mathematical background for determining the probability
distributions of the difference noise and the compression noise is given.

NewHope Simple uses a binomial distribution for sampling secret and error
polynomials. The probability mass function of a binomial random variable (RV)
Xis f(i) =Pr(X =1) = (i)pz(l —p)~ifori=0,1,...,I. For NewHope Simple,
p = 0.5 and [is equal to the error distribution parameter k£ multiplied by two.

Let us define in Theorem 1 the probability distribution of the addition and in
Theorem 2 the probability distribution of the multiplication of two independent
RVs. Since in NewHope Simple polynomial instead of conventional multiplica-
tions are required, we define in Theorem 3 the polynomial product distribution.
The proof for Theorem 3 can be found in Appendix B.

Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 375

Table 1. Calculating distribution of d = (es’ —¢’s) +¢”

Step | Action Result

Step 1| Product distribution of two RVs sampled from ¥ | ¥z

Step 2 | n-fold convolution of the product distribution es’

Step 3 | Convolve distribution of es” with itself (es’ —¢€'s)
Step 4 | Convolve distribution of (es’ — €’s) with ¥ (es’ —e's) +¢€”

Theorem 1 (Addition of random variables). Let Ux (x) and Py (y) be two
probability distributions of the independent random variables X andY . Then the
probability distribution of the sum of both random wvariables corresponds to the
convolution of the individual probability distributions, which can be written as

LpXer = WZ(Z) = S[lx(l‘) ® !Py(y) /]7/

Theorem 2 (Product distribution). Let Ux (x) and Yy (y) be two probability
distributions of the independent random variables X and Y. Then the product
distribution Vz(XY =c¢) =} cx yevs.taoy—c TVx (@) ¥y (y).

Theorem 3 (Polynomial product distribution). Let a and b be two polyno-
mials of a ring Ry with rank n and with independent random coefficients sampled
from Wy, and let ¢ be the result of the polynomial multiplication of a and b. Then
the probability distribution of a random coefficient of ¢ is equal to the n-fold con-
volution of the product distribution W of two random variables sampled from
.

3.2 Probability Distributions of Difference and Compression Noise

Difference Noise. The partial steps for calculating the probability distribu-
tion of the difference term are summarized in Table 1. Note that all calculated
probability distributions are related to a single coefficient of a polynomial. The
probability distribution of the polynomial product es’ can be described as an
n-fold convolution of the product distribution of two RVs sampled from ¥;. In
our case, the probability distributions of an addition and subtraction of two
RVs are equal because the RVs are sampled from a symmetrical distribution
that is centered at zero. To obtain the probability distribution for (es’ — €’s),
we convolve the probability distribution of es’ with itself. Finally, we convolve
the distribution of ¢’ with the result to obtain the probability distribution of
(es’ —e's) +e”.

Compression Noise. The probability distribution of the compression noise
can be calculated similar to the probability distribution of the difference noise.
The polynomial ¢ = ass’ + es’ + €” + d consists of the uniformly distributed
public parameter a, some terms sampled from the error distribution and the
secret key d. Depending on the respective key bit, the coefficients of polynomial

376 T. Fritzmann et al.

d are either zero or |g/2|. Both values, zero and |g/2]|, are not affected by
the compression. They can be compressed and decompressed without any loss
of information. Consequently, the compression noise is only dependent on the
term Cuncompressed = ass’ + es’ + €’’. The coefficients of the secret and error
polynomials are sampled from ¥, and the coefficients of a are sampled from
a uniform distribution U, with outcomes between 0 and ¢ — 1 (after modulus
reduction). In Fig. 11 (Appendix C) the probability distribution of the difference
and compression noise is plotted.

3.3 From the Noise Distribution to the Failure Rate

Note that the coefficients of the product of two polynomial ring elements are
correlated and not independent anymore. This correlation does not influence the
validity of Theorem 3 and the calculations done in Subsect. 3.2 because there the
calculations are related to a single coefficient. To determine the failure rate, we
apply arithmetic operations on correlated coefficients and thus assume that the
correlation between the coefficients has a negligible influence to the final result.
The experiments discussed in Appendix D have shown that this assumption is
valid at least for high failure rates. The independence assumption is also required
in Eq.2 (Subsect.5.2) to calculate the failure rate of NewHope Simple with a
t-bit error-correcting code. To have a safety margin, we aim for a failure rate of
27140 instead of 27128,

