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Abstract. We formalize the notion of a constrained linear trapdoor as
an abstract strategy for the generation of signature schemes, concrete
instantiations of which can be found in MQ-based, code-based, and
lattice-based cryptography. Moreover, we revisit and expand on a trans-
formation by Szepieniec et al. [39] to shrink the public key at the cost of a
larger signature while reducing their combined size. This transformation
can be used in a way that is provably secure in the random oracle model,
and in a more aggressive variant whose security remained unproven. In
this paper we show that this transformation applies to any constrained
linear trapdoor signature scheme, and prove the security of the first mode
in the quantum random oracle model. Moreover, we identify a prop-
erty of constrained linear trapdoors that is sufficient (and necessary)
for the more aggressive variant to be secure in the quantum random
oracle model. We apply the transformation to an MQ-based scheme, a
code-based scheme and a lattice-based scheme targeting 128-bits of post
quantum security, and we show that in some cases the combined size of
a signature and a public key can be reduced by more than a factor 300.
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1 Introduction

Trapdoor functions are an important tool in public key cryptography due to
the computational asymmetry they bring about. On the one hand, the function
is a proper cryptographic one-way function to anyone who is ignorant of the
secret trapdoor information; but on the other hand, anyone who does know this
trapdoor information can use it to find inverse images quickly.

The case of surjective trapdoor functions is especially interesting for generat-
ing digital signature schemes. A cryptographic hash function maps a message of
any size to a random point in the trapdoor function’s output space. An inverse
of this point under the trapdoor function, or signature, testifies to the involve-
ment of the trapdoor information, or secret key, in its generation. This testimony
ensures the target property of non-repudiation of origin: the secret key holder
cannot deny generating the signature at a later date.
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Since their inception in the seminal paper by Diffie and Hellman [10], various
digital signature schemes have been deployed whose security is based on the
hardness of integer factorization [35] and the discrete logarithm problem [30,
36]. However, the advent of quantum computers threatens the security of these
signature schemes because both hard problems are solved efficiently by Shor’s
quantum algorithm [37]. This ultimatum drives the need to design, develop and
deploy so-called post-quantum cryptosystems, i.e., cryptography that can be run
on classical hardware but promises to resist attacks by quantum computers.

Even though the RSA trapdoor is broken by quantum computers, the hash-
and-sign construction that RSA signatures are based on seems to survive the
transition to post-quantum cryptography. To achieve post-quantum secure sig-
nature schemes it suffices to exchange the underlying trapdoor for one that
has the desired security against quantum adversaries. There is no shortage of
trapdoor-based signature schemes based on the MQ problem [11,21,34], coding
theory [8,9], or lattices [3,15,27].

Unfortunately, the public keys in these schemes are prohibitively large, mea-
surable in hundreds of kilobytes if not megabytes. In contrast, post-quantum
signature schemes derived from zero-knowledge proofs require only a one-way
function whose selection can be random or might as well be determined by a
short seed and an implicit pseudorandom generator. Signature schemes based
on zero-knowledge proofs tend to exchange tiny public keys for prohibitively
large signatures [7,18,23,38], and moreover require complicated and expansive
non-interactivity transforms to retain security against quantum attackers [40].
Although provable security in the case of hash-based signature schemes is much
more straightforward, this family of constructions follows the same pattern: tiny
public keys but huge signatures [4,5].

Szepieniec, Beullens and Preneel offer an alternative to the dilemma between
large public keys or large signatures [39], motivated by the desire to minimize
the combined size of public key and signature. This minimization is particularly
important in the context of public key infrastructure (PKI) where a chain of
signatures and public keys is transmitted in order to authenticate a message
with respect to a pre-shared root public key. The construction of Szepieniec et
al. applies specifically to MQ trapdoors and relies on the observation that ver-
ifying a couple of random linear combinations of the public key’s polynomial
equations can be as good as verifying all of them. The coefficients of this linear
combination are determined as a function of the produced signature, and the
combination itself is transmitted along with this signature in addition to infor-
mation authenticating its link to the public key. This transformation reduces
the size of public key plus that of the signature by roughly a factor three whilst
provably retaining security in the random oracle model; and by a much larger
factor at the expense of a heuristic security argument.

This article expands on the paper of Szepieniec et al. in several ways. We
observe that this transformation also applies to other post-quantum trapdoor
signature schemes, most notably code-based and lattice-based trapdoors. From
a general perspective, these three hard problems are variations on a common
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theme, which we call constrained linear signature schemes. This commonality
allows a generic presentation of the transformation. The security proofs of Szepi-
eniec et al. only work in the classical random oracle model. However, security
proofs that purport to defend against quantum adversaries should additionally
hold in the quantum random oracle model, which our proof does. Moreover, we
identify a necessary and sufficient security property, called (σ, r)-hash-and-sign-
security ((σ, r)-HSS), that a constrained linear signature scheme must have in
order for the more aggressive parameter choices of Szepieniec et al. to be provably
secure. This leads to an improved understanding of the security of instantiations
of this construction, which includes the DualModeMS submission of Faugère
et al. [12] to the NIST PQC standardization project [29]. To showcase the key
size improvements that can be achieved with the transformation, we apply the
transformation to a lattice-based, code-based and multivariate constrained linear
signature scheme with parameters targeting 128 bits of security against quantum
computers.

2 Preliminaries

Random Oracle Model. We use a hash function in our construction. For the
purpose of proving security we model it by a random oracle, which is a random
function H : {0, 1}∗ → {0, 1}κ with a fixed output length, typically equal to
the security parameter. If necessary, the random oracle’s output space can be
lifted to any finite set X. We use subscripts to differentiate the random oracles
associated with different output spaces. A security proof relying on the modelling
of hash function as random oracles is said to hold in the random oracle model.
When quantum adversaries are considered, the security proofs should allow for
superposition queries to the random oracle [6]; a security proof with this property
is said to hold in the quantum random oracle model.