In order to determine the failure rate, given a noise distribution, a closer look
at the NHSDecode function must be taken. During the decoding, when one bit is
mapped into four coefficients, the absolute values of the four coefficients that are
subtracted by |g/2] are summed up. This decoding step is done for all outcomes
of the overall error distribution (convolution of difference and compression noise
distribution). First, the values of all outcomes are subtracted by |¢/2] and the
absolute values are built. Let us denote the resulting error distribution as Wye..
In the next step, we convolve the distribution of four coefficients ¥, = Wge. ®
Ygee ® Ugee ® WYye.. Note again that for this step we assume that the correlation
between the coefficients is negligible. To obtain the bit error rate (BER) of
NewHope Simple, all probabilities of the outcomes of ¥, . that are lower than
or equal to ¢ are summed up. The BER can be multiplied with the secret key
length, in our case 256, to compute the union bound. The union bound is the
upper bound for the block error rate (BLER) or failure rate of the protocol.

4 Error-Correcting Codes

4.1 Modern and Classical Error-Correcting Codes

Error-correcting codes are an essential technique for realizing reliable data trans-
missions over a noisy channel. In this work, error-correcting codes are used to
mitigate the influence of the difference and compression noise on the failure prob-
ability of RLWE based key exchange protocols. Instead of the additive threshold

Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 377

encoding, which is used in the original NewHope Simple scheme, in this work
we explore the effect of using more powerful error-correcting codes. The design
objectives for the error-correcting code are: (i) good error-correcting capability,
to increase the security or decrease the amount of exchanged data; (ii) low fail-
ure rate, to avoid repetition of the protocol and to apply CCA transformation;
and (iii) reasonable time complexity. The additive threshold encoding has usu-
ally a weak error-correcting capability and cannot efficiently achieve low failure
rates for certain noise levels. Therefore, more powerful classical® and modern*
codes can be used. The drawback of using powerful error-correcting codes is the
increase of computation time.

Modern codes have a strong error-correcting capability and can get close
to the channel capacity for long code lengths. The most commonly used error-
correcting codes belonging to the class of modern codes are LDPC and Turbo
codes. In comparison to Turbo codes, LDPC codes usually have a lower time
complexity since they do not require long interleavers and can abort the iteration
loop when a correct codeword is found [14]. Moreover, their error floor occurs at
lower failure rates [21]. The error floor is a phenomenon of some modern codes
that limits the performance for low failure rates. That is, the channel capacity
can only be very closely approached for moderate failure rates. Since the goal is
to have a low (or even no) error floor and to keep the time complexity low, in this
work we select LDPC instead of Turbo codes for obtaining a high error-correcting
capability.

The advantages of classical error-correcting codes are the lack of error floor
and that the number of correctable errors can be determined during the con-
struction of the code. When the number of correctable errors is known, the
performance of the code can be calculated, otherwise, simulations are required.
In contrast to classical codes, where the number of correctable errors is known,
for modern codes this value is unknown. However, it has been demonstrated by
simulation that modern codes achieve a higher error-correcting capability, when
compared to the classical approach.

There are a large number of classical error-correcting codes, e.g. Hamming,
Reed Muller and BCH codes. Among this alternatives, BCH codes are widely
spread in real world applications because of their good performance, the ability
to correct multiple errors and their flexibility in terms of code length and code
rate. These characteristics motivate us to use BCH codes in the protocol to
achieve very low failure rates.

To reach both a high error-correcting performance and a very low failure
rate, usually different codes are concatenated. The concatenation of BCH and
LDPC codes is a common method, which is used, for example, in the second
generation of the digital video broadcast standard for satellite (DVB-S2).

3 Classical codes are described by algebraic coding theory.
4 Modern codes have a new approach based on probabilistic coding theory.

378 T. Fritzmann et al.

Decoding

r s | Berlekamp- o . e c
Syndrome > —>{ Chien search [——>
Massey

——>{ Encoding —(+

Noise! Decoding

I

I
m Encodine c T Calculate CN update
© (: : LLR’s VN update

Codeword
found/ max.
iteration?

no

Fig. 2. LDPC error correction with sum-product algorithm

4.2 BCH Codes

BCH codes are a class of powerful classical error-correcting codes that were
discovered in 1960. The code length of a BCH code must be n = ¢ — 1, where
m € Z is greater or equal to three and ¢ equal to two for the binary BCH codes.
There exists a BCH code for any valid code length and any positive integer ¢t <
2m~1 where ¢ denotes the number of correctable errors [21]. Figure 1 illustrates
the encoding and decoding process of BCH codes. During the encoding, the
codeword c is built out of a message m. In the noisy channel, noise is added to
the transmitted codeword. At NewHope Simple, this would be the difference and
compression noise. The decoder is used to correct multiple errors in the received
codeword r. Generally, the decoding process consists of three parts: determining
the syndrome s, error locator polynomial ¢ and the zeros of o. Berlekamp’s
algorithm, which was proposed in 1966, is an efficient method for determining
the error locator polynomial [8]. The error polynomial e can be determined by
finding the zeros of the error locator polynomial with the Chien search algorithm
[12]. The predicted codeword ¢’ is calculated by taking r xor e.