Trapdoor Functions. A trapdoor function is a function that can be efficiently
computed in one direction, but for which it is hard to compute preimages unless
by someone who knows a secret piece of information called the trapdoor. We
associate three algorithms to a trapdoor function family:

– GenTrapdoor takes a security parameter as input and outputs a trapdoor
function f and a trapdoor t.

– Evaluate takes a description of the trapdoor function f and an argument x
as input, and returns the evaluation of f at x. In the rest of the paper, we
simply write this as f(x).

– Invert takes the function f , the trapdoor t and an image y as input, and
outputs a value x such that f(x) = y.

Signature Scheme. A public key signature scheme is defined as a triple of poly-
nomial-time algorithms (KeyGen,Sign,Verify). The probabilistic key generation
algorithm takes the security level κ (in unary notation) and produces a secret and
public key: KeyGen(1κ) = (sk , pk); the signature generation algorithm produces
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a signature: s = Sign(sk,m) ∈ {0, 1}∗. The verification algorithm takes the
public key, the message and the signature and decides if the signature is valid:
Verify(pk ,m, s) ∈ {0, 1}; we refer to these outputs as “reject” and “accept”,
respectively. The signature scheme is correct if signing a message with the secret
key produces a valid signature under the matching public key:

(KeyGen(1κ) ⇒ (sk , pk)) =⇒ ∀m ∈ {0, 1}∗ .Verify (pk ,m,Sign(sk ,m)) = 1.

Here and elsewhere we use ⇒ to denote the event of the probabilistic algorithm
on the left hand producing the output on the right hand, and =⇒ to denote
logical implication.

Security is defined with respect to the Existential Unforgeability under Cho-
sen Message Attack (EUF-CMA) game of Goldwasser et al. [17]. The adversary
A is allowed to make a polynomial number of queries mi, i ∈ {1, . . . , q}, q ≤ κc

for some c, which the challenger signs using the secret key and sends back:
si ← Sign(sk,mi). At the end of the game, the adversary must produce a pair of
values (m′, s′) where m′ was not queried before: m′ �∈ {mi}q

i=1. The adversary
wins if Verify(pk ,m′, s′) = 1. In the game below, the Iverson brackets [[·]] return
0 if the expression is False or 1 if it is True.

Game EUF-CMA
1: sk , pk ← KeyGen(1κ)
2: M ← ∅

3: define S(m) as
4: M ← M ∪ {m}
5: return Sign(sk , m)
6: end definition
7: (m, s) ← AS(pk)
8: return [[Verify(pk , m, s) = True ∧ m �∈ M]]

We define the insecurity function InSecEUF-CMA
scheme (QS; t) as the maximum win-

ning probability across all quantum adversaries that run in time t and that make
at most QS signature queries.

Hash-and-Sign Signature Schemes. Given a trapdoor function family and a hash
function H that hashes arbitrary messages to elements in the range of the trap-
door functions we can use the hash-and-sign construction to build a (not neces-
sarily secure) signature scheme. The key generation algorithm simply calls the
GenTrapdoor function to get (f, t). The public key is then the description of f ,
and the trapdoor t is the private key. To sign a message m, the signer uses his
trapdoor t to produce a preimage s for H(m). This preimage is the signature for
m. Lastly, to verify the validity of a signature the verifier computes H(m), uses
the public key to evaluate f at s and checks if f(s) = H(m).

Merkle Tree. A Merkle tree [26] is a balanced binary tree whose root authenticates
a list of data itemswhich are contained in the leaves. Every non-leaf node, including
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the root, has a value equal to the hash of the concatenation of its two children. A
leaf can be proven to be a member of the tree by tracing a path from the leaf to
the root and listing all siblings of nodes on that path: every step can be verified by
computing one hash. We associate three algorithms with a Merkle tree:

– CalculateMerkleRoot takes a list of leaf items, computes the entire Merkle tree,
and returns its root.

– OpenMerklePath takes a list of leaf nodes and an index, and outputs its
authentication path: the list of all siblings of nodes on the path from the
indicated leaf node to the root.

– VerifyMerklePath takes an index, a leaf node, a Merkle path, and a root, and
decides whether the leaf node is a member of the tree with the given root.

3 Trapdoor-Based Signature Schemes

3.1 MQ Trapdoors

Multivariate quadratic (MQ) trapdoor functions date back to the C∗ scheme
of Matsumoto and Imai [25], which has since given rise to a number of viable
candidates including HFE−

v [32], UOV [21] and Rainbow [11]. The idea is to
compose a special quadratic map F : F

n
q → F

m
q with two linear transforms,

T ∈ GLm(Fq) and S ∈ GLn(Fq) to obtain the public key P = T ◦F ◦S. A vector
s ∈ F

n
q that represents an assignment to the variables, is a valid signature for

the document d ∈ {0, 1}∗ whenever

P(s) = H(d). (1)

In order to find s, the signer computes z = H(d), y = T−1z, uses the special
structure of F to sample an inverse x such that F(x) = y, and then computes
s = S−1x.

We focus on the Rainbow submission to the NIST PQC project [29], where
the parameter set (q = 256, v = 68, o1 = 36, o2 = 36) is proposed. In this case,
n = v + o1 + o2 = 140 and m = o1 + o2 = 72. While the proposal does not
employ Petzoldt’s compression trick [33] we note that it is possible in principle,
in which case v(v +1)/2+ vo1 columns of the public Macaulay matrix are set as
the output of a PRG expanding a seed of 32 bytes.1 Allocating five bits per field
element, we obtain signatures of 140 bytes and public keys of 356.9 kB. Without
Petzoldt’s compression trick the public key is 694.0 kB.

3.2 Code-Based Trapdoors

The first code-based signature scheme was proposed by Courtois, Finiasz and
Sendrier (CFS) [8]; it relies on the difficulty of finding a low Hamming weight
1 In fact, Petzoldt manages to fix more elements of the public key’s Macaulay matrix,

but as these elements are not arranged into columns they are incompatible with our
compression technique.
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word associated with a given syndrome. The public key in such a signature
scheme is a parity check matrix H ∈ F

(n−k)×n
2 . A signature (s, i) ∈ F

1×n
2 × Z on

a document d ∈ {0, 1}∗ consists of an error vector and an index; it is valid when
the error vector has Hamming weight at most t and syndrome equal to the hash
of the document concatenated with the index i. The index i can be thought of
as selecting a different hash function. Formulaically:

HsT = H(d‖i) and HW(s) ≤ t. (2)

By our calculations, a 128-bit post-quantum security level is achieved with
the parameter set m = 26, t = 15 and thus n = 2m = 226 and n−k = tm = 390.
At this point the public key is 3.05 GB but the signatures are 390 bits. We refer to
Appendix A for a derivation of these parameters. We choose not to consider the
question whether the cryptosystem is practically usable with these parameters
and instead focus on the obtained compression factor. The CFS scheme is used
as a generic stand-in for code-based signature schemes using the hash-and-sign
paradigm and relying on the hardness of syndrome decoding.

3.3 Lattice-Based Trapdoors

A first trapdoor-based signature schemes from lattices was proposed by Gol-
dreich, Goldwasser and Halevi (GGH) at Crypto’97 [16]. The signatures of this
scheme leak information about the private key, and the scheme was broken by
Nguyen and Regev [31]. Gentry et al. [15] showed how to sample signatures that
do not leak information and constructed a provably secure signature scheme.
Later improvements by Alwen and Peikert [3] and by Micciancio and Peikert [27]
make the scheme more efficient. The main idea is the same in all schemes: the
public key is a matrix A ∈ F

n×m
q with large coefficients but such that there exists

another matrix S ∈ Z
m×m with small coefficients with AS = 0mod q. In order

to generate a signature for a document d ∈ {0, 1}∗, the signer uses the secret key
S to obtain a small-coefficient vector z ∈ Z

m. It is a valid signature whenever

Az = H(d)mod q and ‖z‖2 ≤ β, (3)

for some length bound β ∈ R>0.
Using the methodology of [28], and the estimator for the concrete hardness

of the SIS problem of Albrecht et al. [1], we choose parameters for the scheme
of [27] that achieves 128 bits of security. This results in the parameters n =
321, q = 226 − 5,m = 16692 and β = 112296, a public key of n × m × 26 bits
= 16.6 MB, and signatures of �log2(β)� × m bits = 34.6 KB. We chose q to be
prime as this is required for our security proof to work. The first half of the
matrix A can be chosen randomly, so we can fix this part with a PRG to cut the
size of the public key in half.

3.4 A Unifying View

The above three signature schemes can be thought of as variations on a com-
mon theme. These schemes are all hash-and-sign signature schemes with a linear
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trapdoor function f : F
�
q → F

k
q , but with f restricted to a domain defined by

a nonlinear constraint function nc : F
�
q → {True,False}. We call these trap-

door functions constrained linear trapdoor functions, and if they are used
in a hash-and-sign construction, we call the resulting signature scheme a con-
strained linear signature scheme.

For all the constrained linear signature schemes the public key is a matrix
M ∈ F

k×�
q with k < � which represents the trapdoor function f and a signature

is represented by a vector s ∈ F
�
q. A signature is valid if Ms is equal to a target

t ∈ F
k
q , which is the evaluation of a hash function at a document, and if the

vector s also satisfies the constraint nc. Symbolically:

Verify(sk ,m, s) = 1 ⇐⇒ Ms = t = H(m) ∧ nc(s) = True.

In the case of lattice-based trapdoors, the signature is valid only if s is a short
vector. In the case of code-based trapdoors, it is valid only if the Hamming
weight of s is low. And in the case of MQ trapdoors, the matrix M is the
coefficient matrix (or Macaulay matrix) of the quadratic polynomial map P
and the signature s must be factorizable as a vector of products of n variables:
sT = (x2

1, x1x2, . . . , x
2
n). Formally, we capture this difference between MQ, code-

based, and lattice-based trapdoors with the nonlinear constraint nc, namely by
defining for

– code-based trapdoors: nc(s) = True ⇔ HW(s) ≤ t;
– lattice-based trapdoors: nc(s) = True ⇔ ‖s‖2 ≤ β;
– MQ trapdoors: nc(s) = True ⇔ ∃x1, . . . , xn ∈ Fq . sT = (x2

1, x1x2, . . . , x
2
n).

3.5 Additional Security Properties

We say that a surjective trapdoor function f is one-way (OW) if it is hard to find
a preimage for a randomly chosen output, and we say that f is hash-and-sign
secure (HSS) if using the trapdoor function f in the hash-and-sign construction
leads to a signature scheme that is EUF-CMA secure. If f is a constrained linear
trapdoor function we can define stronger versions of the OW and HSS security
properties that will be useful for the security analysis of the transformation
(Fig. 1).

(σ, r)-One-Wayness. For any two non-negative integers σ > r we define (σ, r)-
one-wayness and (σ, r)-hash-and-sign security. To break (σ, r)-one-wayness, an
adversary has to find σ preimages x1, . . . ,xσ ∈ F

�
q for σ vectors y1, . . . ,yσ ∈ F

k
q .

However, the adversary is allowed to make mistakes in each of the σ preimages
it produces, as long as the errors f(xi) − yi are contained in a vector space
of dimension r. The (1, 0)-one-wayness property is identical to the one-wayness
property, because the adversary only needs to find a preimage for one target and
it is not allowed to make any mistakes.