4.3 LDPC Codes

LDPC codes were developed by Gallager in 1962 [16]. They have become attrac-
tive since the 90’s, when the required computational power has been available.
Figure 2 shows a block diagram of an LDPC code. LDPC codes are characterized
by its parity check matrix H, which has, in case of LDPC codes, a low density,
i.e. a low number of ones. For the encoding, usually, the systematic form of H is
computed to derive the generator matrix. With the generator matrix it is pos-
sible to calculate the codeword ¢ by a given message m. After transmitting c
through the noisy channel, the receiver obtains a noisy codeword r.

Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 379

The sum-product algorithm is a very efficient soft decision message-passing
decoder. It takes as input a parity check matrix, the maximum number of itera-
tions and the log-likelihood ratios (LLR) of the received codeword r. To visualize
the decoding process, the Tanner Graph representation of the parity check matrix
is used. This representation consists of a bipartite graph with check nodes (CN)
and variable nodes (VN), which represent the rows and columns of H, respec-
tively. The sum-product algorithm iteratively sends LLR messages from variable
nodes to check nodes and vice versa until a correct codeword is found or the
maximum number of iterations is reached. A full description of the algorithm
can be found in works like [20] and [26].

4.4 Error-Correcting Codes for NewHope Simple

To meet the requirements mentioned in Subsect.4.1, we use LDPC codes to
maximize the error-correcting capability and BCH codes to achieve very low
error rates. In the following paragraphs, we investigate four design options that
make use of various combinations of these codes. The respective advantages and
disadvantages are summarized in Table 2.

Table 2. Summary of explored coding options

Option |Coding technique Advantages Disadvantages
Option 1|BCH Good error Computationally
correction expensive
Option 2| BCH and additive Speed up of Option | Weaker error correction
threshold enc. 1 (lower Galois field) | compared to Option 1
Option 3|LDPC Closer to channel Does not achieve very
capacity low error rates
Option 4| LDPC and BCH Lower error rates Computationally
than Option 3 expensive
achievable

Option 1. For Option 1, we use a BCH(1023,258) for the error correction. The
BCH encoder builds the codeword out of 256 secret key bits, 765 redundancy
bits and 2 padding bits. By using the NHSEncode function (Step 4 in Protocol
1), each of the 1023 code bits is mapped to one coefficient of d. Then, in the
NHSDecode function (Step 7 in Protocol 1), the coefficients are mapped back to
the received codeword with a hard threshold. Finally, the BCH decoder corrects
up to 106 bit errors and returns the estimated secret key vector (Fig. 3).

Option 2. For Option 2, we use a BCH(511,259) as outer code and the additive
threshold encoding as inner code. In this case, the BCH code uses 252 bits of
redundancy in order to correct up to 30 errors. The additive threshold encoding
has as input 512 bits (BCH code length with one padding bit). These bits are
mapped to 1024 coefficients, resulting into a redundancy of 512 bits. With the

380 T. Fritzmann et al.
Noise
BCH(1023,258) 1 bit to 1 1 coeff to BCH(1023,258)
—_— —
Enc. coeff 1 bit Dec.

Fig. 3. Option 1, block diagram BCH(1023,258)

additive threshold encoding, it is expected that even more than 30 errors are
correctable. In comparison to Option 1, this option is faster because it only
requires calculations in GF(2?). The drawback of this approach is a lower error-
correcting capability at the target failure rate (2714°), as shown in Subsect. 5.2

(Fig. 4).

Noise

BCH(511,259)

Enc.

%

1 bit to 2
coeffs

—0—

2 coeffs to
1 bit

H

BCH(511,259)
Dec.

Fig. 4. Option 2, block diagram BCH(511,259) + additive threshold encoding

Option 3. For Option 3, we use an LDPC(1024,256). In this case, all available
coefficients are used for the LDPC encoding. Similar to Option 1, one bit is
mapped to one coefficient, but within the function NHSDecode, no hard thresh-
old is used. Instead, we apply a transformation on the coefficients in order to
allow the usage of the sum-product algorithm (Fig. 5). Each received coefficient
d’; is transformed to

q

Noise

T]

Fig. 5. Option 3, block diagram LDPC(1024,256)

LDPC(1024,256)
Dec.

transfor-
mation

—

LDPC(1024,256)
Enc.

Option 4. For Option 4, we build a concatenation of a BCH(511,259) and an
LDPC(1024,512). In this approach, the advantages of BCH and LDPC codes
are combined to achieve very low error rates and to get closer to the channel
capacity. More specifically, the LDPC(1024,512) is used to remove the strong
noise and the BCH(511,259), which can correct up to 30 errors, is applied to
remove the remaining errors and thus achieve a very low error rate (Fig.6).

Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 381

Noise
LDPC(1024,512) transformation + -
5 : 5
—{BCHOGIL259) | g0 11 bit o 1 LDPC(1024,512) [—» BCHOG1,259)
Enc. Dec.
coeff Dec.

Fig. 6. Option 4, block diagram BCH(511,259) + LDPC(1024,512)

5 Experimental Results

5.1 NewHope Simple Compression Noise

Figure 7 illustrates the influence of the compression noise on the failure rate.
The graph shows that the compression has a strong influence on the failure rate
for low values of k. For higher values of k, the difference noise dominates. To
improve both, security and bandwidth, a balance between difference noise and
compression noise has to be found. When applying the error-correcting options
described in Subsect. 4.4, we found the optimum at a compression of ¢ from 14
to 3 bits per coefficient and a compression of u from 14 to 10 bits per coefficient.
Removing even more bits from the coefficients of ¢ and w leads to a significantly
higher compression noise.

The curve with compression of ¢ corresponds to the original implementation
of NewHope Simple. For a value of k = 16, a failure rate of 2712788 = 3.20.103°
is determined, whereas in [3] a failure probability lower than 276! = 4.34.1071?
is claimed. This difference is not surprising because the Cramér-Chernoff bound
is based on an exponential inequality. Due to the exponential behavior, even
small changes can entail large differences.

10° ¥ ® 9 x with compression of ¢ and
10~10 % é owith compression of ¢

o .
10—20 o w/o compression

10730
10-40 | © 9140

BLER

10—50
1070 ©

20 40 60
k

Fig. 7. Influence of compression noise on NewHope Simple’s failure rate.

382 T. Fritzmann et al.

10° 8 x NewHope Simple (4 coeff. /bit)
= 888 o4 | o BCH(1023,258)
" & oBCH(511,259) and 2 coeff. /bit
& 10—
g 10 g@
—30 ©)
M 10 o0
10740 O(> 27140
O
10—50 e} Y
40 60 80 100
k

Fig. 8. Improvement of failure rate with Option 1, BCH(1023,258); and Option 2,
concatenation of BCH(511,259) and additive threshold encoding. Compression on ¢
and u applied.

5.2 NewHope Simple with BCH Code

When the failure rate of the protocol is known, the improvement using BCH
codes can be calculated. The probability that a binary vector of S bits (in our
analysis 256) has more than ¢ errors is

BLER = i (S>pb(1—pb =1 Xt:()pb 1—pp)®7, (2)

i=t+1 =

where p;, denotes the probability of a bit error [30]. Figure 8 shows the improve-
ments with BCH codes. The results show that both BCH variants (Option 1 and
Option 2) allow a quasi-error-free communication for k’s lower than 46. While
NewHope Simple with compression of ¢ and u has a failure rate of 1.69-10~3 for
k = 46, Option 1 and Option 2 achieve a failure rate of 1.83-107°7 and 2.30-10%4,
respectively. In comparison to the original implementation of NewHope Simple,
we can choose a much higher k to obtain the same failure rate when BCH codes
are used within the protocol.

5.3 NewHope Simple with LDPC Code

When a binary input additive white Gaussian noise channel (BI-AWGNC) is
used as channel model and a code length of n = 1024 (1023) is chosen, the
improvement of the applied LDPC code over the applied BCH code is for the
rate 1/2 about 2.8 dB and for the rate 1/4 about 3.8dB at a BER of 107°. As a
consequence, LDPC codes can get closer to the channel capacity when compared
to BCH codes, even with a moderate code length.