The (σ, r)-OW property is a generalization of the AMQ problem introduced
in [39]; an MQ trapdoor P is (σ, r)-one-way precisely if the Approximate MQ
problem with σ targets and rank r is hard for the map P.
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(σ, r)-Hash-and-Sign Security. We also define a (σ, r)-variant of the HSS
property. The security game behind this property is similar to the EUF-CMA
game of the hash-and-sign signature scheme induced by f . To break this property,
an adversary has to come up with a message m and σ ‘signatures’ s1, · · · , sσ such
that the errors f(si)−H(m||i) are contained in a a subspace of dimension r. The
adversary can query a signing oracle S any (polynomially bounded) number
of times. When given a message m′, this signing oracle uses the trapdoor to
produce preimages for H(m′||1), · · · ,H(m′||σ) and returns these σ preimages.
The adversary loses the game if it returns a message m for which it has queried
the signing oracle, as is the case for the familiar EUF-CMA game.

We define the insecurity function InSec
(σ,r)−HSS
f (QS, QH; t) as the maximal

winning probability of an adversary that plays the (σ, r)-HSS game of f , that
makes QS queries to the signing oracle, QH queries to the random oracle and
that runs in time t. The (1, 0)-HSS property is equivalent to the HSS property.

Remark 1. If f is a collision-resistant preimage-sampleable trapdoor function (as
is the case for some lattice-based trapdoor functions), the one-wayness of f can
be reduced tightly to its hash-and-sign security and so OW and HSS are equiv-
alent [15, Proposition 6.1]. Under the same assumption on f , the security proof
of [15] can be modified to prove that (σ, r)-OW and (σ, r)-HSS are equivalent
for all σ > r ≥ 0 (Fig. 2).

4 Construction

4.1 Description

This section describes the transform of Szepieniec et al. but adapted to apply
generically to constrained linear signature schemes. The parameters for the trans-
formation are:

– (KeyGen,Sign,Verify), the constrained linear signature scheme to start from.
We denote the hash function used in the verification algorithm by H1 and the
nonlinear constraint by nc.

– τ , the number of leaves in the Merkle tree.
– e, the extension degree of Fqe , which is the field over which the error-correcting

code is defined. This value is constrained by qe ≥ τ .
– ϑ, the number of Merkle paths that are opened with each new signature.
– σ, the number of signatures of the original signature scheme that is included

in each signature of the new scheme.
– H2, a hash function that outputs a α-by-k matrix over Fq.
– H3, a hash function that outputs a set of ϑ numbers between 1 and τ .
– H4, a hash function used for building a Merkle tree.

The transformation outputs a new signature scheme (NEW.KeyGen, NEW.Sign,
NEW.Verify) with a smaller public key but larger signatures.
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Game (σ, r)-

1: (f, t) GenTrapdoor(1κ)

2: y1, . . . ,yσ
$

F
k
q

3: x1, . . . ,xσ A(f,y1, . . . ,yσ)
4: return [[dim(〈f(xi)− yi〉i) ≤ r]]

Game (σ, r)-

1: (f, t) GenTrapdoor(1κ)
2: M ∅

3: define S(m) as
4: M M ∪ {m}
5: for i from 1 to σ do
6: si Invert(f, t,H(m||i))
7: end for
8: return s1, . . . , sσ

9: end definition
10: m, s1, . . . , sσ AH,S(·)(f)
11: d = dim(〈f(si) − H(m||i)〉i)
12: return [[(d ≤ r) ∧ (m M∈� )]]

Fig. 1. The security game of the (σ, r) − OW property (left) and of the (σ, r) − HSS
property (right).

OW ⇐= (σ, r)-OW
⇐
=

⇐
=

HSS ⇐= (σ, r)-HSS

Fig. 2. Security properties of constrained linear trapdoor functions, and implications
between them.

Random Linear Combinations. A signature of the new signature scheme
consists of σ signatures of the original signature scheme, along with some infor-
mation to verify them. The ith signature is obtained by using the signature
generation algorithm of the original contrained-linear signature scheme to sign
d‖i. It is not necessary to communicate the entire public key M ∈ F

k×�
q . Rather,

it suffices to transmit a few random linear combinations of its rows. Therefore,
part of the new signature consists of a matrix T that is equal to RM , where R is
drawn uniformly at random from the space of α × k matrices. Instead of check-
ing whether Msi = H1(d‖i), the verifier can now check wheter T si = RH1(d‖i).
Obviously, if all signatures are valid, then the latter equations will also be sat-
isfied for any matrix R. Conversely, if at least one signature is invalid, i.e.,
Msi �= H1(d‖i) for some i, then the probability that RMs = RH1(d‖i) is at
most q−α. By choosing α large enough, the probability of accepting an invalid
signature can be made arbitrarily small.

Determining R. In order for the above argument to work, R must be chosen
independently from s = s1‖ · · · ‖sσ. Therefore, we determine R with a hash
function as R = H2(d‖s1‖ · · · ‖sσ) to ensure that a forger cannot use knowledge
about R in his choice of the si.
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Verifying T . An attacker can present the verifier with a signature containing
a matrix T which is totally unrelated to the matrix M . How can the verifier
be sure that the matrix T that is included in the signature, is really equal to
RM with R = H2(d‖s1‖ · · · ‖sσ)? We solve this problem with a probabilistic
test based on an Fq-linear error correcting code. This is a code whose alphabet
consists of the elements of a finite field Fq, with the property that any Fq-linear
combination of codewords is again a codeword. We work with Reed-Solomon
Codes2 over Fqe with message length L = ��/e� (we pack e elements of Fq into
each symbol), codeword length τ and minimal codeword distance D = τ − L.
We use Enc : F

a×L
qe → F

a×τ
qe to denote the operation of encoding the rows of a

matrix.
In the key generation phase, we compute E = Enc(M). Then we commit to

this matrix E by building a Merkle tree whose leaves contain the columns of E,
which are denoted by ei for i ∈ {1, . . . , τ}. The new public key is the root of
this tree. If T = RM , then by Fq-linearity of the error correcting code, we have
that Enc(T ) is equal to REnc(M) = RE. Conversely, if T �= RM , then Enc(T )
and RE differ in at least one row. These rows are different codewords, so they
differ in at least D of the τ symbols. To verify that T = RM , we now select ϑ
columns eb1 , · · · , ebϑ

of E with the hash function H3 and we check whether the
bi-th column of T agrees with Rebi

for all i in 1, · · · , ϑ. If T is not equal to RM ,
this will go undetected with a probability of at most (L

τ )ϑ.