Figure9 compares the original implementation of NewHope Simple (with
additional compression of u) with the implementations using an LDPC code
(Option 3) and a BCH code (Option 1). The graph shows that LDPC codes

Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 383
10° FHXQSBRBIEEROD x NewHope Simple (4 coeff. /bit)
X o o o LDPC(1024,256)
_ x o
107! XX o o BCH(1023,258)
= : :
= 1072 o 0
M
107° °
3
x o
—4
10 40 60 80 100
k

Fig. 9. Improvement of failure rate with Option 3, LDPC(1024,256). Compression on
c and u applied.

10° Jooseessassssases | x LDPC(1024,512) + BCH(511,259)
L0-10 0000 -4 | oBCH(1023,258)
o3
% 10—20 o
= —30
m 10 x
10—40 5—140
10750 ¢
40 60 80 100
k

Fig. 10. Improvement of failure rate with Option 4, concatenation of LDPC(1024,512)
and BCH(511,259). Compression on ¢ and u applied.

can be used to further improve the error-correcting performance. While the
BCH(1023,258) begins to operate in the waterfall region for k’s smaller than
76, the waterfall region for the LDPC(1024,256) begins for &’s smaller than 92.
However, the error floor is expected to limit the performance of the LDPC code
for error rates smaller than about 10719 (see analysis in [27]) so that BCH codes
perform better in this region. Interesting is also that the waterfall region of the
additive threshold encoding is less distinct (lower gradient).

5.4 NewHope Simple with Concatenation of BCH and LDPC Code

To achieve very low error rates and get closer to the channel capacity as a
pure BCH implementation, the BCH code is combined with an LDPC code
(Option 4). Figure 10 illustrates the performance of the concatenation of the
LDPC(1024,512) and the BCH(511,259).

384 T. Fritzmann et al.

Table 3. Comparison error correction options

Coding option Failure rate | k | Security classical/quantum | Exchanged bytes
NewHope Simple [3] 2-127.88 (a) | 16| 281/255 bits 4,000
Option 1, <9140 48 |324/294 bits 3,488
BCH(1023,258)

Option 2, BCH(511,259) | <2140 46 | 323/292 bits 3,488
+ 1 bit to 2 coeffs.

Option 3, <2712.(®) |80|348/315 bits 3,488
LDPC(1024,256)

Option 4, <2~ 140 66 | 338/307 bits 3,488
LDPC(1024,512) +

BCH(511,259)

(2) In the reference, NewHope Simple provides a failure rate of lower than 2~61. This bound
was determined using the Cramér-Chernoff inequality. With our approach, we determine a
failure rate of 3.20 - 10739 = 2-127.88,

(®) With Option 3, a failure rate of &~ 10~10 = 2733-22 can be efficiently reached.

5.5 Comparison Coding Options

Table 3 summarizes the results of the different coding options. Our analysis shows
that NewHope Simple, with the original parameter set, has a much lower failure
rate than expected. However, to increase the security and decrease the band-
width, stronger error-correcting codes have to be applied. To achieve a failure
rate of 27140, parameter k is set for Option 1, Option 2 and Option 4 to 48, 46
and 66, respectively. Since we cannot prove such an error rate for the pure LDPC
implementation, we chose a higher failure rate for Option 3. Although Option 1
has a better security strength, we recommend Option 2 because it requires cal-
culations in GF(2?) instead of GF(2!°). This reduces the time complexity. For
moderate failure rates, Option 3 achieves the best error-correcting capability,
but for failure rates lower than about 1079 the error floor limits the perfor-
mance. Option 4 cannot get as close to the channel capacity as Option 3, but it
achieves extremely low error rates. With Option 4, we can realize an error rate
of 2710 an increase of the post quantum security by 20.39% and a decrease
of the communication overhead by 12.80%. If & and thus the security level is
left unchanged and only the compression on w is increased, the communication
overhead can be reduced with Option 4 by 19.20%.

5.6 Benchmark

This section summarizes the run times of the applied algorithms. Table4 pro-
vides an overview of the determined results. All tests were performed on an Intel
Core i7-6700HQ (Skylake), which runs at 2.6 GHz (turbo boost disabled). The
C-code was compiled with gcc (version 5.4.0) and flags -O3 -fomit-frame-pointer
-march=corei7-avx -msse2avz. In comparison to NewHope Simple, the time com-
plexity increases for Option 1 by 238%; for Option 2 by 40%; for Option 3 by
6462% (when k = 80); and for Option 4 by 4455% (when k = 66). Option 2 has

Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 385

Table 4. Benchmark: median and average clock cycles with 1000 test rounds

Function Cycles median/average
NewHope Simple: | KeyGen (server) 223952/ 225452
KeyGen+shared key (client) | 353201/ 358821
Shared key (server) 78216/ 78614
BHC(511,259): | Encoding 104520/ 108738
Decoding 157704/ 154652
BCH(1023,258): | Encoding 298043/ 302021
Decoding 1259554/ 1206814
LDPC(1024,512): | Encoding 2069582/ 2073136
Decoding (k = 66) 26862391/ 27464623
LDPC(1024,256): | Encoding 2068959/ 2071198
Decoding (k = 80) 40282855/ 41912347

a relatively small overhead, thus being suitable for applications that require a
low time complexity. The costs for the other options are quite high. However, as
NewHope Simple is implemented very efficiently and is already very fast, the time
overhead can be acceptable. The decoding complexity of LDPC codes depends
on the parameter k. To decrease the run time, k£ can be decreased. Moreover,
the min-sum algorithm can be used instead of the sum-product algorithm. Thus,
the complexity is reduced at the cost of a lower decoding performance.

6 Conclusion and Future Work

Our analysis has shown that powerful error-correcting codes within lattice-based
key exchange protocols can lead to a significant improvement of important per-
formance parameters, such as failure rate, security level and bandwidth. Modern
codes, e.g. LDPC codes, can be used to get a high error-correcting capability.
However, to obtain very low error rates, classical codes, e.g. BCH codes, should
be employed. The concatenation of LDPC and BCH codes combines their advan-
tages to achieve a quasi-error-free key exchange with a high error-correcting
capability. With quasi-error-free communication, the CCA transformation can
be applied in order to allow protocols, like NewHope Simple, to be also used
for encryption. Before LDPC and BCH codes are used in encryption schemes,
it is necessary to investigate these codes with respect to the vulnerability to
attackers. For instance, constant-time implementations may be challenging. The
selection of the encoding technique is driven by the application characteristics.
Many applications may not require or may not be able to integrate powerful
error-correcting codes. Different application may benefit from the reduction of
data transmission by using strong error-correcting codes, even if the computa-
tion time increases. Examples are battery-powered wireless devices, where the
radio module usually represents a substantial portion of the overall energy con-
sumption.

386 T. Fritzmann et al.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and suggestions. This work was partly funded by the Fraunhofer High Performance
Center for Secure Connected Systems of Munich.

A NewHope Simple Algorithms NHSEncode
and NHSDecode

Algorithm 1: NHSEncode [3]

Input: Randomized vector v € {0, 1}256
Result: Polynomial d € R,
for ifrom 0 to 255 do

]
dz+206 — Uz_
dz+012 — UZL /2J
diy 768 < vilq/2]

end

Algorithm 2: NHSDecode [3]

Input: Polynomial d € R,
Result: Bit vector v; € {0,1}2°¢
for i from 0 to 255 do

t— 23:0 |di+256; — 1a/2]]
if t < g then
| v« 1
else
| v; <0
end

end

B Proof Theorem 3

Proof. Suppose that a and b are polynomials of a ring with coefficients sampled
from the probability distribution ¥y and let n be the rank of the polynomials.
Then the polynomials can be written as a = ag + a1z + -+ + ap—12" " and
b =by+bix+ - +by_12" L If we multiply a with b, we can write ¢ =
(ap+arx+- - +an_12" ") (bo+ b1z +- - +b,_12"1). By using the distributive
law and grouping all terms with the same rank together, it can be obtained
Cc = (a0b0+' . '—an_gbg—an_1b1)+(aob1+' . '—an_zbg—an_lbg)x—F' . -+(a0bn_1+

c 4 Qp_oby +an_1b0)a:”*1. Where each coefficient of polynomial ¢ is determined
by a sum of n products. Since all coefficients of ¢ and b are independently
sampled from the probability distribution ¥y, the probability distribution of the
coefficients of ¢ is an n-fold convolution of the product distribution of two RVs
sampled from V.

Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 387

C Noise Distribution

Figure 11 illustrates the probability distribution of the difference and compres-
sion noise for an error distribution parameter of kK = 16 and a compression from
14 to 3 bits. In the graph, the RV X of a coefficient of a noise polynomial has
the outcomes x = 0,1,...,q— 1. The compression noise is uniformly distributed
between zero and ¢/16, and between ¢ — ¢/16 and ¢. All values in between are
not affected by the compression.