Pseudocode. Algorithms 1, 2 and 3 present pseudocode for the new signature
scheme (NEW.KeyGen, NEW.Sign, NEW.Verify) obtained from transforming the
old constrained-linear signature scheme (KeyGen, Sign, Verify).

Algorithm NEW.KeyGen

input: 1κ — security level (in unary)
random coins

output: root — A public key
(sk, M) — A corresponding secret key

1: (sk, M) ← KeyGen(1κ)
2: E ← Enc(M) � Encode M row by row.
3: root ← CalculateMerkleRoot(e1, · · · , eτ ) � Build tree on columns of E
4: return (root , (sk, M))

Algorithm 1. The key generation algorithm

2 While the original description of the transformation used MAC-polynomials, we
think it is better to describe the same transformation it in the language of Reed-
Solomon error correcting codes.
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Key and Signature Sizes. For a post-quantum security level of κ bits, the
new public key is 2κ bits in size, as it represents the Merkle root. The new
signature consists of σ old signatures, α linear combinations of the rows of M
(each one of which consists of � field elements of size �log2 q� bits), ϑ columns
of Enc(M) (each one of which consists of k field elements of e × �log2 q� bits),
and ϑ Merkle paths of consisting of log2 τ hash images of 2κ bits each. Put all
together, we have

|NEW.signature| = σ|OLD.signature|+(α�+ϑke)×�log2 q�+2ϑκ× log2 τ. (4)

The old signatures can be represented as � field elements but in some cases a
more concise encoding is possible. For instance, CFS signatures require only the
positions of the 1-bits, and MQ signatures require only an assignment to the
variables from which the vector of quadratic monomials can be derived.

4.2 Security

Before we present the security statement and its proof, we need to introduce a
pair of security games that will be important for our security analysis. In par-
ticular, we need hash functions that are one-way and second-preimage resistant,
in both cases with respect to multiple targets. Both games are formalized with
respect to a hash function H that is randomly selected from a hash function
family H. We follow the formalisms of Hülsing et al. [20].

Algorithm NEW.Sign

input: d — A document to sign
(sk, M) — A private key

output: (s1, · · · , sσ, T, vb1 , · · · , vbϑ ,paths) — A signature for d

1: for i from 1 to σ do
2: si ← Sign(d‖i, sk)
3: end for
4: R ← H2(d‖s1‖ · · · ‖sσ)
5: T ← RM
6: E ← Enc(M) � Encode M row by row.
7: b1, · · · , bϑ ← H3(d‖s1‖ · · · ‖sσ‖T )
8: paths ← empty list
9: for i from 1 to ϑ do

10: paths.append(OpenMerklePath(e1, · · · , eτ , bi))
11: end for
12: return (s1, · · · , sϑ, T, eb1 , · · · , ebϑ ,paths)

Algorithm 2. The signature generation algorithm.
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– In the single-function, multiple-target one-wayness (SM-OW) game, the
adversary is given a list of target outputs and it wins if it can produce a
single input that maps to any one of the outputs. We write InSecSM-OW

H,P (Q)
to denote the maximum success probability across all adversaries that make
at most Q queries and with respect to the hash function family H and where
P is the number of target outputs.

– In the single-function, multiple-target second-preimage resistance (SM-SPR)
game, the adversary is given a list of inputs and it wins if it can produce a
second preimage that maps to the same output as any one of the input preim-
ages. We write InSecSM-SPR

H,P (Q) to denote the maximum success probability
across all adversaries that make at most Q queries and with respect to the
hash function family H and where P is the number of input preimages.

Game SM-OW

1: H
$←− H

2: for i from 1 to P do
3: Mi

$←− {0, 1}m

4: Yi ← H(Mi)
5: end for
6: M ′ ← AH(Y1, . . . , YP )
7: return [[∃i .H(M ′) = Yi]]

Game SM-SPR

1: H
$←− H

2: for i from 1 to P do
3: Mi

$←− {0, 1}m

4: end for
5: M ′ ← AH(M1, . . . , MP )
6: return [[∃i .H(M ′) = Yi ∧

M ′ �= Mi]]

Hülsing et al. obtain values for these insecurity functions in the random oracle
model, i.e. where H is drawn uniformly at random from the set of all functions
from the given input space to the given output space. In the classical random
oracle model we have

InSecSM-OW
H,P (Q) = InSecSM-SPR

H,P (Q) =
(Q + 1)P
|range(H)| . (5)

In the quantum random oracle model, where the adversary is allowed Q̂ quantum
queries, we have

InSecSM-OW
H,P (Q̂) = InSecSM-SPR

H,P (Q̂) = Θ

(
(Q̂ + 1)2P
|range(H)|

)
. (6)