1073
—— Difference noise
1 . .
- - - Compression noise
i:/ Bk 1
g, 051 |
| |
| |
| |
0 i 1
0 0.5 1

10%

Fig. 11. Noise distributions for k = 16 and compression from 14 to 3 bits, where
0<z<qg—-1

D Validation of Failure Rate Analysis

In Fig. 12, the calculated difference and compression noise distribution discussed
in Sect. 3 are compared with test measurements. For better visibility, this figure
illustrates only values from zero to 1,500. Unlike in Fig. 11, the logarithmic
scale is used. For the experiment, the original parameters of NewHope Sim-
ple were used. For the tested noise distribution, we used 100,000 test rounds.
With n = 1024 this leads to 102,400,000 samples. The test measurements match
the calculated values. Only for probabilities lower than 10~° the difference noise
shows some inaccuracies. With more test samples, the curve is expected to flatten
in this region as well.

Figure 13 shows that the independence assumption stated in Subsect. 3.3 can
be considered as valid for NewHope Simple with high and moderate failure rates.
It illustrates the failure probability with different mapping options within the
additive threshold encoding and with varying values of k. Each test value matches
with only minor differences the calculated value. For lower values of k the failure

388 T. Fritzmann et al.

1073 === _ - - - Difference noise
. SR
~ i calculated
~ .
\\\ i
4 S —— Difference noise
10 i\\ tested
AN
— H ~ . .
R ! N - - Compression noise
= s i . calculated
2 10 N .
: h . .
i L I ETITE Compression noise
; ‘\,} tested
-6 : 4
10 ; \
: by

—_7 H
10 0 200 400 600 800 1,000 1,200 1,400

X

Fig. 12. Comparison of tested and calculated noise distributions for £ = 16 and com-
pression of ¢, where 0 <z <g—1

o x tested 4 coeffs/bit
10 ® ® ® ® ® ®)
Q x o calculated 4 coeffs/bit
Q x tested 2 coeffs/bit
107! ® ® o calculated 2 coeffs/bit
® x tested 1 coeffs/bit
% 10-2 ® ocalculated 1 coeffs/bit
—
- ®
107°
]
10"
(<]
10-5
0 45 50 55 60 65

k

Fig. 13. Comparison of tested and calculated error probability with compression of ¢

probability is too small in order to find the correct value by testing. Test results
have shown that the calculated values for NewHope Simple without compression
and NewHope Simple with further compression on polynomial v match the test
values as well.

Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 389

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Alkim, E., et al.: NewHope: Algorithm Specifications and Supporting Documenta-
tion (2017). https://newhopecrypto.org/data/NewHope_2017_12_21.pdf

Alkim, E., et al.: FrodoKEM - Learning with Errors Key Encapsulation: Algorithm
Specifications and Supporting Documentation (2017). https://frodokem.org/files/
FrodoKEM-specification-20171130.pdf

Alkim, E., Ducas, L., Péppelmann, T., Schwabe, P.: NewHope without reconcilia-
tion. IACR Cryptology ePrint Archive 2016, 1157 (2016)

Alkim, E., Ducas, L., Péppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: 25th USENIX Security Symposium, USENIX Security 16, 10-12
August 2016, Austin, TX, USA, pp. 327-343 (2016)

Avanzi, R., et al.:. CRYSTALS-Kyber: Algorithm Specifications and Sup-
porting Documentation (2017). https://www.pg-crystals.org/kyber/data/kyber-
specification.pdf

Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28-47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_2
Barreto, P.S., Longa, P., Naehrig, M., Ricardini, J.E., Zanon, G.: Sharper Ring-
LWE signatures. IACR Cryptology ePrint Archive 2016, 1026 (2016)

Berlekamp, E.R.: Nonbinary BCH decoding. In: International Symposium on Infor-
mation Theory, San Remo, Italy (1966)

Bos, J.W., et al.: Frodo: take off the ring! practical, quantum-secure key exchange
from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, 24—28 October 2016, Vienna, Austria, pp. 1006—
1018 (2016). https://doi.org/10.1145/2976749.2978425

Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM.
TIACR Cryptology ePrint Archive 2017, 634 (2017)

Cheon, J.H., Kim, D., Lee, J., Song, Y.S.: Lizard: Cut off the tail! // practical post-
quantum public-key encryption from LWE and LWR. TACR Cryptology ePrint
Archive 2016, 1126 (2016)

Chien, R.T.: Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.
IEEE Trans. Inf. Theory 10(4), 357-363 (1964). https://doi.org/10.1109/TIT.
1964.1053699

Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. Cryptology ePrint Archive, Report 2013/383 (2013)

Fan, J.: Constrained Coding and Soft Iterative Decoding. The Springer Interna-
tional Series in Engineering and Computer Science. Springer, Heidelberg (2012)
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537-554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21-28
(1962). https://doi.org/10.1109/TIT.1962.1057683

Gitlin, R., Hayes, J., Weinstein, S.: Data Communications Principles. Applications
of Communications Theory. Springer, Heidelberg (2012)

Hamburg, M.: Supporting documentation: ThreeBears (2017). https://csrc.nist.
gov/Projects/Post-Quantum- Cryptography/Round- 1-Submissions

Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267—288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

https://newhopecrypto.org/data/NewHope_2017_12_21.pdf
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://www.pq-crystals.org/kyber/data/kyber-specification.pdf
https://www.pq-crystals.org/kyber/data/kyber-specification.pdf
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1109/TIT.1964.1053699
https://doi.org/10.1109/TIT.1964.1053699
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1109/TIT.1962.1057683
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/BFb0054868

390

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

T. Fritzmann et al.

Hu, X., Eleftheriou, E., Arnold, D., Dholakia, A.: Efficient implementations of
the sum-product algorithm for decoding LDPC codes. In: Proceedings of the
Global Telecommunications Conference, GLOBECOM 2001, 25-29 November
2001, San Antonio, TX, USA, p. 1036 (2001). https://doi.org/10.1109/GLOCOM.
2001.965575

Lin, S., Costello, D.J.: Error Control Coding, 2nd edn. Prentice-Hall Inc., Upper
Saddle River (2004)

Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319-339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang, Z.: Supporting documenta-
tion: LAC (2017). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1-23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
National Institute of Standards and Technology: Announcing request for nomina-
tions for public-key post-quantum cryptographic algorithms (2016). https://csrc.
nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms

Qian, C., Lei, W., Wang, Z.: Low complexity LDPC decoder with modified Sum-
Product algorithm. Tsinghua Sci. Technol. 18(1), 57-61 (2013). https://doi.org/
10.1109/TST.2013.6449408

Richardson, T.: Error floors of LDPC codes. In: Proceedings of the Annual Aller-
ton Conference on Communication Control and Computing, pp. 1426-1435. The
University; 1998 (2003)

Saarinen, M.O.: HILAS5: On reliability, reconciliation, and error correction for Ring-
LWE encryption. IACR Cryptology ePrint Archive 2017, 424 (2017)

Saarinen, M.J.O.: Supporting documentation: HILA5 (2017). https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round- 1-Submissions

Safak, M.: Digital Communications. Wiley, Hoboken (2017)

Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192-216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5.8

Zhao, Y., Jin, Z., Gong, B., Sui, G.: Supporting documentation: KCL (2017).
https://csre.nist.gov/Projects/Post-Quantum-Cryptography /Round- 1-Submissions

https://doi.org/10.1109/GLOCOM.2001.965575
https://doi.org/10.1109/GLOCOM.2001.965575
https://doi.org/10.1007/978-3-642-19074-2_21
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-3-642-13190-5_1
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://doi.org/10.1109/TST.2013.6449408
https://doi.org/10.1109/TST.2013.6449408
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

	Analysis of Error-Correcting Codes for Lattice-Based Key Exchange
	1 Introduction
	2 NewHope Simple
	2.1 Notation
	2.2 Protocol
	2.3 Security of NewHope Simple
	2.4 Noise Sources of the Protocol

	3 Failure Rate of NewHope Simple
	3.1 Mathematical Operations with Random Variables
	3.2 Probability Distributions of Difference and Compression Noise
	3.3 From the Noise Distribution to the Failure Rate

	4 Error-Correcting Codes
	4.1 Modern and Classical Error-Correcting Codes
	4.2 BCH Codes
	4.3 LDPC Codes
	4.4 Error-Correcting Codes for NewHope Simple

	5 Experimental Results
	5.1 NewHope Simple Compression Noise
	5.2 NewHope Simple with BCH Code
	5.3 NewHope Simple with LDPC Code
	5.4 NewHope Simple with Concatenation of BCH and LDPC Code
	5.5 Comparison Coding Options
	5.6 Benchmark

	6 Conclusion and Future Work
	A NewHope Simple Algorithms NHSEncode and NHSDecode
	B Proof Theorem 3
	C Noise Distribution
	D Validation of Failure Rate Analysis
	References