The SM-OW game does not quite capture one of the transitions in our
security proof. The reason for this is that the adversary cannot be given a
definite list of target output images because whether an output of the hash
function is suitable for the adversary depends on the input of the hash func-
tion. We model this task by a new game, marked element search (MES), in
which the adversary does not have a list of target outputs but a marking func-
tion mark : domain(H) × range(H) → {0, 1} that determines whether the pair
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Algorithm NEW.Verify

input: d — document
(s1, · · · , sϑ, T, vb1 , · · · , vbϑ ,paths) — signature
root — public key

output: 1 if the signature is valid, 0 otherwise

1: R ← H2(d‖s1‖ · · · ‖sσ)
2: for i from 1 to σ do
3: if T si �= RH1(d‖i) or nc(si) = False then
4: return 0
5: end if
6: end for
7: b1, · · · , bϑ ← H3(d‖s1‖ · · · ‖sσ‖T )
8: for i from 1 to ϑ do
9: if Enc(T )∗,bi �= Rebi then

10: return 0
11: end if
12: if VerifyMerklePath(bi, ebi ,paths[i],root) = Fail then
13: return 0
14: end if
15: end for
16: return 1

Algorithm 3. The signature verification algorithm.

(input , output) is suitable. We write InSecMES
H,mark(Q) to denote the maximum suc-

cess probability across all adversaries that make at most Q queries to the hash
oracle in the MES game. In the quantum random oracle model this notion is
reducible to SM-OW.

Game MES

1: H
$←− H

2: M ← AH()
3: return mark(M,H(M))

Proposition 1 (SM-OW ≤ MES). In the (quantum) random oracle model, we
have that for any marking function mark with P = maxX |{Y |mark(X,Y ) = 1}|,

InSecMES
H,mark(Q) ≤ InSecSM-OW

H,P (Q). (7)

Proof. We show an algorithm, BSM-OW in the SM-OW game, that simulates a
given algorithm AMES for the MES game with marking function mark, and wins
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with at least the same probability. The input of BSM-OW is a list of P images
{Y1, . . . , YP } and access to a random oracle H. The algorithm BSM-OW programs
a random oracle H′ that on input X returns σ−1

X (H(X)), where σX is a per-
mutation (chosen deterministically) with the property that the elements Y that
satisfy mark(X,Y ) = 1 are mapped into the set {Y1, . . . , YP }. By assumption,
|{Y |mark(X,Y ) = 1}| ≤ P , so such a permutation always exists. Note that
BSM-OW is bounded in the number of queries it can make to H, but not bounded
in time or memory. Therefore it will be able to choose such a permutation σX .
Then, BSM-OW invokes AMES with the programmed random oracle H′. Since H′

only applies a permutation to the ouput of H, the ouputs of H′ will be inde-
pendent and uniformly distributed. Hence, H′ is itself a perfect random oracle.
Pseudocode for BSM-OW is given below.

Algorithm BSM-OW

1: define H′(X) as
2: pick σX s.t. σX({Y |mark(X,Y ) = 1}) ⊂ {Y1, · · · , YP }
3: return σ−1

X ◦ H(X)
4: end definition
5: return A

H′(·)
MES ()

Clearly, the number of queries that BSM-OW makes to H is identical to the
number of queries made by the simulated algorithm AMES. Eventually, AMES

returns a preimage X. AMES wins the MES game if mark(X,σ−1
X (H(X))) = True.

By our choice of σX this implies that σX(σ−1
X (H(X))) = H(X) ∈ {Y1, · · · , YP },

which shows that BSM-OW wins his SM-OW game in this case. So InSecMES
H,mark(Q) ≤

InSecSM-OW
H,P (Q). ��

We are now in a position to state and prove our security claim.

Theorem 1. Let NEW be the signature scheme derived from applying the trans-
formation to a constrained linear scheme OLD. The maximum winning proba-
bility across all time-t adversaries in the EUF-CMA game against NEW that
make Qs signature queries and Q1, Q2, Q3, Q4 queries to the random oracles
H1,H2,H3,H4 respectively is bounded by

InSecEUF-CMA
NEW (Qs, Q1, Q2, Q3, Q4; t) ≤ InSec

(σ,r)-HSS
f (Qs, Q1;O(t)) + InSecSM-SPR

H4,2τ−1 (Q4)

+InSecSM−OW
H3,Lϑ (Q3) + InSecSM−OW

H2,qα×(k−r+1) (Q2) . (8)

Proof. We show through a sequence of four games how an adversary for the
EUF-CMA game against NEW can be transformed into an adversary for the
(σ, r)-HSS property of the underlying constrained linear trapdoor function f
that wins with the same probability conditional on each of the transitions being
successful. By bounding the failure probability of each transition and summing
the terms we obtain a bound on the winning probability of the adversary against
NEW. The sequence of games is as follows:
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– The first game G1 is the EUF-CMA game against NEW.
– The second game G2 drops the Merkle tree. Instead, the public key consists

of all the τ columns of E, and the verifier checks directly if the columns that
are included in the signature are correct.

– The game G3 drops the codeword identity testing. Instead, the public key
is now the original public key (i.e., M), and the verifier tests directly if the
matrix T , which is included in the signature is equal to RM .

– The last game G4 drops the random linear combinations for signature validity
testing, instead G4 is won if the errors f(si) − H1(m||i) are contained in a
subspace of dimension r. G4 is thus the (σ, r)-HSS game for the constrained
linear trapdoor function f .

In games G2, G3 and G4, the adversary B simulates the previous game’s
adversary A in order to win his own game. In particular, this means that B must
answer the signing queries that A makes. This is not a problem, because in all
cases B can just forward the queries that A makes to its own signing oracle,
remove some information that is not required for the game that A is playing
from the signature and pass the response back to A. In each case, we define the
transition’s failure probability as the probability that A wins but B does not. In
all cases the adversary A has unbridled access (perhaps even quantum access)
to the hash functions H1, H2, H3 and H4.

The event that A wins G1 but B does not win G2 occurs only if the signature
outputted by A passes the Merkle root test, but the columns included in this
signature do not agree with the columns in E = Enc(M). This event requires
finding a second preimage for one of the 2τ − 1 nodes of the Merkle tree, so the
failure probability is bounded by

InSecSM-SPR
H4,2τ−1 (Q4) .

Likewise, the event that A wins the G2 game, but B does not win the G3

game occurs only if the columns eb1 , · · · , ebϑ
of E in the signature outputted by

A are correct, but still T is not equal to RM . This implies that Enc(T ) differs
from RE in at least τ − L columns (since the rows are codewords from a code
with minimal distance τ − L), but that none of these columns were not chosen
by the random oracle H3. Finding m||s1|| · · · ||sσ||T , such that this happens is a
marked element search with marking function

mark1(m||s1|| · · · ||sσ||T, b1|| · · · ||bϑ) =

⎧⎪⎨
⎪⎩
False if T = RM

False Rebi
�= Enc(T )�,bi

for some i

True otherwise
.

Since there are at most L indices for which the columns of Enc(T ) and REnc(E)
are identical, there are at most

(
L
ϑ

) ≤ Lϑ marked elements for a given input.
The failure probability is therefore bounded by

InSecMES
H3,mark1 (Q3) ≤ InSecSM−OW

H3,Lϑ (Q3) .
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Finally, the event that A wins game G3 but that B does not win G4 happens
when the errors span a vector space of dimension strictly larger than r (B does
not win), but that all these error lie in the kernel of R = H2(m||s1|| · · · ||sσ)
(otherwise A does not win). Finding m||s1|| · · · ||sσ such that this happens is a
marked element search for the marking function

mark2(m||s1|| · · · ||sσ, R) =

⎧⎪⎨
⎪⎩
False if R(f(si) − H1(m||i)) �= 0 for some i

False if dim(〈f(si) − H1(m||i)〉i=0,··· ,σ) > r

True otherwise
.

For a choice of m||s1|| · · · ||sσ there are only good matrices R if the space spanned
by the errors f(si)−H1(m||i) has dimension at least r+1. If this is the case then
the good matrices R are precisely the α-by-k matrices whose kernel contains the
error space. Therefore there are at most qα(k−r+1) good matrices for each choice
of m||s1|| · · · ||sσ. Therefore the failure probability of the last step is bounded by

InSecMES
H2,mark2(Q2) ≤ InSecSM−OW

H2,qα×(k−r+1) (Q2) . �

Joining Theorem 1 with Eqs. (5) and (6) gives the following corollaries.

Corollary 1. In the classical random oracle model,

InSecEUF-CMA
NEW (Qs, Q1, Q2, Q3, Q4; t) ≤ InSec

(σ, r)-HSS
f (Qs, Q1; t) + (Q2 + 1)q−α(r+1)

+(Q3 + 1)(�/τ)ϑ + (Q4 + 1)(2τ − 1)/2κ.

Corollary 2. In the quantum random oracle model,

InSecEUF-CMA
NEW (Qs, Q̂1, Q̂2, Q̂3, Q̂4; t)≤ InSec

(σ, r)-HSS
f (Qs, Q̂1; t) + Θ

(
(Q̂2 + 1)2q−α(r+1)

)
+Θ

(
(Q̂3 + 1)2(�/τ)ϑ

)
+ Θ

(
(Q̂4 + 1)2(2τ − 1)/2κ

)
.

There are two ways to use the transformation. One can choose σ = 1 and α
large enough such that qα/2 reaches the required post-quantum security level,
i.e., qα/2 > 2κ. Corollary 2 with r = 0 then guarantees that the resulting signa-
ture scheme is EUF-CMA secure, provided that the constrained linear trapdoor
function f that we started from is (1, 0)-HSS. This assumption is equivalent to
the EUF-CMA security of the original signature scheme OLD. We also note that
in this case the security proof is tight, meaning that no security is lost (in the
QROM) by applying the transformation in this way.

One can also use the transformation with σ > r, and a lower value of α such
that qα·(r+1)/2 reaches the required security level. This reduces the size of the
public keys even further, but this comes at the cost of a stronger security assump-
tion on the constrained linear trapdoor function f . In this case Corollary 2 says
that the resulting signature scheme is EUF-CMA secure, if the underlying con-
strained linear trapdoor function is (σ, r)-HSS.
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4.3 Applying the Transformation

Table 1 presents a comparison of the transformation applied to the three con-
strained linear trapdoor signature schemes treated in Sect. 3. For the Rainbow
and Micciancio-Peikert schemes part of the public key can be generated with a
PRNG to reduce the size of the public key. This trick is compatible with our
construction, so we have taken this into account. In all cases, 128 bits of security
against quantum computers was targeted for an apples-to-apples comparison.

Table 1. Comparison of constrained linear signature schemes before and after public
key compression. Legend: NC = no compression; PS = our provably secure technique
based on the assumption that the original hash-and-sign signature scheme is secure;
SA = the approach relying on stronger assumptions.

Scheme q Other parameters α σ ϑ τ e |pk| |sig|
Rainbow NC 256 v = 68, o1 = 36, o2 = 36 - - - - - 0.35 MB 0.14 kB

Rainbow PS 32 1 25 220 3 64 bytes 0.18 MB

Rainbow SA 2 16 25 220 3 64 bytes 35.51 kB

CFS NC 2 m = 26, t = 15 - - - - - 3.05 GB 59 bytes

CFS PS 256 1 71 225 25 32 bytes 2.00 GB

CFS SA 1 256 71 225 25 32 bytes 8.15 MB

Micciancio-Peikert NC 226 − 5 n = 321, m = 16692, β = 112296 - - - - - 8.30 MB 34.64 kB

Micciancio-Peikert PS 10 1 37 220 1 64 bytes 0.35 MB

Micciancio-Peikert SA 5 2 37 220 1 64 bytes 0.26 MB

The shrinkage is the most striking when k � α · σ, because this is when the
largest part of the matrix M is omitted. The mediocre shrinkage of |pk | + |sig |
for the provably secure case (σ = 1) suggests that for the trapdoors considered,
k is already quite close to the lower bound k ≥ κ/log2 q needed for κ bits of
security. The greater compression factor attained when σ > 1 is due mostly to
the representation of the old signatures in far less than � · log2 q bits.

5 Conclusion

This paper generalizes the construction of Szepieniec et al. [39] to a wide class of
signature schemes called constrained linear signature schemes. This construc-
tion transforms a constrained linear signature scheme into a new signature
scheme with tiny public keys, at the cost of larger signatures and while reducing
their combined size. We prove the EUF-CMA security of the resulting signa-
ture scheme in the quantum random oracle model, and for a more aggressive
parametrization we identify the (σ, r)-hash-and-sign security notion as a suffi-
cient property for security. This improves the understanding of the security of
instantiations of this construction, which includes the DualModeMS submission
to the NIST PQC standardization project [12,29]. Finally, to showcase the gen-
erality and facilitate comparison, the construction is applied to an MQ-based, a
code-based and a lattice-based signature scheme, all targeting the same security
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level. In some cases the combined size of a signature and a public key can be
reduced by more than a factor 300.

We close with some notes on the practicality of the transformation. From
Table 1 we see that our transformation improves the practicality of state of the
art multivariate and code-based signature schemes for applications such as public
key infrastructure (PKI), where the metric |sig| + |pk| is important and the
performance of signing a message is less critical (most signatures in a PKI chain
are long-lived and need not be created often). Code-based signature schemes
remain not very practical, despite the improvements our construction makes.
For example, applying the construction to the CFS scheme results in signatures
of 8.15 MB. Still, if better code based signature schemes are developed, the
construction will likely to be able to improve the quantity |sig|+|pk|. For example,
even though the pqsigRM [22] proposal to the NIST PQC project does not have
a completely unstructured matrix as public key, our construction can still reduce
|sig| + |pk| by a factor 6 from 329 kB to 60 kB in this case (with α = 4, σ = 64).
Unfortunately, comments on the NIST forum indicate that the pqsigRM proposal
might not be secure [2].

State of the art hash-and-sign lattice-based signature schemes are built on
structured lattices to achieve smaller public keys (e.g. Falcon relies on NTRU
lattices [14]). Therefore, our construction does not improve on state of the art
lattice-based schemes. Rather, our construction can be seen as an alternative to
using structured lattices that provably does not deteriorate the security of the
original schemes. In contrast, it is possible that switching to structured lattices
has a negative impact on security.
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A CFS Parameters

Perhaps surprisingly, the most efficient attack on the CFS cryptosystem is not
information set decoding (as is the case for the closely related Niederreiter cryp-
tosystem) but a generalized birthday algorithm credited to Bleichenbacher by
Finiasz and Sendrier [13]. The offline phase of this attack consists of building
three lists L0, L1, L2 containing sums of respectively w0, w1, w2 columns from H,
where t = w0 + w1 + w2. Next, L0 and L1 are merged and pruned by taking the
sum of each pair and keeping it only if it starts with λ zeros; the result of this
operation is stored in L′

0. In the online phase a random counter i is appended
to the document and the sum of H(d‖i) with every element of L2 that agrees on
the first λ positions is looked up in L′

0—because if this sum is present then that
means that H(d‖i) equals the sum of w1 + w2 + w3 = t columns of H which can
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be identified by tracing the origins of the elements from L′
0, L2, L0, L1 that were

used. Let L′
1 denote the list obtained from pruning the sums of elements of L2

and H(d‖i).
A single trial is successful if there is a collision between L′

0 and L′
1. This is

essentially a generalized birthday problem as described by Wendl [41], and the
same result shows that the much more easily computed binomial distribution
approximates the probability of zero collisions very well when this quantity is
overwhelming. The number of pairs to consider is #L′

0×#L′
1 and the proportion

of pairs representing a collision is 1/2k−λ. All considered pairs fail to collide with
probability (1−2λ−k)#L0×#L1 . By approximating #L′

0 ≈ E[#L′
0] = 2−λ

(
n

w0+w1

)
and #L′

1 ≈ E[#L′
1] = 2−λ

(
n

w2

)
we have a probability of success of

Ps = 1 − (
1 − 2λ−k

)2−2λ( n
w0+w1

)( n
w2

) (9)

≈ 2−λ−k

(
n

w0 + w1

)(
n

w2

)
+ O(22(λ−k)). (10)

The online complexity is O(C · P−1
s ). The offline complexity is dominated by

sorting the largest list of L0, L1 and L2, as merging L0 and L1 can be done in
linear time. Therefore, the offline complexity is O

((
n

�w/3�
)
log2

(
n

�w/3�
))

.
Quantumly, there is no speed-up for sorting, and so the offline phase might

as well remain classical. The online phase can be improved by applying Grover’s
algorithm to the “random” guess for the counter i. While sorted list lookup
requires only 1

π (ln(n) − 1) operations [19], this speed-up factor is hidden by
the big-O. The λ that minimizes the online quantum complexity O(C · P−1/2

s )
is small enough to make the offline complexity the algorithm’s bottleneck. All
complexities are larger than 2128 for the parameter set m = 26, t = 15, with
λ = 31 being the smallest such value for which the offline complexity is larger
than the quantum online complexity. At this point the public key is a bit matrix
of (15·26)×226 elements, or roughly 3.05 GB. In contrast, a signature represents a
bitstring of length 226 and of Hamming weight 15, which can be straightforwardly
represented as 15 integers of 26 bits each, by 390 bits in total.
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